The synonymous use of the general term “landslide”, with a built-in reference to a sliding motion, for all varieties of mass-transport deposits (MTD), which include slides, slumps, debrites, topples, creeps, debris avalanches etc. in subaerial, sublacustrine, submarine, and extraterrestrial environments has created a multitude of conceptual and nomenclatural problems. In addition, concepts of triggers and long-runout mechanisms of mass movements are loosely applied without rigor. These problems have enormous implications for studies in process sedimentology, sequence stratigraphy, palaeogeography, petroleum geology, and engineering geology. Therefore, the objective of this critical review is to identify key problems and to provide conceptual clarity and possible solutions. Specific issues are the following: (1) According to “limit equilibrium analyses” in soil mechanics, sediment failure with a sliding motion is initiated over a shear surface when the factor of safety for slope stability (F) is less than 1. However, the term landslide is not meaningful for debris flows with a flowing motion. (2) Sliding motion can be measured in oriented core and outcrop, but such measurement is not practical on seismic profiles or radar images. (3) Although 79 MTD types exist in the geological and engineering literature, only slides, slumps, and debrites are viable depositional facies for interpreting ancient stratigraphic records. (4) The use of the term landslide for high-velocity debris avalanches is inappropriate because velocities of mass-transport processes cannot be determined in the rock record. (5) Of the 21 potential triggering mechanisms of sediment failures, frequent short-term events that last for only a few minutes to several hours or days (e.g., earthquakes, meteorite impacts, tsunamis, tropical cyclones, etc.) are more relevant in controlling deposition of deep-water sands than sporadic long-term events that last for thousands to millions of years (e.g., sea-level lowstands). (6) The comparison of H/L (fall height/runout distance) ratios of MTD in subaerial environments with H/L ratios of MTD in submarine and extraterrestrial environments is incongruous because of differences in data sources (e.g., outcrop vs. seismic or radar images). (7) Slides represent the pre-transport disposition of strata and their reservoir quality (i.e., porosity and permeability) of the provenance region, whereas debrites reflect post-transport depositional texture and reservoir quality. However, both sandy slides and sandy debrites could generate blocky wireline (gamma-ray) log motifs. Therefore, reservoir characterization of deep-water strata must be based on direct examination of the rocks and related process-specific facies interpretations, not on wireline logs or on seismic profiles and related process-vague facies interpretations. A solution to these problems is to apply the term “landslide” solely to cases in which a sliding motion can be empirically determined. Otherwise, a general term MTD is appropriate. This decree is not just a quibble over semantics; it is a matter of portraying the physics of mass movements accurately. A precise interpretation of a depositional facies (e.g., sandy slide vs. sandy debrite) is vital not only for maintaining conceptual clarity but also for characterizing petroleum reservoirs.
Ablay, G., Hürlimann, M., 2000. Evolution of the north flank of Tenerife by recurrent giant landslides. Journal of Volcanology and Geothermal Research, 103: 135-159.
Almagor, G., Wiseman, G., 1982. Submarine slumping and mass movements on the slope of Israel. In: Saxov, S., Nieuwenhuis, J. K., (eds). Marine Slides and Other Mass Movements. New York and London: Plenum Press, 95-128.
Alves, T. M., Cartright, J. A., 2010. The effect of mass-transport deposits on the younger slope morphology, offshore Brazil. Marine and Petroleum Geology, 27: 2027-2036.
Anderson, J. G., 1906. Solifluction, a component of subaerial denudation. Journal of Geology, 14: 91-112.
Anderson, S. A., Riemer, M. F., 1995. Collapse of saturated soil due to reduction in confinement. Journal of Geotechnical Engineering, 121(2): 216-220.
Anderson, S. A., Sitar, N., 1995. Analysis of rainfall-induced debris flows. Journal of Geotechnical Engineering, 121(7): 544-552.
Andresen, A. Bjerrum, L., 1967. Slides in subaqueous slopes in loose sand and silt. In: Richards, A. F., (ed). Marine Geotechnique. Urbana: University of Illinois Press, 221-239.
Bagnold, R. A., 1954. Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear. Royal Society of London, Proceedings (A), 225: 49-63.
Baltzer, A., 1875. “Uber einen neuerlichen felssturz am Rossberg, negst einigen allgemeinen Bermerkungen uber derartige Erscheinungen in den Alpen,” (On a recent rockfall on Rossberg with a few observations on these phenomena in the Alps). Neues Jahrbuch fur Mineralogie, Geologie und Palaeontologie, 914-924.
Barton, R., Bird, K., Hernández, J. G., Grajales-Nishimura, J. M., Murillo-Mu��etón, G., Herber, B., Weimer, P., Koeberl, C., Neumaier, M., Schenk, O., Stark, J., 2009/2010. High impact reservoirs. Oilfield Review, 21(4): 14-29.
Bates, C. C., 1953. Rational theory of delta formation. AAPG Bulletin, 37: 2119-2162.
Bates, R. L., Jackson, J. A., 1980. Glossary of Geology, Second Edition: Falls Church, Virginia, American Geological Institute, 751.
Bea, R. G., Wright, S. G., Sicar, P., Niedoroda, A. W., 1983. Wave-induced slides in South Pass Block 70, Mississippi delta. Journal of Geotechnical Engineering, 109: 619-644.
Beaubouef, R. T., Abreu, V., 2010. MTCs of the Brazos-Trinity slope system; thoughts on the sequence stratigraphy of MTCs and their possible roles in shaping hydrocarbon traps. In: Mosher, D. C., Shipp, R. C., Moscardelli, L., Chaytor, J. D., Baxter, C. D. P., Lee, H. J., and Urgeles, R., (eds). Submarine Mass Movements and Their Consequences: Advances in Natural and Technological Hazards Research, 28: 475-490.
Behrmann, J. H., Peter B. Flemings, Cédric, M. John, the IODP Expedition 308 Scientists, 2006. Rapid Sedimentation, Overpressure, and Focused Fluid Flow, Gulf of Mexico Continental Margin. Scientific Drilling, September 3, 1-17; DOI:10.2204/iodp.sd.3.03.2006.
Blong, R. J., 1973. A numerical classification of selected landslides of the debris slide-avalanche-flow type. Eng. Geol., 7: 99-114.
Bolt, B. A., Horn, W. L., Macdonald, G. A., Scott, R. F., 1975. Geological Hazards. New York: Springer-Verlag, 328.
Booth, J. S., O'Leary, D.W., Popenoe, P., Danforth, W.W., 1993. U.S. Atlantic continental slope landslides: Their distribution, general attributes, and implications. In: Schwab, W. C., Lee, H. J., Twichell, D.C., (eds). Submarine Landslides: Selected Studies in the U.S. Exclusive Economic Zone. U.S. Geological Survey Bulletin, 2002: 14-22.
Bornhold, B. D., Fine, I. V., Rabinovich, A. B., Thomson, R. E., Kulikov, E. A., 2003. The Grand Banks landslide-generated tsunami of November 18, 1929: Analysis and numerical modeling. Geophysical Research Abstracts, 5: 01775.
Bouma, A. H. 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Amsterdam: Elsevier, 168.
Bourgeois, J., Hansen, T. A., Wiberg, P. L., Kauffman, E. G., 1988. A tsunami deposit at the Cretaceous-Tertiary boundary in Texas. Science, 241: 567-570.
Boyd, R., Ruming, K., Goodwin, I., Sandstrom, M., Schröder-Adams, C., 2008. Highstand transport of coastal sand to the deep ocean: A case study from Fraser Island, southeast Australia. Geology, 36: 15-18.
Brabb, E. E., 1991. The world landslide problem. Episodes, 14(i): 52-61.
Brabb, E. E., Harrod, B. L., (eds). 1989. Landslides: Extent and economic significance. Proceedings of the 28th International Geological Congress: Symposium on Land Slides, Washington, DC, 17th July 1989. A. A. Balkema: Rotterdam and Brookfield (Vermont), 385.
Brönnimann, C. S., 2011. Effect of Groundwater on Landslide Triggering. Lausanne, Switzerland: École Polytechnique Fédérale de Lausanne. Ph. D. Dissertation. 239.
Brown, D. J., Bell, B. R., 2007. Debris flow deposits within the Palaeogene lava fields of NW Scotland: Evidence for mass wasting of the volcanic landscape during emplacement of the Ardnamurchan Central Complex. Bulletin of Volcanology, 69: 847-86.
Brunsden, D., 1979. Mass movements. In: Embleton, C., Thornes, J., (eds). Processes in Geomorphology. London: Arnold, 130-186.
Brush Jr., L. M., 1965. Experimental work on primary sedimentary structures. In: Middleton, G. V. (ed). Primary Sedimentary Structures and Their Hydrodynamic Interpretation. Tulsa, OK: SEPM Special Publication, 12: 17-24.
