Abstract This discussion of a review article by Gao et al. (2013), published in the Journal of Palaeogeography (2(1): 56-65), is aimed at illustrating that interpretations of ten ancient examples in China and one in the central Appalachians (USA) as deep-water deposits of internal waves and internal tides are unsustainable. This critical assessment is based on an in-depth evaluation of oceanographic and sedimentologic data on internal waves and internal tides derived from 332 print and online published works during 1838-January 2013, which include empirical data on the physical characteristics of modern internal waves and internal tides from 51 regions of the world��s oceans (Shanmugam, 2013a). In addition, core and outcrop descriptions of deep-water strata from 35 case studies worldwide carried out by the author during 1974-2011, and a selected number of case studies published by other researchers are evaluated for identifying the sedimentological challenges associated with distinguishing types of bottom-current reworked sands in the ancient sedimentary record. The emerging conclusion is that any interpretation of ancient strata as deposits of internal waves and internal tides is premature.
Fund:I thank Prof. Zeng-Zhao Feng (Editor-in-Chief) and Yuan Wang of the journal for their encouragement and help. I also thank two anonymous journal reviewers for their critical and helpful comments. As always, I am grateful to my wife Jean Shanmugam for her general comments.
Alexander, C. R., Davis, R. A., Henry, V. J., (eds). 1998. Tidalites: Processes and products. Tulsa, OK: SEPM Special Publication, 61: 171.
Allen, J. R. L., 1982. Mud drapes in sand-wave deposits: A physical model with application to the Folkstone Beds (Early Cretaceous, Southeast England). Proc. Royal Society of London Ser. A, 306: 291-345.
Allen, S. E., Durrieu de Madron, X., 2009. A review of the role of submarine canyons in deep ocean exchange with the shelf. Ocean Science, 5: 607-620.
Alvarado-Bustos, R., 2011. Mixing in the Continental slope: Study case Gulf of Cadiz. Liverpool, UK: University of Liverpool, Ph.D. Thesis, 138.
Apel, J. R., Ostrovsky, L. A., Stepanyants, Y. A., Lynch, J. F., 2006. Internal Solitons in the Ocean. Woods Hole Oceanographic Institution Technical Report 2006-04, 109.
Apel, J. R., Gjessing, D. T., 1989. Internal Wave Measurements in a Norwegian Fjord Using Multifrequency Radars. Johns Hopkins APL Technical Digest, 10: 295-306.
Archer, A. W., 1998. Hierarchy of controls on cyclic rhythmite deposition: Carboniferous basins of eastern and mid-continental U.S.A. In: Alexander, C. R., Davis, R. A., Henry, V. J. (eds). Tidalites: Processes and Products. Tulsa, OK: SEPM Special Publication, 61: 59-68.
B��denas, B., Aurell, M., 2001. Proximal-distal facies relationships and sedimentary processes in a storm-dominated carbonate ramp (Kimmeridgian, northern Iberian Basin). Sedimentary Geology, 139: 319-340.
B��denas, B., Pomar, L., Aurell, M. Morsilli, B., 2012. A facies model for internalites (internal wave deposits) on a gently sloping carbonate ramp (Upper Jurassic, Ricla, NE Spain). Sedimentary Geology. Doi:10.1016/j.sedgeo.2012.05.020.
Bouma, A. H., 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Amsterdam: Elsevier, 168.
Brush Jr., L. M., 1965. Experimental work on primary sedimentary structures. In: Middleton, G. V. (ed). Primary Sedimentary Structures and their Hydrodynamic Interpretation. Tulsa, OK: SEPM Special Publication, 12: 17-24.
Cacchione, D. A., Pratson, L. F., 2004. Internal tides and the continental slope: Curious waves coursing beneath the surface of the sea may shape the margins of the world��s landmasses. American Scientist, 92 (2): 130-137.
CIMAS (The Cooperative Institute for Marine and Atmospheric Studies), 2012. Ocean surface currents.
Cowan, E. Cai, A., J., Powell, R. D., Seramur, K. C., Spurgeon, V., 1998. Modern tidal rhythmites deposited in a deep-water estuary. Geo-Marine Letters, 18: 40-48.