Bryn, P., Berg, K., Forsberg, C. F., Solheim, A., Kvalstad, T. J., 2005. Explaining the Storegga slide. Marine and Petroleum Geology, 22: 11-19.
Bugge, T., Befring, S., Belderson, R. H., Eidvin, T., Jansen, E., Kenyon, N. H., Holtedhal, H., Sejrup, H. P., 1987. A giant three-stage submarine slide off Norway. Geo-Marine Letters, 7: 191-198.
Burgess, P. M., Hovius, N., 1998. Rates of delta progradation during highstands: Consequences for timing of deposition in deep-marine systems. Journal of the Geological Society, London, 155: 217-222.
Camerlenghi, A., Urgeles, R., Fantoni, I., 2010. A Database on Submarine Landslides of the Mediterranean. In: Mosher, D. C., et al., (eds). Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research, 28: 503-513.
Campbell, C. S., 1989. Self-lubrication for long runout landslides. The Journal of Geology, 97: 653-665.
Cannon, S. H., Kirkham, R. M., Parise, M., 2001. Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado. Geomorphology, 39: 171-188.
Carlson, P. R., Molnia, B. F., 1977. Submarine faults and slides on the continental shelf, northern Gulf of Alaska. In: Richards, A. F. (ed). Marine Geotechnology, Marine Slope Stability 2. New York: Crane, Russak & Company, 275-290.
Carter, R. M., 1975a. A discussion and classification of subaqueous mass-transport with particular application to grain-flow, slurry-low, and fluxoturbidites. Earth-Science Reviews, 11: 145-177.
Carter, R. M., 1975b. Mass-emplaced sand-fingers at Mararoa construction site, southern New Zealand. Sedimentology, 22: 275-288.
Carter, R. M., Lindqvist, J. K., 1975. Sealers Bay submarine fan complex, Oligocene, southern New Zealand. Sedimentology, 22: 465-483.
Carvajal, C. R., Steel, R. J., 2006. Thick turbidite successions from supply-dominated shelves during sea-level highstand. Geology, 34: 665-668.
Claeys, P., Kiessling, W., a Alvarez, W., 2002. Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. In: Koeberl, C., MacLeod, K. G., (eds). Catastrophic Events and Mass Extinctions: Impacts and Beyond. Boulder, Colorado: GSA Special Paper, 356: 55-68.
Clague, J. J., Stead, D., (eds). 2012. Landslides: Types, Mechanisms, and Modeling. Cambridge, UK: Cambridge University Press, 436.
Clarke, S., Hubble, T., Airey, D., Yu, P., Boyd, R., J Keene, J., Exon, N., Gardner, J., 2012. Submarine Landslides on the Upper Southeast Australian Passive Continental Margin-Preliminary Findings. In: Yamuda, Y., et al., (eds). Submarine Mass Movements and Their Consequences·Advances in Natural and Technological Hazards Research, 31: 55-66.
Cleary, P. W., Campbell, C. S., 1993. Self-Lubrication for Long Runout Landslides' Examination by Computer Simulation. Journal of Geophysical Research, 98(B12): 21, 911-21, 924.
Coates, D. R., 1977. Landslide prospective. In: Coates, D. R., (ed). Landslides. Boulder, Colorado: GSA, 3-38.
Cochonat, P., Cadet, J.-P., Lallemant, S. J., Mazzotti, S., Nouze, H., Fouchet, C., Foucher, J. P., 2002. Slope instabilities and gravity processes in fluid migration and tectonically active environment in the eastern Nankai accretionary wedge (KAIKO-Tokai'96 cruise). Marine Geology, 187(1-2 SU): 193-202.
Coleman, J. M., Prior, D. B., 1982. Deltaic environments. In: Scholle, P. A., Spearing, D., (eds). Sandstone Depositional Environments. AAPG Memoir, 31: 139-178.
Coleman, J. M., Prior, D. B., 1988. Mass wasting on continental margins. Annual Review of Earth & Planetary Sciences, 16: 101-119.
Collins, G. S., Melosh, H. J., 2003. Acoustic fluidization and the extraordinary mobility of sturzstroms. Journal of Geophysical Research, 108, No. B10, 2473; DOI: 10.1029/2003JB002465, 2003.
Collinson, J., 1994. Sedimentary deformational structures. In: Maltman, A., (ed). The Geological Deformation of Sediments. London: Chapman & Hall, 95-125.
Collot, J.-Y., Lewis, K., Lamarche, G., Lallemand, S., 2001. The giant Ruatoria debris avalanche on the northern Hikurangi margin, New Zealand: Result of oblique seamount subduction. Journal of Geophysical Research, 106 (B9): 19, 271-19, 297; DOI: 10.1029/2001JB900004.
Cook, H. E., 1979. Ancient continental slope sequences and their value in understanding modern slope development. In: Doyle, L. J., Pilkey, O. H., (eds). Geology of Continental Slopes. Tulsa, OK: SEPM Special Publication, 27: 287-305.
Costard, F., Forget, F., Mangold, N., and Peulvast, J. P., 2002. Formation of recent Martian debris flows by melting of near-surface ground ice at high obliquity. Science, 295: 110-113.
Covault, J. A., Normark, W. R., Romans, B. W., Graham, S. A., 2007. Highstand fans in the California borderland: the overlooked deep-water depositional systems. Geology, 35: 783-786.
Crookshanks, S., Gilbert, R., 2008. Continuous, diurnally fluctuating turbidity currents in Kluane Lake, Yukon Territory. Canadian Journal of Earth Sciences, 45: 1123-1138.
Crozier, M. J., 1973. Techniques for the morphometric analysis of landslipe. Zeitschrift fur Geomophologie Dynamique, 17: 78-101.
Cruden, D. M., 1991. A simple definition of a landslide. Bulletin of the International Association of Engineering Geology, 43: 27-28.
Cruden, D. M., 2003. The first classification of landslides? Environmental & Engineering Geoscience, 9: 197-200.
Cruden, D. M., Hungr, O., 1986. The debris of the Frank slide and theories of rockslide-avalanche Mobility. Canadian Journal of Earth Sciences, 23: 425-432.
Cruden, D. M, Varnes, D. J., 1996. Landslides types and processes. In: Turner, A. K, Schuster, R. L., (eds). Landslides Investigation and Mitigation. Washington, D.C. Transportation Research Board National Research Council, Special Report, 247: 36-75.
Dade, W. B., Huppert, H. E., 1998. Long-runout rockfalls. Geology, 26(9): 803-806. 2.3.CO;2 target="_blank">
Damuth, J. E., Fairbridge, R. W., 1970. Equatorial Atlantic deep-sea sands and ice age aridity in tropical South America. GSA Bulletin, 81: 585-601.
Damuth, J. E., Flood, R. D., Kowsmann, R. O., Gorini, M. A., Belderson, R. H., Gorini, M. A., 1988. Anatomy and growth-pattern of Amazon deep-sea fan revealed by long-range side-scan sonar (GLORIA) and high-resolution seismic studies. AAPG Bulletin, 72: 885-911.
Dan, G., Sultan, N., Savoye, B., 2007. The 1979 Nice harbour catastrophe revisited: Trigger mechanism inferred from geotechnical measurements and numerical modeling. Marine Geology, 245: 40-64.
Davies, T. R. H., 1982. Spreading of rock avalanche debris by mechanical fluidization. Rock Mechanics and Rock Engineering, 15: 9-24.
De Blasio, F. V., 2011. Landslides in Valles Marineris (Mars): A possible role of basal lubrication by sub-surface ice. Planetary and Space Science, 59(13): 1384-1392.
De Blasio, F. V., Elverhøi, A., 2008. A model for frictional melt production beneath large rock avalanches. Journal of Geophysical Research: Earth Surface, 113, F02014; DOI:10.1029/2007JF000867.
De Blasio, F. V., Elverhøi, A., Engvik, L. E., Issler, D., Gauer, P., Harbitz, C., 2006. Understanding the high mobility of subaqueous debris flows. Norwegian Journal of Geology, 86: 275-284.
Dengler, A. T., Wilde, P., 1987. Turbidity currents on steep slopes: Application of an avalanche-type numeric model for ocean thermal energy conversion design. Ocean Engineering, 14: 409-433.
Dikau, R., Cavallin, A., Jäger, S., 1996. Databases and GIS for landslide research in Europe. Geomorphology, 15: 227-239.
Dillon, W. P., Zimmerman, H. P., 1970. Erosion by biological activity in two New England submarine canyons. Journal of Sedimentary Petrology, 40: 542-547.
Dingle, R. V., 1977. The anatomy of a large submarine slump on a sheared continental margin (SE Africa). Geological Society of London Journal, 134: 293-310.