Dalrymple, R. W., 1992. Tidal depositional systems. In: Walker, R. G., James, N. P. (eds). Facies Models: Response to Sea Level Change, GEOtext 1. Geological Association of Canada, 195-218.
Davidson, F. J. M., Holloway, P. F., 2003. A study of tropical cyclone influence on the generation of internal tides. Journal of Geophysical Research, 108: 3082. 10.1029/2000JC000783.
Davis Jr., R. A., Dalrymple, R. W. (eds). 2012. Principles of Tidal Sedimentology. Berlin, Germany: Springer, 621.
Dott, R. H. Jr., Bourgeois, J., 1982, Hummocky stratification: Significance of its variable bedding sequences. GSA Bulletin, 93: 663-680.
Dunham, J., Saller, A. H., 2014. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands: Discussion. AAPG Bulletin, 98: 851-857.
Dykstra, M., 2012. Deep-water tidal sedimentology. In: Davis, R. A. Jr. Dalrymple, R. W. (eds). Principles of Tidal Sedimentology. Berlin, Germany: Springer, 371-396.
Ekman, V. W., 1904. On dead water. Norwegian North Polar Expedition 1893-1896. Sci. Res., 5: 152.
Famakinwa, S. B., Shanmugam, G., Hodgkinson, R. J., Blundell, L. C., 1996. Deep-water slump and debris flow dominated reservoirs of the Zafiro Field area, offshore Equatorial Guinea. In: Offshore West Africa Conference and Exhibition, Libreville, Gabon, November 5-7: 1-14.
Faug��res, J.-C., Gonthier, E., Stow, D. A. V., 1984. Contourite drift moulded by deep Mediterranean outflow. Geology, 12: 296-300.
2.0.CO;2 target="_blank">
Gao, Z. Z., Eriksson, K. A., 1991. Internal-tide deposits in an Ordovician submarine channel: Previously unrecognized facies? Geology, 19: 734-737.
2.3.CO;2 target="_blank">
Gao Z. Z., Eriksson, K. A., He Y. B., Luo S. S., Guo J. X., 1998. Deep-Water Traction Current Deposits��A Study of Internal Tides, Internal Waves, Contour Currents and Their Deposits. Beijing and New York: Science Press, Utrecht and Tokyo: VSP.
Gao, Z. Z., He, Y. B., Li, X. D., Duan, T. Z., 2013. Review of research in internal-wave and internal-tide deposits of China. Journal of Palaeogeography, 2(1): 56-65.
Gargett, A. E., Hughes, B. A., 1972. On the interaction of surface and internal waves. Journal of Fluid Mechanics, 52: 179-191. Doi:10.1017/S0022112072003027.
Garrett, C., Munk, W., 1979. Internal waves in the ocean: Annual Review of Fluid Mechanics, 1: 339-369. Doi:10.1146/annurev.fl.11.010179.002011.
Garrett, C., Kunze. E., 2007. Internal tide generation in the deep ocean. Annual Review of Fluid Mechanics, 39: 57-87.
Gordon, A. L., 2005. Oceanography of the Indonesian Seas and their throughflow. Oceanography, 18: 14-27.
Harms, J. C., Southard, J. B., Spearing, D. R., Walker, R. G., 1975. Depositional environments as interpreted from primary sedimentary structures and stratification sequences. Dallas, TX: SEPM Short Course, 2: 161.
Harris, P. T., Whiteway, T., 2011. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Marine Geology, 285: 69-86.
Hatayama, T., 2004. Transformation of the Indonesian throughflow water by vertical mixing and its relation to tidally generated internal waves. Journal of Oceanography, 60: 569-585.
He, Y. B., Gao, Z. Z., Luo, J. X., Luo, Sh. Sh., Liu, X. F., 2008. Characteristics of internal-wave and internal-tide deposits and their hydrocarbon potential. Petroleum Science, 5(1): 37-43.
He, Y. B., Luo, J. X., Li, X. D., Gao, Z. Z., Wen, Z., 2011. Evidence of internal-wave and internal-tide deposits in the Middle Ordovician Xujiajuan Formation of the Xiangshan Group, Ningxia, China. Geo-Marine Letters, 31(5-6): 509-523.