Dingle, R. V., 1980. Large allochtonous sediment masses and their role in the construction of the continental slope and rise off southwestern Africa. Marine Geology, 37: 333-354.
Dixit, J. G., 1982. Resuspension Potential of Deposited Kaolinite Beds. Gainesville, FL: University of Florida. M.S. Thesis.
Dott, R. H., Jr., 1963. Dynamics of subaqueous gravity depositional processes. AAPG Bulletin, 47: 104-128.
Driscoll, N. W., Weissel, J. K., Goff, J. A., 2000. Potential for large-scale submarine slope failure and tsunami generation along the U.S. mid-Atlantic coast. Geology, 28: 407-410. 2.0.CO;2 target="_blank">
Duncan, J. M., Wright, S. G., 2005. Soil Strength and Slope Stability: Hoboken, New Jersey: John Wiley & Sons, Inc., 297.
Dunham, J., Saller, A. H., 2014. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands: Discussion. AAPG Bulletin, 98: 851-857.
Duranti, D., Hurst, A., 2004. Fluidization and injection in the deep-water sandstones of the Eocene Alba Formation (U.K. North Sea). Sedimentology, 51: 503-529.
Dykstra, M. L., 2005. Dynamics of Submarine Sediment Mass-Transport, from the Shelf to the Deep Sea. Santa Barbara: The University of California., Ph. D. dissertation., 159.
Dysthe, K., Krogstad, H. E., M?ller, P., 2008. Oceanic rogue waves. Annual Reviews of Fluid Mechanics, 40: 287-310.
Dzulynski, S., Sanders, J. E., 1962. Current marks on firm mud bottoms. Connecticut Academy of Arts and Science, Transactions, 42: 57-96.
Dzulynski, S., Ksiazkiewicz, M., Kuenen, Ph. H., 1959. Turbidites in flysch of the Polish Carpathian Mountains. GSA Bulletin, 70: 1089-1118.
Easterbrook, D. J., 1999. Surface Processes and Landforms, 2nd Edition: New Jersey, Prentice Hall (Pearson Education Company), 546.
Eckel, E. B., 1958. Introduction. In: Eckel, E. B., (ed). Landslide and Engineering Practice. National Research Council, Highway Research Board Special Report, 29: 1-5.
Edgers, L., Karlsrud, K., 1982. Soil flows generated by submarine slides — Case studies and consequences. In: Chryssostomidains, C., Connor, J. J., (eds). Proceedings of the Third International Conference on the Behavior of Offshore Structures. Bristol, PA: Hemisphere, 425-437.
Elverhøi, A., Norem, H., Anderson, E. S., Dowdeswell, J. A., Fossen, I., Haflidason, H., Kenyon, N. H., Laberg, J. S., King, E. L., Sejrup, H. P., Solheim, A., Vorren, T., 1997. On the origin and flow behavior of submarine slides on deep-sea fans along the Norwegian-Barents Sea continental margin. Geo-Marine Letters, 17: 119-125.
Elverhøi, A., F. De Blasio, F. A. Butt, D. Issler, C. B., Harbitz, L. Engvik, et al., 2002. Submarine mass-wasting on glacially-influenced continental slopes: Processes and dynamics. In: Dowdeswell, J. A., O'Cofaigh, C., (eds). Glacier-Influenced Sedimentation on High-Latitude Continental Margins. London: Geological Society Special Publications, 203: 73-87.
E-MARSHAL (Earth's continental margins: assessing the geohazard from submarine landslides), 2013. IGCP-511 Legacy.
Embley, R. W., 1976. New evidence for occurrence of debris flow deposits in the deep sea. Geology, 4: 371-374. 2.0.CO;2 target="_blank">
Embley, R. W., 1980. The role of mass transport in the distribution and character of deep-ocean sediments with special reference to the North Atlantic. Marine Geology, 38: 23-50.
Embley, R. W., 1982. Anatomy of some Atlantic margin sediment slides and some comments on ages and mechanisms. In: Saxov, S., Nieuwenhuis, J. K., (eds). Marine Slides and Other Mass Movements. New York: Plenum, 189-214.
Embley, R. W., Jacobi, R. D., 1977. Distribution and morphology of large submarine sediment slides and slumps on Atlantic Continental Margins. In: Richards, A. F., (ed). Marine Geotechnology, Marine Slope Stability. New York: Crane, Russak & Company, Inc., 2: 205-228.
Erismann, T. H., 1979. Mechanisms of large landslides. Rock Mechanics, 12: 15-46.
Famakinwa, S. B., Shanmugam, G., Hodgkinson, R. J., Blundell, L. C., 1996. Deep-water slump and debris flow dominated reservoirs of the Zafiro Field area, offshore Equatorial Guinea. In: Offshore West Africa Conference and Exhibition, Libreville, Gabon, November 5-7, 1-14.
Feeley K., 2007. Triggering Mechanisms of Submarine Landslides. Research Report: Boston, MA, Department of Civil and Environmental Engineering, Northeastern University, 45.
Festa, A., Dilek, Y., Gawlick, H-J., Missoni, S., 2014. Mass-transport deposits, olistostromes and soft-sediment deformation in modern and ancient continental margins, and associated natural hazards. Marine Geology, 356: 1-4.
Fisher, R. V., 1971. Features of coarse-grained, high-concentration fluids and their deposits. Journal of Sedimentary Petrology, 41: 916-927.
Fisher, R. V., 1983. Flow transformations in sediment gravity flows. Geology, 11: 273-274. 2.0.CO;2 target="_blank">
Fisher, R. V., 1995. Decoupling of pyroclastic currents: Hazards assessments. Journal of Volcanology and Geothermal Research, 66: 257-263.
Flores, G., 1955. Discussion in Beneo, E., -les Resultats des etudes pour la recherche petrolifere en Scile (Italie): Proc. 4th World Petrol. Congr. Rome, Sect. 1: 259-275.
Frey-Martinez, J., Cartwright, J., Hall, B., 2005. 3D seismic interpretation of slump complexes: Examples from the continental margin of Israel. Basin Research, 17: 83-108.
Friedman, G. M., Sanders, J. E., Kopaska-Merkel, D. C., 1992. Principles of Sedimentary Deposits: Stratigraphy and Sedimentology. New York: McMillan Publishing Company, 717.
Gales, J. A., Leat, P. T., Larter, R. D., Kuhn, G., Hillenbrand, C.-D., Graham, A. G. C.,.Mitchell, N. C., Tate, A. J., Buys, G. B., Jokat, W., 2014. Large-scale submarine landslides, channel and gully systems on the southern Weddell Sea margin, Antarctica. Marine Geology, 348: 73-87.
Gamboa, D., Alves, T., Cartwright, J., Terrinha, P., 2010. MTD distribution on a 'passive' continental margin: The Espírito Santo Basin (SE Brazil) during the Palaeogene. Marine and Petroleum Geology, 27: 1311-1324.
Gani, R., 2004. From turbid to lucid: A straightforward approach to sediment gravity flows and their deposits. The Sedimentary Record, 3: 4-8.
Gardner, J. V., Bohannon, R. G., Field, M. E., Masson, D. G., 1996. The morphology, processes, and evolution of Monterey Fan: A revisit. In: Gardner, J. V., Field, M. E., Twichell, D. C., (eds). Geology of the United States' Sea Floor: The View from GLORIA. New York: Cambridge University Press, 193-220.
Gaudin, M., Berné, S., Jouanneau, J.-M., Palanques, A., Puig, P., Mulder, T., Cirac, P., Rabineau, M., Imbert, P., 2006. Massive sand beds deposited by dense water cascading in the Bourcart canyon head, Gulf of Lions (northwestern Mediterranean Sea). Marine Geology, 234: 111-128.
Gee, M. J. R., Masson, D. G., Watts, A. B., Allen, P. A., 1999. The Saharan debris fow: An insight into the mechanics of long runout submarine debris flows. Sedimentology, 46: 317-335.
Gee, M. J. R., Gawthorpe, R. L., Friedmann, S. J., 2006. Triggering and evolution of a giant submarine landslide, offshore Angola, revealed by 3D seismic stratigraphy and geomorphology. Journal of Sedimentary Research, 76: 9-19.
Gee, M. J. R., Uy, H. S., Warren, J., Morley, C. K., Lambiase, J. J., 2007. The Brunei slide: A giant submarine landslide on the North West Borneo Margin revealed by 3D seismic data. Marine Geology, 246: 9-23.
Geertsema, M., Schwab, J. W., Blais-Stevens, A., Sakals, E., 2009. Landslides impacting linear infrastructure in west central British Columbia. Natural Hazards, 48: 59-72.
Glade, T., Anderson, M. G., Crozier, M. J., (eds). 2005. Landslide Hazard and Risk. West Sussex, UK: John Wiley & Sons, 824.
Goguel, J., 1978. Scale-dependent rockslide mechanisms, with emphasis on the role of pore fluid vaporization. In: Voight, B., (ed). Rockslides and Avalanches, 1, Natural Phenomena. Amsterdam: Elsevier, 693-705.
Goodbred, Jr., S. L., 2003. Response of the Ganges dispersal system to climate change: A source-to-sink view since the last interstade. Sedimentary Geology, 162: 83-104.
Goren, L., Aharonov, E., 2007. Long runout landslides: The role of frictional heating and hydraulic diffusivity. Geophysical Research Letters, 34, L07301; DOI:10.1029/2006GL028895, 2007.
Grajales-Nishimura, J. M., Cedillo-Pardo, E., Rosales-Domínguez, C., Morán-Zenteno, D., Alvarez, W., Claeys, P., Ruíz-Morales, J., García-Hernández, J., Padilla-Avila, P., Sánchez-Ríos, A., 2000. Chicxulub impact: The origin of reservoir and seal facies in the southeastern Mexico oil fields. Geology, 28: 307-310. 2.0.CO;2 target="_blank">
Greene, H. G., Murai, L. Y., Watts, P., Maher, N. A., Fisher, M. A., Paull, C. E., Eichhubl, P., 2006. Submarine landslides in the Santa Barbara Channel as potential tsunami sources. Natural Hazards and Earth System Sciences, 6: 63-88.
Griswold, J. P., Iverson, R. M., 2008. Mobility statistics and automated hazard mapping for debris flows and rock avalanches: Reston, Virginia, U.S. Geological Survey Scientific Investigations Report 2007-5276, 68.
Guest, J. E., 1971. Geology of the farside crater Tsiolkovsky. In: Fielder, G., (ed). Geology and Physics of the Moon. Amsterdam: Elsevier, 93-103.
Hacker, D. B., Biek, R. F., Rowley, P. D., 2014. Catastrophic emplacement of the gigantic Markagunt gravity slide, southwest Utah (USA): Implications for hazards associated with sector collapse of volcanic fields. Geology, 42(11): 943-946
Haflidason, H. L., Reidar Sejrup, H. P., Forsberg, C. F., Bryn, P., 2005. The dating and morphometry of the storegga slide. Marine and Petroleum Geology, 22: 123-136.
Hampton, M. A., 1972. The role of subaqueous debris flows in generating turbidity currents. Journal of Sedimentary Petrology, 42: 775-793.
Hampton, M. A., Lee, H. J., Locat, J., 1996. Submarine landslides. Reviews of Geophysics, 34: 33-59.
Hansen, M. J. 1984. Strategies for classification of landslides. In: Brunsden, D., Prior, D. B., (eds). Slope Instability. Chichester: John Wiley & Sons Ltd, 1-25.
Hanzawa, H., Kishida, T., 1981. Fundamental considerations of undrained strength characteristics of alluvial marine clays. Soils and Foundation, Japanese Society of Soil Mechanics and Foundation Engineering, 21(1): 39-50.
Harrison, J. V., Falcon, N. L., 1938. An ancient landslip at Saidmarreh in southwestern Iran. Journal of Geology, 46: 296-309.
Harrison, K. P., Grimm, R. E., 2003. Rheological constraints on martian landslides. Icarus, 163: 347-362.
Hart, B., Massé, M., Locat, J., Long, B., 2001. High-resolution three-dimensional seismic surveying of submarine landslides: Rationale and challenges: Calgary, Canada, 2001 An Earth Odyssey. 54th Canadian Geotechnical Conference, 738-742.
Hay, A., Burling, R. W., Murray, J. W., 1982. Remote acoustic detection of a turbidity current surge. Science, 217: 833-835.
Hayter, E. J., Mathew, ~R., Hallden, J., Garland, E., Salerno, H., Svirsky, S. C., 2006. Evaluation of the State-of-the-Art Contaminated Sediment Transport and Fate Modeling System. EPA/600/R-06/108 September 2006. National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency: Research Triangle Park, NC 27711, 140.
Heezen, B. C, Ewing, M., 1952. Turbidity currents and submarine slumps and the 1929 Grand Banks earthquake. American Journal of Science, 250: 849-873.
Heim, A., 1882. Der Bergsturz von Elm. Zeitschrift der deutschen geologischen Gesellschaft, 34: 74-115.
Heim, A., 1932. Landslides and Human Lives (Bergsturz und Menschenleben): Vancouver. British Columbia, Bi-Tech Publishers, 196.
Helwig, J., 1970. Slump folds and early structures, northeastern Newfoundland and Appalachians. The Journal of Geology, 78: 172-187.
Henstock, T. J., McNeill, L. C., Tappin, D. R., 2006. Seafloor morphology of the Sumatran subduction zone: Surface rupture during megathrust earthquakes? Geology, 34: 485-488; DOI: 10.1130/22426.1
Highland, L. M., Bobrowsky, P., 2008. The landslide handbook—A guide to understanding landslides: Reston, Virginia. U.S. Geological Survey Circular, 1325: 129.
Houghton, P., Davis, C., McCaffrey, W., Barker, S., 2009. Hybrid sediment gravity flow deposits — Classification, origin and significance. Marine and Petroleum Geology, 26: 1900-1918.
Howard, K. A., 1973. Avalanche mode of motion: Implications from Lunar examples. Science, 180: 1052-1055.
Howe, E., 1909. Landslides in the San Juan Mts. Colorado: including consideration of their causes and their classification. U.S. Geol. Survey Prof. Paper, 67: 58.
Hsü, K. J., 1974. Mélanges and their distinction from olistostromes. In: Dott, Jr. R. H. Shaver, R. H., (eds). Modern and Ancient Geosynclinal Sedimentation.Tulsa, OK: SEPM Special Publication, 19: 321-333.
Hsü, K. J., 1975. Catastrophic debris streams (sturzstromes) generated by rockfalls. GSA Bulletin, 86: 129-140. 2.0.CO;2 target="_blank">
Hsü, K. J., 2004. Physics of Sedimentology. 2nd Edition. Berlin: Springer, 240.
Hubbard, D. K., 1992. Hurricane-induced sediment transport in open shelf tropical systems — An example from St. Croix, US Virgin islands. Journal of Sedimentary Petrology, 62: 946-960.
Hungr, O., 1995. A model for the runout analysis of rapid flow slides, debris flows and avalanches. Canadian Geotechnical Journal, 32: 610-623.
Hungr, O., Evans, S. G., 2004. Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism. GSA Bulletin, 116: 1240-1252.
Hungr, O., Evans, S. G., Bovis, M., Hutchinson, J. N., 2001. Review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7: 221-238.
Hutchinson, J. N., 1968. Mass movement. In: Fairbridge, R. W. (ed). Encyclopedia of Earth Sciences. New York: Reinhold, 688-695.
Ilstad, T., Marr, J. G., Elverhoi, A., Harbitz, C. B., 2004. Laboratory studies of subaqueous debris flows by measurements of pore-fluid pressure and total stress. Marine Geology, 213(1-4): 403-414.
Inman, D. L., Nordstrom, C. E., Flick, R. E., 1976. Currents in submarine canyons: An air-sea-land interaction. Annual Review of Fluid Mechanics, 8: 275-310.
Iverson, R. M., 1997. The physics of debris flows. Reviews of Geophysics, 35: 245-296.
Iverson, R. M., 2000. Landslide triggering by rain infiltration. Water Resources Research, 36 (7): 1897-1910.
Iverson, R. M., Vallance, R. W., 2001. New views of granular mass flows. Geology, 29: 115-118. 2.0.CO;2 target="_blank">
Iverson, R. M., Reid, M. E., LaHusen, R. G., 1997. Debris-Flow Mobilization from Landslides. Annual Review of Earth and Planetary Sciences, 25: 85-138.
Iverson, R. M., Reid, M. E., Iverson, N. R., LaHusen, R. G., Logan, M., Mann, J. E., Brien, D. L., 2000. Acute sensitivity of landslide rates to initial soil porosity. Science, 290 (5491): 513-516.
Jackson, B. A., 2004. Seismic evidence for gas hydrates in the north Makassar Basin, Indonesia. Petroleum Geoscience, 10: 227-238; DOI:10.1144/1354-079303-601.
Jacobi, R. D., 1976. Sediment slides on the northwestern continental margin of Africa. Marine Geology, 22: 157-173.
Jakob, M., Hungr, O., (eds), 2005. Debris-flow Hazards and Related Phenomena. Berlin: Heidelberg, Praxis-Springer, 739.