He, Y. B., Luo, J. X., Gao, Z. Z., Wen, Z., 2012. Reply to the discussion of He et al. (2011, Geo-Marine Letters): Evidence of internal-wave and internal-tide deposits in the Middle Ordovician Xujiajuan Formation of the Xiangshan Group, Ningxia, China. Geo-Marine Letters, 32: 367-372. Doi:10.1007/s00367-012-0290-2.
Hollister, C. D., 1967. Sediment distribution and deep circulation in the western North Atlantic. New York: Columbia University. Ph.D. Dissertation, 467.
Hs��, K. J., 1964. Cross-laminated sequence in graded bed sequence. Jounal of Sedimentary Petrology, 34: 379-388.
Hs��, K. J., 1989. Physical Principles of Sedimentology. New York: Springer-Verlag, 233.
Hs��, K. J., 2004. Physics of Sedimentology (Second ed). Berlin: Springer, 240.
Hs��, K. J., 2008. Personal reminiscences on the history of contourites. In: Rebesco, M., Camerlenghi, A. (eds). Contourites. Amsterdam: Elsevier, Developments in Sedimentology, 60: 11-17. Chapter 2.
Hubert, J. F., 1964. Textural evidence for deposition of many western North Atlantic deep-sea sands by ocean-bottom currents rather than turbidity currents. Journal of Geology, 72: 757-785.
Inman, D. L., Nordstrom, C. E., Flick, R. E., 1976. Currents in submarine canyons: An air-sea-land interaction. Annual Review of Fluid Mechanics, 8: 275-310.
Ito, M., 2002. Kuroshio current-influenced sandy contourites from the Plio-Pleistocene Kazusa forearc basin, Boso Peninsula, Japan. In: Stow, D. A. V., Pudsey, C. J., Howe, J. A., Faug��res, J.-C., Viana, A. R. (eds). Deep-water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics. London: Geological Society, Memoirs, 22: 421-432.
Jackson, C. R., (ed). 2004. An atlas of oceanic internal solitary-like waves and their properties (2nd Edition).Global Ocean Associates (prepared for the Office of Naval Research):
Jayne, S. R., St. Laurent, L. C., Gille, S. T., 2004. Connections between ocean bottom topography and Earth��s climate. Oceanography, 17: 65-74.
Klein, G. D., 1966. Dispersal and petrology of sandstones of Stanley-Jackfork boundary, Ouachita fold belt, Arkansas and Oklahoma. AAPG Bulletin, 50: 308-326.
Klein, G. D., 1970. Depositional and dispersal dynamics of intertidal sand bars. Journal of Sedimentary Petrology, 40: 1095-1127.
Klein, G. D., 1971. A sedimentary model for determining paleotidal range. GSA Bulletin, 82: 2585-2592.
Klein, G. D., 1975. Resedimented pelagic carbonate and volcaniclastic sediments and sedimentary structures in Leg 30 DSDP cores from the western equatorial Pacific. Geology, 3: 39-42.
2.0.CO;2 target="_blank">
Kuhn, T. S., 1996. The structure of scientific revolutions (3rd Edition). Chicago: The University of Chicago Press, 212.
Kunze, E., Rosenfeld, L. K., Carter, G. S., Gregg, M. C., 2002. Internal waves in Monterey submarine canyon. Journal of Physical Oceanography, 32: 1890-1913.
2.0.CO;2 target="_blank">
Lafond, E. C., 1996. Internal waves. In: Fairbridge, R. W., (ed). The Encyclopedia of Oceanography. New York: Reinhold, 402-408.
Leclair, S., Arnott, R. W. C., 2005. Parallel lamination formed by high-density turbidity currents. Journal of Sedimentary Research, 75: 1-5.
Lee, I. H., Lien, R. C., Liu, J. T., Chuang, W. S., 2009. Turbulent mixing and internal tides in Gaoping (Kaoping) Submarine Canyon, Taiwan. Journal of Marine Systems, 76: 383-396.
Lonsdale, P., Nornaark, W. R., Newman, W. A., 1972. Sedimentation and erosion on Horizon Guyot. GSA Bulletin, 83: 289-316. Doi:10 .1130/0016-7606(1972)83[289:SAEOHG]2.0.CO;2.