Jansen, E., Befring, S., Bugge, T., Eidvin, T., Holtedahl, H., Petter Sejrup, H., 1987. Large submarine slides on the Norwegian continental margin: Sediments, transport and timing. Marine Geology, 78: 77-107.
Johnson, A. M., 1970. Physical Processes in Geology. San Francisco: Freeman, Cooper and Co., 577.
Johnson, A. M., 1984. Debris Flow. In: Prior, D. B., (ed). Slope Instability. New York: John Wiley, 257-361.
Karcz, I., Shanmugam, G., 1974. Decrease in Scour Rate of Fresh Deposited Muds. Proc. American Society of Civil Engineers (ASCE). Journal of the Hydraulics Division, 100 (HY11): 1735-1738.
Karl, H. A., Carlson, P. R., Gardner, J. V., 1996. Aleutian basin of the Bering Sea: Styles of sedimentation and canyon development. In: Gardner, J. V., Field, M. E., and Twichell, D. C.,(eds). Geology of the United States' Seafloor. New York: Cambridge University Press, 305-332.
Kent, P. E., 1966. The transport mechanism in catastrophic rock falls. The Journal of Geology, 74: 79-83.
Khripounoff, A., Vangriesheim, A., Babonneau, N., Crassous, P., Dennielou, B., Savoye, B., 2003. Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth. Marine Geology, 194: 151-158.
Klinger, Y., Rivera, L., Haessler, H., Maurin, J-C., 1999. Active faulting in the Gulf of Aqaba: New knowledge from the Mw 7.3 Earthquake of 22 November 1995. Bulletin of the Seismological Society of America, 89(4): 1025-1036.
Koning, H. L., 1982. On an explanation of marine flow slides in sand. In: Saxov, S., Nieuwenhuis, J. K., (eds). Marine Slides and Other Mass Movements. New York and London: Plenum Press, 83-94.
Koppejan, A. W., van Wamelan, B. M., Weinberg, L. J. H., 1948. Coastal flow slides in the Dutch province of Zeeland. In: Proceedings of the 2nd International Conference on Soil Mechanics and Foundation, Rotterdam, 5: 89-96.
Krastel, S., Behrmann, J-H., Völker, D., Stipp, M., Berndt, C., Urgeles, R., Chaytor, J., Huhn, K., Strasser, M., Harbitz, C. B., (eds). 2014. Submarine Mass Movements and Their Consequences. 6th International Symposium. Switzerland: Springer, Advances in Natural and Technological Hazards Research, 37. ISBN: 978-3-319-00971-1 (Print) 978-3-319-00972-8 (Online).
Krynine, P. D., 1948. The megascopic study and field classification of sedimentary rocks. The Journal of Geology, 56: 130-165.
Kudrass, H. R., Michels, K. H., Wiedicke, M., 1998. Cyclones and tides as feeders of a submarine canyon off Bangladesh. Geology, 26: 715-718. 2.3.CO;2 target="_blank">
Kuehl, S. A., Hariu, T. M., Moore, W. S., 1989. Shelf sedimentation off the Ganges-Brahmaputra river system: Evidence for sediment bypassing to the Bengal fan. Geology, 17: 1132-1135. 2.3.CO;2 target="_blank">
Kuenen, Ph. H., 1951. Properties of turbidity currents of high density. In: Hough, J. L., (ed). Turbidity Currents and the Transportation of Coarse Sediments to Deep Water, A Symposium. Tulsa, OK: SEPM Special Publication, 2: 14-33.
Labaume, P., Mutti, E., Seguret, M., 1987. Megaturbidites: A depositional model from the Eocene of the SW-Pyrenean foreland basin, Spain. Geo-Marine Letters, 7: 91-101.
Laberg, J. S., Kawamura, K., Amundsen, H., Baeten, N., Forwick, M., Rydningen, T. A., Vorren, T. O., 2014. A submarine landslide complex affecting the Jan Mayen Ridge, Norwegian-Greenland Sea: Slide-scar morphology and processes of sediment evacuation. Geo-Marine Letters, 34: 51-58; DOI: 10.1007/s00367-013-0345-z.
Ladd, G. E., 1935. Landslides, subsidences and rockfalls. Bull. Am. Railway Eng. Ass., 37: 1091-1162.
Lawton, T. F., Shipley, K. W., Aschoff, J. L., Giles, K. A., Vega, F. J., 2005. Basinward transport of Chicxulub ejecta by tsunami-induced backflow, La Popa basin, northeastern Mexico, and its implications for distribution of impact-related deposits flanking the Gulf of Mexico. Geology, 33: 81-84.
Lee, H. J., 2005. Undersea landslides: Extent and significance in the Pacific Ocean, an update. Natural Hazards and Earth System Sciences, 5: 877-892.
Lee, H. J., 2009. Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Marine Geology, 264: 53-64.
Legros, F., 2002. The long-runout landslides. Engineering Geology, 63: 301-331.
Lewis, K. B., 1971, Slumping on a continental slope inclined at 1º-4º. Sedimentology, 16: 97-110.
Lewis, K., Collot, J.-Y., 2001. Giant submarine avalanche: Was this “Deep Impact” New Zealand style? Water and Atmosphere, 9: 26-27.
Li, T., 1989. Landslides—extent and economic significance in China. In: Brabb, E. E. Harrod, B. L. (eds). Landslides—Extent and Economic Significance. Rotterdam, The Netherlands: A. A. Balkema Publishers, 271-287.
Locat, J., Lee, H. J., 2002. Submarine landslides: Advances and challenges. Canadian Geotechnical Journal, 39(1): 193-212.
Locat, J., Lee, H. J., 2005. Subaqueous debris flows. In: Jakob, M., Hungr, O., (eds). Debris-flow hazards and related phenomena. Berlin, Heidelberg: Praxis-Springer, 203-245. Chapter 9.
Locat, J., Lee, H. J., ten Brink, U. S., Twichell, D., Geist, E., Sandansoucy, M., 2009. Geomorphology, stability and mobility of the Currituck slide. Marine Geology, 264: 28-40.
Lowe, D. R., 1976. Grain flow and grain flow deposits. Journal of Sedimentary Petrology, 46: 188-199.
Lowe, D. R., 1982. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology, 52: 279-297.
Lowe, D. R., Guy, M., 2000. Slurry-flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: A new perspective on the turbidity current and debris flow problem. Sedimentology, 47: 31-70.
Lucchitta, B. K., 1979. Landslides in Valles Marineris, Mars. Journal of Geophysical Research, 84: 8097-8113.
Lucchitta, B. K., 1987. Valles Marineris, Mars — Wet debris flows and ground ice. Icarus, 72: 411-429.
Luczy��ski, P., 2012. The tsunamites problem. Why are fossil tsunamites so rare? Prz. Geol., 60: 598-604.
Macdonald, D. I. M., Moncrieff, A. C. M., Butterworth, P. J., 1993. Giant slide deposits from a Mesozoic fore-arc basin, Alexander Island, Antarctica. Geology, 21: 1047-1050. 2.3.CO;2 target="_blank">
Major, J. J., 1998. Pebble orientation on large, experimental debris-flow deposits. Sedimentary Geology, 117: 151-164.
Major, J. J., Iverson, R. M., 1999. Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins. GSA Bulletin, 111(10): 1424-1434. 2.3.CO;2 target="_blank">
Malahoff, A., Embley, R., Perry, R., 1978. Submarine Landslides—East Coast Continental Slope and Upper Rise: OCEANS '78: Washington DC, IEEE Explore Conference Publication, September 6-8, 1978, 503-509; DOI: 10.1109/OCEANS. 1978.1151087.
Malin, M. C., 1992. Mass movements on Venus: Preliminary results from Magellan Cycle I observations. Journal of Geophysical Research, 97(E10): 16,337-16,352.
Maltman, A. J., 1987. Microstructures in deformed sediments, Denbigh Moors, North Wales. Geological Journal, 22: 87-94.
Maltman, A., (ed), 1994. The Geological Deformation of Sediments. London: Chapman & Hall, 382.
Marr, J. G., Harff, P. A., Shanmugam, G., Parker, G., 2001. Experiments on subaqueous sandy gravity flows: The role of clay and water content in flow dynamics and depositional structures. GSA Bulletin, 113: 1377-1386. 2.0.CO;2 target="_blank">
Martinsen, O., 1994. Mass movements. In: Maltman, A., (ed). The Geological Deformation of Sediments. London: Chapman & Hall, 127-165.
Mascarenhas, A., 2004. Oceanographic validity of buffer zones for the east coast of India: A hydrometeorological perspective. Current Science, 86 (3): 399-406.
Maslin, M., Owen, M., Day, S., Long, D., 2004. Linking continental-slope failures and climate change: Testing the gun hypothesis. Geology, 32: 53-56.
Masson, D. G., van Niel, B., Weaver, P. P. E., 1997. Flow processes and sediment deformation in the Canary Debris Flow on the NW African Continental Rise. Sedimentary Geology, 110: 163-179.
Masson, D. G., Watts, A. B., Gee, M. J. R., Urgeles, R., Mitchell, N. C., Le Bas, T. P., Canals, M., 2002. Slope failures on the flanks of the western Canary Islands. Earth-Science Reviews, 57: 1-35.
Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., Løvholt, F., 2006. Submarine landslides: Processes, triggers, and hazard prevention. Royal Society of London Transactions, Series A 364 (1845): 2009-2039.
McAdoo, B. G., Pratson, L. F., Orange, D. L., 2000. Submarine landslide geomorphology, US continental slope. Marine Geology, 169: 103-136.
McEwen, A. S., 1989. Mobility of rock avalanches: Evidence from Valles Marineris, Mars. Geology, 17: 1111-1114. 2.3.CO;2 target="_blank">
McGregor, B. A., Rothwell, R. G., Kenyon, N. H., Twichell, D. C., 1993. Salt tectonics and slope failure in an area of salt domes in the northwestern Gulf of Mexico. In: Schwab, W. C., Lee, H. J., d Twichell, D. C., (eds). Submarine Landslides: Selected Studies in the U.S. Exclusive Economic Zone. U.S. Geological Survey Bulletin, 2002: 92-96.
McPherson, J. G., Shanmugam, G., Moiola, R. J., 1987. Fan-deltas and braid deltas: Varieties of coarse-grained deltas. GSA Bulletin, 99: 331-340. 2.0.CO;2 target="_blank">
Meckel, III, L. D., 2011. Reservoir characteristics and classification of sand-prone submarine mass-transport deposits. In: Shipp, R. C., Weimer, P., Posamentier H. W., (eds). Mass-Transport Deposits in Deepwater Settings. Tulsa, OK: SEPM Special Publication, 96: 423-454.
Melosh, H. J., 1979. Acoustic fluidization: A new geologic process? Journal of Geophysical Research, 84: 7513-7520.
Meyer, D., Zarra, L., Yun, J., 2007. From BAHA to Jack, Evolution of the Lower Tertiary Wilcox Trend In the Deepwater Gulf of Mexico. The Sedimentary Record, 5: 4-9.
Michalik, J., 1997. Tsunamites in a storm-dominated Anisian carbonate ramp (Vysoká Formation, Malé Karpaty Mts., western Carpathians). Geologica Carpathica, 48: 221-229.
Middleton, G. V., Hampton, M. A., 1973. Sediment gravity flows: Mechanics of flow and deposition. In: Middleton, G. V., Bouma, A. H., (eds). Turbidites and Deep-Water Sedimentation. Los Angeles, California: Pacific Section SEPM, 1-38.
Mienert, J., Berndt, C., Laberg, J. S., Vorren, T. O., 2002. Slope instability of continental margins. In: Wefer, G., Billet, D., Hebbeln, D., Jorgensen, B., Van Weering, T. C. E., Schlüter, M., (eds). Ocean Margin Systems. New York: Springer, 179-193.
Milia, A., Torrente, M. M. Giordano, F., 2006. Chapter 4 Gravitational instability of submarine volcanoes offshore Campi Flegrei (Naples Bay, Italy). Developments in Volcanology, 9: 69-83.
Mitchell, J. K., Holdgate, G. R., Wallace, M. W., Gallagher, S. J., 2007. Marine geology of the Quaternary Bass Canyon system, southeast Australia: A cool-water carbonate system. Marine Geology, 237: 71-96.
Miyamoto, H., Dohm, J. M., Baker, V. R., Beyer, R. A., Bourke, M., 2004. Dynamics of unusual debris flows on Martian sand dunes. Geophysical Research Letters, 31: L13701; DOI: 10.1029/2004GL020313, 2004.
Moernaut, J., De Batist, M., 2011. Frontal emplacement and mobility of sublacustrine landslides: Results from morphometric and seismostratigraphic analysis. Marine Geology, 285: 29-45.
Mohrig, D., Whipple, K. X., Hondzo, M., Ellis, C., Parker, G., 1998. Hydroplaning of subaqueous debris flows. GSA Bulletin, 110: 387-394. 2.3.CO;2 target="_blank">
Montgomery, D. R., Som, S. M., Jackson, M. P. A., Schreiber, B. C., Gillepsie, A. R., 2009. Continental-scale salt tectonics on Mars and the origin of Valles Marineris and associated outflow channels. GSA Bulletin, 121: 117-133.
Moore, D. G, Curray, J. R., Emmel, F. J., 1976. Large submarine slide (olistostrome) associated with Sunda arc subduction zone, northeast Indian Ocean. Marine Geology, 21: 211-226.
Moore, J. G., Clague, D. A., Holcomb, R. T., Lipman, P. W., Normark, W. R., Torresan, M. T., 1989. Prodigious submarine landslides on the Hawaiian Ridge. Journal of Geophysical Research, 94(B122): 17,465-17,484.
Moore, J. G., Normark, W. R., Holcomb, R. T., 1994. Giant Hawaiian landslides. Annual Reviews in Earth and Planetary Sciences, 22: 119-144.
Morgenstern, N. R., 1967. Submarine slumping and the initiation of turbidity currents. In: Richards., A. F., (ed). Marine Geotechnique. Urbana: University of Illinois Press, 189-220.
Moscardelli, L., Wood, L., 2008. New classification system for mass transport complexes in offshore Trinidad. Basin Research, 20: 73-98.
Moscardelli, L., Wood, L., Mann, P., 2006. Mass-transport complexes and associated processes in the offshore area of Trinidad and Venezuela. AAPG Bulletin, 90: 1059-1088.
Mosher, D. C., Moscardelli, L., Shipp, R. C., Chaytor, J. D., C. D. P. Baxter, C. D. P., Lee, H. J., Urgeles, R., 2010. Submarine Mass Movements and Their Consequences. In: Mosher, D. C., et al., (eds). Submarine Mass Movements and Their Consequences: Advances in Natural and Technological Hazards Research, 28: 1-8.
Mulder, T., 2011. Gravity processes and deposits on continental slope, rise and abyssal plains. In: Hüneke, H., Mulder, T., (eds). Deep-Sea Sediments. Amsterdam: Elsevier, Developments in Sedimentology, 63: 25-148. Chapter 2.
Mulder, T., Cochonat, P., 1996. Classification of offshore mass movements. Journal of Sedimentary Research, 66: 43-57.
Mulder, T., Migeon, S., Savoye, B., Faugeres, J-C., 2001. Inversely graded turbidite sequences in the deep Mediterranean: A record of deposits from flood-generated turbidity currents? Geo-Marine Letters, 21; 86-93.
Mulder, T., Syvitski, J. P. M., Migeon, S., Faugeres, J.-C., Savoye, B., 2003. Marine hyperpycnal flows: Initiation, behavior and related deposits: A review. Marine and Petroleum Geology, 20: 861-882.
Mulder, T., Philippe, R., Faugères, J.-C., Gérard, J., 2011. Reply to the Discussion by Roger Higgs on 'Hummocky cross stratification-like structures in deep-sea turbidites: Upper Cretaceous Basque basins (Western Pyrenees, France)' by Mulder et al., Sedimentology, 56: 997-1015, Sedimentology, 58: 671-577.
Murray, J., Renard, A. F., 1891. Report on deep-sea deposits based on specimens collected during the voyage of H. M. S. Challenger in the years 1872-1876. London: Government Printer, Challenger Reports.
Mutti, E., 1992. Turbidite Sandstones. Milan, Italy: Agip Special Publication, 275.
Mutti, E., Ricci Lucchi, F., 1972. Turbidites of the northern Apennines: Introduction to facies analysis (English translation by T. H. Nilsen, 1978). International Geology Review, 20: 125-166.
Mutti, E., Ricci Lucchi, F., Segure, T, M., Zanzucchi, G., 1984. Seismoturbidites: A new group of resedimented deposits. In: Cita, M. B., Ricci Lucchi, F., (eds). Seismicity and Sedimentation. Amsterdam: Elsevier Scientific Publication, 103-116.
Mutti. E., Tinterri, R., Remacha, E., Mavilla, N., Angella, S., Fava, L., 1999. An introduction to the analysis of ancient turbidite basins from an outcrop perspective. Tulsa, OK: AAPG Continuing Education Course Note Series, 39, 61.
Nardin, T. R., Hein, F. J., Gorsline, D. S., Edwards, B. D., 1979. A review of mass movement processes, sediment and acoustic characteristics, and contrasts in slope and base-of-slope systems versus canyon-fan-basin floor systems. In: Doyle, L. J., Pilkey, O. H., (eds). Geology of Continental Slopes. Tulsa, OK: SEPM Special Publication, 27: 61-73.