Lowe, D. R., 1982. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology, 52: 279 -297.
Mart?n-Chivelet, J., Fregenal-Martnez, M. A., Chaco��n, B., 2008. Traction structures in contourites. In: Rebesco, M., Camerlenghi, A. (eds). Contourites. Amsterdam: Elsevier, Developments in Sedimentology, 60: 159-182.
Maxworthy, T., 1979. A note on the internal solitary waves produced by tidal flow over a threedimensional ridge. Journal of Geophysical Research, 84: 338-346.
Miall, A. D., 1985. Architectural-element analysis: A new method of facies analysis applied to fluvial deposits. Earth-Science Reviews, 22: 261-308.
Morsilli, M., Pomar, L., 2012. Internal waves vs. surface storm waves: A review on the origin of hummocky cross-stratification. Terrta Nova, 24: 273-282.
Mulder, T., Zaragosi, S., Garlan, T., Mavel, J., Cremer, M., Sottolichio, A., S��n��chal, N., Schmidt, S., 2012. Present deep-submarine canyons activity in the Bay of Biscay (NE Atlantic). Marine Geology, 295-298: 113-127.
Munk, W., 1981. Internal waves and small-scale processes. In: Warren, B. A., Wunsch, C., (eds). Evolution of Physical Oceanography. Cambridge: Massachusetts Institute of Technology, 264-291.
Mutti, E., 1992. Turbidite Sandstones, Special Publication. Milan: Agip, 275.
Nam, S.-H., Kim, D.-J. Kim, H.-R., Kim, Y.-G., 2007. Typhoon-induced, highly nonlinear internal solitary waves off the East Coast of Korea. Geophysical Research Letters, 34: L01607. Doi:10.1029/2006GL028187.
Nash, J. D., Moum, J. N., 2005. River plumes as a source of large-amplitude internal waves in the coastal ocean. Nature, 437: 400-403. Doi:10.1038/nature03936.
Natland, M. L., 1967. New classification of water-laid clastic sediments. AAPG Bulletin, 51: 476.
Nielsen, T., Kuijpers, A., Knutz, P., 2008. Seismic expression of contourite depositional systems. In: Rebesco, M., Camerlenghi, A., (eds). Contourites. Amsterdam: Elsevier, Developments in Sedimentology, 60: 301-322.
Nio, S.-D., Yang, C.-S., 1991. Diagnostic attributes of clastic tidal deposits: A review. In: Smith, D. G., Zaitlin, B. A., Reinson, G. E., Rahmani, R. A. (eds). Clastic Tidal Sedimentology. Calgary: Canadian Society of Petroleum Geology, 3-27.
Normark, W. R., Hess, G. R., Stow, D. A. V., Bowen, A. J., 1980. Sediment waves on the Monterey fan levee: A preliminary physical interpretation. Marine Geology, 37: 1-18.
Nummedal, D., Teas, P., 2001. Internal tides and bedforms at the shelf edge, in Dynamics of sediments and sedimentary environments. Part I: A session in honor of John B. Southard. GSA Annual Meeting, Boston, Massachusetts, November 6, 2001, https://gsa.confex.com/gsa/2001AM/finalprogram/abstract_20150.htm (accessed April 30, 2014).
Ocean Motion (NASA), 2012. Wind-driven surface currents: Gyres: Adapted from DataStreme Ocean and used with permission of the American Meteorological Society.
Phillips, O. M., 1974. Nonlinear dispersive waves. Annual Review of Fluid Mechanics, 6: 93-110. Doi:10.1146/annurev.fl.06.010174.000521.
Pickering, K. T., Hilton, V., 1998. Turbidite Systems of Southeast France. London: Vallis Press, 229.
Piper, D. J. W., Brisco, C. D., 1975. Deep-water continental-margin sedimentation, DSDP Leg 28, Antarctica. In: Hayes, D. E., et al., (eds). Initial Reports of the Deep Sea Drilling Project. U.S. Govt. Printing Office, Washington, D. C., 727-755.
Polzin, K. L., Toole, J. M., Ledwell, J. R., Schmitt, R. W., 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science, 276: 93-96. Doi:10.1126/science.276.5309.93.
Pomar, L., M., Morsilli, P., Hallock, B. B��denas, 2012. Internal waves, an underexplored source of turbulence events in the sedimentary record. Earth-Science Reviews, 111: 56-81. Doi:10.1016/j.earscirev.2011.12.005.
Postma, G., Kleverlann, K., Cartigny, M. J. B., 2014. Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model. Sedimentology, Doi: 10.1111/sed.12135.
Quaresma, L. S., Pichon, A., 2013. Modelling the barotropic tide along the West-Iberian margin. Journal of Marine Systems, 109-110: S3-S25.
Ray, R. D., Mitchum, G. T., 1997. Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Progress in Oceanography, 40: 135-162. Doi:10.1016/S0079-6611(97)00025-6.
Ray, R. D., Egbert, G. D., Erofeeva, S. Y., 2005. Tides in the Indonesian seas. Oceanography, 18: 74-79.
Reineck, H. E., Wunderlich, F., 1968. Classification and origin of flaser and lenticular bedding. Sedimentology, 1: 99-104. Doi:10.1111/j.1365-3091.1968.tb00843.x.
Robertson, R., 2005. Baroclinic and barotropic tides in the Weddell Sea. Antarctic Science, 17: 461-474.
Russell, J. S., 1838. Report on committee on waves: Report of the 7th Meeting of the British Association for the Advancement of Science. London: United Kingdom, John Murray, 417-496.
Saller, A. H., Lin, R., Dunham, J., 2006. Leaves in turbidite sands: The main source of oil and gas in the deep-water Kutei Basin, Indonesia. AAPG Bulletin, 90: 1585-1608.
Saller, A. H., Dunham, J., Lin, R., 2008a. Leaves in turbidite sands. The main source of oil and gas in the deep-water Kutei Basin, Indonesia: Reply. AAPG Bulletin, 92: 139-141.
Saller, A. H., Werner, K., Sugiaman, F., Cebastiant, A., May, R., Glenn, D., Barker, C., 2008b. Characteristics of Pleistocene deep-water fan lobes and their application to an upper Miocene reservoir model, offshore East Kalimantan, Indonesia. AAPG Bulletin, 92: 919-949.
Sanchez-Garrido, J. C., Sannino, G., Liberti, L., 2011. Generation and evolution of internal waves in the Strait of Gibraltar. EAI (Energia, Ambiente, Innovazione), 4-5: 74-79.
Sanders, J. E., 1963. Concepts of fluid mechanics provided by primary sedimentary structures. Journal of Sedimentary Petrology, 33: 173-179.
Sanders, J. E., 1965. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. In: Middleton, G. V. (ed). Primary Sedimentary Structures and their Hydrodynamic Interpretation. Tulsa, OK: SEPM Special Publication, 12: 192-219.
Santek, D. A., Winguth, A., 2007. A satellite view of internal waves induced by the Indian Ocean tsunami. International Journal of Remote Sensing, 28: 2927-2936. Doi:10.1080/0143116060109 4534.
Shanmugam, G., 1978. The stratigraphy, sedimentology, and tectonics of the Middle Ordovician Sevier Shale Basin in East Tennessee. Knoxville: Tennessee, The University of Tennessee, Ph.D. dissertation, 222.
Shanmugam, G., 1997a. The Bouma Sequence and the turbidite mind set. Earth-Science Reviews, 42: 201-229.
Shanmugam, G., 1997b. Deep-water exploration: Conceptual models and their uncertainties. NAPE (Nigerian Association of Petroleum Explorationists) Bulletin, 12/01: 11-28.
Shanmugam, G., 2000. 50 years of the turbidite paradigm (1950s-1990s): Deep-water processes and facies models����a critical perspective. Marine and Petroleum Geology, 17: 285-342.
Shanmugam, G., 2002. Ten turbidite myths. Earth-Science Reviews, 58: 311-341.
Shanmugam, G., 2003. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons. Marine and Petroleum Geology, 20: 471-491.
Shanmugam, G., 2006a. Deep-Water Processes and Facies Models: Implications for Sandstone Petroleum Reservoirs. Amsterdam: Elsevier, Handbook of Petroleum Exploration and Production, 5: 476.