Natland, M. L., 1967. New classification of water-laid clastic sediments. AAPG Bulletin, 51: 476.
Nelson, C. H., Escutia, C., Damuth, J. E., Twichell, D. C., 2011. Interplay of mass-transport and turbidite-system deposits in different active tectonic and passive continental margin settings: External and local controlling factors. In: Shipp, R. C., Weimer, P., Posamentier, H. W., (eds). Mass-Transport Deposits in Deepwater Settings. SEPM Special Publication, 96: 39-66.
Nemec, W., 1990. Aspects of sediment movement on steep delta slopes. In: Colella, A., Prior, D. B., (eds). Coarse-Grained Deltas. International Association of Sedimentologists Special Publication, 10: 29-73.
Newton, C. S., Shipp, R. C., Mosher, D. C., Wach, G. D., 2004. Importance of mass transport complexes in the Quaternary development of the Nile Fan, Egypt. Offshore Technology Conference, 3-6 May, 2004, Houston, Texas. https://www.onepetro.org/conference-paper/OTC-16742-MS (accessed October 22, 2014).
Norem, H., Locat, J., Schieldrop, B., 1990. An approach to the physics and the modeling of submarine flowslides. Marine Geotechnology, 9: 93-111.
Normark, W. R., 1989. Observed parameters for turbidity-current flow in channels, Reserve Fan, Lake Superior. Journal of Sedimentary Petrology, 59: 423-431.
Normark, W. R., Moore, J. G., Torresan, M. E., 1993. Giant volcano-related landslides and the development of the Hawaiian Islands. In: Schwab, W. C., Lee, H. J., Twichell, D. C., (eds). Submarine Landslides: Selected Studies in the U.S. Exclusive Economic Zone. U.S. Geological Survey Bulletin, 2002: 184-196.
O'Leary, D. W., 1993. Submarine mass movement, a formative process of passive continental margins: The Munson-Nygren landslide complex and the Southeast New England complex. In: Schwab, W. C., Lee, H. J., Twichell, D. C., (eds). Submarine Landslides: Selected Studies in the U.S. Exclusive Economic Zone. U.S. Geological Survey Bulletin, 2002: 23-39.
Palanques, A., Durieu de Madron, X., Puig, P., Fabres, J., Guillén, J., Calafat, A. M., Canals, M. Bonnin, J., 2006. Suspended sediment fluxes and transport processes in the Gulf of Lions submarine canyons: The role of storms and dense water cascading. Marine Geology, 234: 43-61.
Parchure, T. M., 1980. Effect of Bed Shear Stress on the Erosional Characteristics of Kaolinite. Gainesville, FL: University of Florida. M.S. Thesis.
Parsons, J. D., Schweller, W. J., Stelting, C. W., Southard, J. B., Lyons, W. J., Grotzinger, J. P., 2003. A preliminary experimental study of turbidite fan deposits—reply. Journal of Sedimentary Research, 73: 839-841.
Paull, C. K., Mitts, P., Ussler III, W., Keaten, R., Greene, H. G., 2005. Trail of sand in upper Monterey Canyon: Offshore California. GSA Bulletin, 117: 1134-1145.
Petley, D., 2012. Global patterns of loss of life from landslides. Geology, 40(10): 927-930; DOI: 10.1130/G33217.1
Pickering, K. T., Hilton, V., 1998. Turbidite Systems of Southeast France. London: Vallis Press, p. 229.
Pickering, K. T., Hiscott, R. N., Hein, F. J., 1989. Deep-Marine Environments. London: Unwin Hyman, 416.
Pierson, T., 1981. Dominant particle support mechanisms in debris flows at Mt Thomas, New Zealand, and implications for flow mobility. Sedimentology, 28(1): 49-60.
Pierson, T., 1985. Initiation and flow behavior of the 1980 Pine Creek and Muddy River lahars, Mount St. Helens, Washington. GSA Bulletin, 96: 1056-1069. 2.0.CO;2 target="_blank">
Pierson, T., 1990. Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. Journal of Volcanology and Geothermal Research, 41(1-4): 17-66.
Pierson, T. C., Costa, J. E., 1987. A rheologic classification of subaerial sediment-water flows. In: Costa, J. E., Wieczorek, G. F., (eds). Debris Flows/Avalanches: Process, Recognition, and Mitigation. GSA Reviews in Engineering Geology, 7: 1-12.
Piper, D. J. W., Aksu, A. E., 1987. The source and origin of the 1929 Grand Banks turbidity current inferred from sediment budgets. Geo-Marine Letters, 7: 177-182.
Piper, D. J. W., Shor, A. N., Hughes Clarke, J. E., 1988. The 1929 “Grand Banks” earthquake, slump, and turbidity current. In: Clifton, H. E., (ed). Sedimentologic Consequences of Convulsive Geologic Events. Boulder, CO. GSA Special Paper, 229: 77-92.
Piper, D. J. W., Cochonat, P., Morrison, M. L., 1999. The sequence of events around the epicenter of the 1929 Grand Banks earthquake: Initiation of debris flows and turbidity current inferred from sidescan sonar. Sedimentology, 46: 79-97.
Piper, D. J. W., Pirmez, C., Manley, P. L., Long, D., Flood, R. D., Normark, W. R., Showers, W., 1997. Mass-transport deposits of the Amazon Fan. In: Flood, R. D., Piper, D. J. W., Klaus, A., Peterson, L. C., (eds). Proceedings of the Ocean Drilling Program, Scientific Results, 155: 109-143.
Piper, D. J. W., Mosher, D. C., Campbell, D. C., 2012a. Controls on the distribution of major types of submarine landslides. In: Clague, J. J., Stead, D., (eds). Landslides: Types, Mechanisms, and Modeling. Cambridge, UK: Cambridge University Press, 95-107.
Piper, D. J. W., Deptuck, M. E., Mosher, D. C., Hughes-Clarke, J. E., Migeon, S., 2012b. Erosional and depositional features of glacial meltwater discharges on the eastern Canadian continental margin. In: Prather, B. E., Deptuck, M. E., Mohrig, D. C., van Hoorn, B., Wynn, R. B., (eds). Application of Seismic Geomorphology Principles to Continental Slope and Base-of-Slope Systems: Case Studies from Seafloor and Near-Seafloor Analogues. Tulsa, OK: SEPM Special Publication, 99: 61-80.
Popenoe, P., Schmuck, E. A., Dillon, W. P., 1993. The cape fear landslide; slope failure associated with salt diapirism and gas hydrate decomposition. In: Schwab, W. C., Lee, H. J., Twichell, D. C., (eds). Submarine Landslides: Selected Studies in the U.S. Exclusive Economic Zone. U.S. Geological Survey Bulletin, 2002: 40-53.
Popov, I. V., 1946. A scheme for the natural classification of landslides. Doklady USSR Academy of Science, 54: 157-159.
Postma, G., Nemec, W., Kleinspehn, K. L., 1988. Large floating clasts in turbidites: A mechanism for their emplacement. Sedimentary Geology, 58: 47-61.
Postma, G., Kleverlaan, K., Cartigny, M. J. B., 2014. Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model. Sedimentology, 61(7): 2268-2290. DOI: 10.1111/sed.12135.
Prior, D. B., Coleman, J. M., 1979. Submarine landslides-Geometry and nomenclature. Zeitschrift für Geomorphologie N. F., 23: 415-426.
Prior, D. B., Coleman, J. M., 1984. Submarine slope instability. In: Brunsden, D., Prior, D. B. (eds). Slope Instability. Chichester: John Wiley & Sons Ltd, 419-455.
Prior, D. B., Suhayda, J. N., Lu, N.-Z., Bornhold, B. D., Keller, G. H., Wiseman, W. J., Wright, L. D., Yang, Z.-S., 1989. Storm wave reactivation of a submarine landslide. Nature, 341: 47-50.
Prior, D. B., Bornhold, B. D., 1990. The underwater development of Holocene fan deltas. In: Colella, A., Prior, D. B. (eds). Coarse-grained Deltas. Oxford, Blackwell Scientific, International Association of Sedimentologists Special Publication, 10: 7590.
Prior, D. B., Hooper, J. R., 1999. Sea floor engineering geomorphology: Recent achievements and future directions. Geomorphology, 31: 411-439.
Puig, P., Ogston, A. S., Mullenbach, B. L., Nittrouer, C. A., Sternberg, R. W., 2003. Shelf-to-canyon sediment-transport processes on the Eel continental margin (northern California). Marine Geology, 193: 129-149.
Purvis, K., Kao, J., Flanagan, K., Henderson, J., Duranti, D., 2002. Complex reservoir geometries in a deep water clastic sequence, Gryphon Field, UKCS: Injection structures, geological modeling and reservoir simulation. Marine and Petroleum Geology, 19: 161-179.