Shanmugam, G., 2006b. The tsunamite problem. Journal of Sedimentary Research, 76: 718-730
Shanmugam, G., 2007. The obsolescence of deep-water sequence stratigraphy in petroleum geology. Indian Journal of Petroleum Geology, 16(1): 1-45.
Shanmugam, G., 2008a. Deep-water bottom currents and their deposits. In: Rebesco, M., Camerlenghi, A., (eds).Contourites. Amsterdam: Elsevier, Developments in Sedimentology, Chapter 5 60: 59-81.
Shanmugam, G., 2008b. The constructive functions of tropical cyclones and tsunamis on deepwater sand deposition during sea level highstand: Implications for petroleum exploration. AAPG Bulletin, 92: 443-471.
Shanmugam, G., 2008c. Leaves in turbidite sand, the main source of oil and gas in the deep-water Kutei Basin, Indonesia: Discussion. AAPG Bulletin, 92: 127-137.
Shanmugam, G., 2012a. Discussion of He et al. (2011, Geo-Marine Letters): Evidence of internal-wave and internal-tide deposits in the Middle Ordovician Xujiajuan Formation of the Xiangshan Group, Ningxia, China. Geo-Marine Letters, 32: 359-366. Doi:10 .1007/s00367-011-0264-9.
Shanmugam, G., 2012b. New perspectives on deep-water sandstones: Origin, recognition, initiation, and reservoir quality. Amsterdam: Elsevier, Handbook of Petroleum Exploration and Production, 9: 524.
Shanmugam, G., 2012c. Process-sedimentological challenges in distinguishing paleo-tsunamis deposits. In: Kumar, A. and Nister, I. (eds). Paleo-Tsunamis. Natural Hazards, 63: 5-30. DOI 10.1007/s11069-011-9766-z.
Shanmugam, G., 2013a. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands. AAPG Bulletin, 97(5): 767-811.
Shanmugam, G., 2013b. Comment on ��Internal waves, an underexplored source of turbulence events in the sedimentary record�� by L. Pomar, M. Morsilli, P. Hallock, and B. B��denas [Earth-Science Reviews, 111(2012), 56-81]. Earth-Science Reviews, 116: 195-205.
Shanmugam, G. 2013c. New perspectives on deep-water sandstones: Implications. Petroleum Exploration and Development, 40(3): 316-324.
Shanmugam, G. 2013d. New perspectives on deep-water sandstones: Implications. Petroleum Exploration and Development, 40(3): 294-301 (in Chinese with English abstract) DOI: 10.11698/PED.2013.03.05.
Shanmugam, G., 2014. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands: Reply. AAPG Bulletin, 98: 858-879
Shanmugam, G., Clayton, C. A., 1989. Reservoir description of a sand rich submarine fan complex for a steamflood project: Upper Miocene Potter Sandstone, North Midway Sunset Field, California. AAPG Bulletin, 73: 411.
Shanmugam, G., Moiola, R. J., 1995. Reinterpretation of depositional processes in a classic flysch sequence in the Pennsylvanian Jackfork Group, Ouachita Mountains. AAPG Bulletin, 79: 672-695.
Shanmugam, G., Zimbrick, G., 1996. Sandy slump and sandy debris flow facies in the Pliocene and Pleistocene of the Gulf of Mexico: Implications for submarine fan models. In: AAPG International Congress and Exhibition, Caracas, Venezuela, Official Program, A45.
Shanmugam, G., Damuth, J. E., Moiola, R. J., 1985. Is the turbidite facies association scheme valid for interpreting ancient submarine fan environments? Geology, 13: 234-237.
2.0.CO;2 target="_blank">
Shanmugam, G., Moiola, R. J., McPherson, J. G., O��Connell, S., 1988. Comparison of turbidite facies associations in modern passive-margin Mississippi Fan with ancient active-margin fans. Sedimentary Geology, 58: 63-77.
Shanmugam, G., Spalding, T. D., Rofheart, D. H., 1993a. Process sedimentology and reservoir quality of deep-marine bottom-current reworked sands (sandy contourites): An example from the Gulf of Mexico. AAPG Bulletin, 77: 1241-1259.
Shanmugam, G., Spalding, T. D., Rofheart, D. H., 1993b. Traction structures in deep-marine bottom-current reworked sands in the Pliocene and Pleistocene, Gulf of Mexico. Geology, 21: 929-932.
2.3.CO;2 target="_blank">
Shanmugam, G., Lehtonen, L. R., Straume, T., Syversten, S. E., Hodgkinson, R. J., Skibeli, M., 1994. Slump and debris flow dominated upper slope facies in the Cretaceous of the Norwegian and Northern North Seas (61��-67��N): Implications for sand distribution. AAPG Bulletin, 78: 910-937.
Shanmugam, G., Bloch, R. B., Mitchell, S.M., Beamish, G. W. J., Hodgkinson, R. J., Damuth, J. E., Straume, T., Syvertsen, S. E., Shields, K. E., 1995. Basin-floor fans in the North Sea: Sequence stratigraphic models vs. sedimentary facies. AAPG Bulletin, 79: 477-512.
Shanmugam, G., Poffenberger, M., Toro Alava, J., 2000. Tide-dominated estuarine facies in the Hollin and Napo (��T�� and ��U��) formations (Cretaceous), Sacha Field, Oriente Basin, Ecuador. AAPG Bulletin, 84: 652-682.
Shanmugam, G., Shrivastava, S. K., Das, B., 2009. Sandy debrites and tidalites of Pliocene reservoir sands in upper-slope canyon environments, Offshore Krishna-Godavari Basin (Iindia): Implications. Journal of Sedimentary Research, 79: 736-756.
Shepard, F. P., 1975. Progress of internal waves along submarine canyons. Marine Geology, 19: 131-138.
Shepard, F. P., Marshall, N. F., McLoughlin, P. A., Sullivan, G. G., 1979. Currents in submarine canyons and other sea valleys. AAPG Studies Geology, 8: 173.
St. Laurent, L., Alford, M. H. Paluszkiewicz, T., 2012. An introduction to the special issue on internal waves. Oceanography, 25(2): 15-19. Doi:10.5670/oceanog.2012.37.
Stow, D. A. V., Hern��ndez-Molina, F. J., Llave, E., Bruno, M., Garc��a, M., D��az del Rio, V. Somoza, L., Brackenridge, R. E., 2013. The Cadiz Contourite Channel: Sandy contourites, bedforms and dynamic current interaction. Marine Geology, 343: 99-114.
Susanto, R. D., Mitnik, L., Zheng, Q. 2005. Ocean internal waves observed in the Lombok Strait. Oceanography, 18: 80-87. Doi:10.5670/oceanog.2005.08.
Talling, P. J., Masson, D. G., Sumner, F. J., Malgesini, G. 2012. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59: 1937-2003.
Terwindt, J. H. J., 1981. Origin and sequences of sedimentary structures in inshore mesotidal deposits of the North Sea. In: Nio, S.-D., Shuttenhelm, R. T. E., Van Weering, Tj. C. E. (eds). Holocene Marine Sedimentation in the North Sea Basin. Special Publication No. 5. Oxford, U. K. International Association of Sedimentologists, Blackwell Scientific: 4-26.
Turnewitsch, R., Falahat, S., Nycander, J., Dale, A., Scott, R. B., Furnival, D., 2013. Deep-sea fluid and sediment dynamics��Influence of hill-to seamount-scale seafloor topography. Earth-Science Reviews, 127: 203-241.
Van der Lingen, G. J., 1969. The turbidite problem. New Zealand Journal of Geology and Geophysics, 12: 7-50.
Visser, M. J., 1980. Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: A preliminary note. Geology, 8: 543-546.
2.0.CO;2 target="_blank">
Wajsowicz, R. C., Gordon, A. L., Ffield, A., Susanto, R. D., 2003. Estimating transport in Makassar Strait. Deep-Sea Research Part II, 50: 2163-2181. Doi:10.1016 /S0967-0645(03)00051-1.
Wunsch, C., Webb, S., 1979. Climatology of deep ocean internal waves. Journal of Physical Oceanography, 9: 235-243.
2.0.CO;2 target="_blank">