Reiche, P., 1937. The Toreva-Block — A distinctive landslide type. The Journal of Geology, 45: 538-548.
Reynolds, S. H., 1932. Landslips. Proceedings of Bristol Naturalists' Society, 7: 352-357.
Ritter, D. F., Kochel, R. C., Miller, J. R., 1995. Process Geomorphology, 3rd edition. Dubuque, Iowa, William C. Brown, 546.
Roberts, N. J., Evans, S.G., 2009. Controls on size and occurrence of the largest sub-aerial landslide on Earth: Seymareh (Saidmarreh) landslide, Zagros fold-thrust belt, Iran. American Geophysical Union, Fall Meeting 2009, abstract #NH41C-1260.
Rodriguez, M., Chamot-Rooke, N., Hébert, H., Fournier, M., Huchon, P., 2013. Owen Ridge deep-water submarine landslides: Implications for tsunami hazard along the Oman coast. Nat. Hazards Earth Syst. Sci., 13: 417-424.
Rouse, C., 1984. Flowslides. In: Brunsden, D., Prior, D. B., (eds). Slope Insatbility. Chichester: John Wiley & Sons, 491-522.
Saller, A. H., Lin, R., Dunham, J., 2006. Leaves in turbidite sands: The main source of oil and gas in the deep-water Kutei Basin, Indonesia. AAPG Bulletin, 90: 1585-1608.
Sanders, J. E., 1963. Concepts of fluid mechanics provided by primary sedimentary structures. Journal of Sedimentary Petrology, 33: 173-179.
Sanders, J. E., 1965. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. In: Middleton, G. V., (ed). Primary Sedimentary Structures and Their Hydrodynamic Interpretation. Tulsa, OK: SEPM, Special Publication, 12: 192-219.
Sanders, J. E., Friedman, G. M., 1997. History of petroleum exploration in turbidites and related deep-water deposits. Northeastern Geology and Environmental Sciences, 19 (1/2): 67-102.
Saxov, S., 1982. Marine slides — Some introductory remarks. In: Saxov, S., Nieuwenhuis, J. K., (eds). Marine Slides and Other Mass Movements. New York and London: Plenum Press, 1-10.
Schaller, P. J., 1991. Analysis and implications of large Martian and terrestrial landslide: Pasadena, California. California Institute of Technology. Ph.D. dissertation, 596.
Scheidegger, A. E., 1973. On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics and Rock Engineering, 5: 231-236.
Scheidegger, A. E., 1975. Physical Aspects of Natural Catastrophes. New York: Elsevier Science, 289 p.
Schuster, R. L., 1983, Engineering aspects of the 1980 Mount St. Helens eruptions. Bulletin of the Association of Engineering Geologists, 20: 125-143.
Schuster, R. L., Wieczorek, G. F., 2002. Landslide triggers and types. In: Rybar, J., Stemberk, J., d Wagner, P., (eds). Proceedings, 1st European Conference on Landslides, 24-26 June 2002. Prague: A. A. Balkema, 59-78.
Schwab, W. C., Lee, H. J., Twichell, D. C., (eds). 1993. Submarine Landslides: Selected Studies in the U.S. Exclusive Economic Zone: U.S. Geological Survey Bulletin 2002, 204.
Schwalbach, J. R., Edwards, B. D., Gorsline, D. S., 1996. Contemporary channel-levee systems in active borderland basin plains, California Continental Borderland. Sedimentary Geology, 104: 53-72.
Shanmugam, G., 1978. The stratigraphy, sedimentology, and tectonics of the Middle Ordovician Sevier Shale Basin in East Tennessee. Knoxville, Tennessee: The University of Tennessee. Ph.D. dissertation, 222.
Shanmugam, G., 1996. High-density turbidity currents: Are they sandy debris flows? Journal of Sedimentary Research, 66: 2-10.
Shanmugam, G., 1997. Deep-water exploration: Conceptual models and their uncertainties. NAPE (Nigerian Association of Petroleum Explorationists) Bulletin, 12/01: 11-28.
Shanmugam, G., 2000. 50 years of the turbidite paradigm (1950s-1990s): Deep-water processes and facies models—A critical perspective. Marine and Petroleum Geology, 17: 285-342.
Shanmugam, G., 2002. Ten turbidite myths. Earth-Science Reviews, 58: 311-341.
Shanmugam, G., 2003. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons. Marine and Petroleum Geology, 20: 471-491; DOI: 10.1016/S0264-8172(03)00063-1.
Shanmugam, G., 2006a. Deep-water processes and facies models: Implications for sandstone petroleum reservoirs. Amsterdam, Elsevier, Handbook of Petroleum Exploration and Production, 5: 476.
Shanmugam, G., 2006b. The tsunamite problem. Journal of Sedimentary Research, 76: 718-730.
Shanmugam, G., 2007. The obsolescence of deep-water sequence stratigraphy in petroleum geology. Indian Journal of Petroleum Geology, 16 (1): 1-45.
Shanmugam, G., 2008a. Leaves in turbidite sand: The main source of oil and gas in the deep-water Kutei Basin, Indonesia: Discussion. AAPG Bulletin, 92: 127-137.
Shanmugam, G., 2008b. The constructive functions of tropical cyclones and tsunamis on deep-water sand deposition during sea level highstand: Implications for petroleum exploration. AAPG Bulletin, 92: 443-471.
Shanmugam, G., 2009. Slides, slumps, debris flows, and turbidity currents. In: Steele, J. H., Thorpe, S. A., Turekian, K. K., (eds). Encyclopedia of Ocean Sciences, 2nd ed. Waltham, Massachusetts: Academic Press (Elsevier), 447-467.
Shanmugam, G., 2012a. New perspectives on deep-water sandstones: Origin, recognition, initiation, and reservoir quality. Amsterdam: Elsevier, Handbook of Petroleum Exploration and Production, 9: 524.
Shanmugam, G., 2012b. Process-sedimentological challenges in distinguishing paleo-tsunami deposits. In: Kumar, A., Nister, I., (eds). Paleo-tsunamis. Natural Hazards, 63: 5-30.
Shanmugam, G., 2013a. Slides, Slumps, Debris Flows, and Turbidity Currents. In: Elias, S. A. (ed). Reference Module in Earth Systems and Environmental Science. Elsevier Online.http://dx.doi.org/10.1016/B978-0-12-409548-9.04380-3.
Shanmugam, G., 2013b. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sand. AAPG Bulletin, 97(5): 767-811.
Shanmugam, G., 2013c. Comment on “Internal waves, an underexplored source of turbulence events in the sedimentary record” by L. Pomar, M. Morsilli, P. Hallock, and B. Bádenas [Earth-Science Reviews, 111 (2012): 56-81]. Earth-Science Reviews, 116: 195-205.
Shanmugam, G., 2014a. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands: Reply. AAPG Bulletin, 98: 858-879.
Shanmugam, G., 2014b. Review of research in internal-wave and internal-tide deposits of China: Discussion. Journal of Palaeogeography, 3 (4): 332-350.
Shanmugam, G., Walker, K. R., 1978. Tectonic significance of distal turbidites in the Middle Ordovician Blockhouse and lower Sevier formations in east Tennessee. American Journal of Science, 278: 551- 578.
Shanmugam, G., Walker, K. R., 1980. Sedimentation, subsidence, and evolution of a foredeep basin in the Middle Ordovician, Southern Appalachians. American Journal of Science, 280: 479-496.
Shanmugam, G., Moiola, R. J., 1982. Eustatic control of turbidites and winnowed turbidites. Geology, 10: 231-235. 2.0.CO;2 target="_blank">
Shanmugam, G., Moiola, R. J., 1988. Submarine fans: Characteristics, models, classification, and reservoir potential. Earth-Science Reviews, 24: 383-428.
Shanmugam, G., Clayton, C. A., 1989. Reservoir description of a sand rich submarine fan complex for a steamflood project: Upper Miocene Potter Sandstone, North Midway Sunset Field, California. AAPG Bulletin, 73: 411.
Shanmugam, G., Moiola, R. J., 1995. Reinterpretation of depositional processes in a classic flysch sequence in the Pennsylvanian Jackfork Group, Ouachita Mountains. AAPG Bulletin, 79: 672-695.
Shanmugam, G., Zimbrick, G., 1996. Sandy slump and sandy debris flow facies in the Pliocene and Pleistocene of the Gulf of Mexico: Implications for submarine fan models. In: AAPG International Congress and Exhibition, Caracas, Venezuela, Official Program, A45.
Shanmugam, G., Moiola, R. J., Sales, J. K., 1988a. Duplex-like structures in submarine fan channels, Ouachita Mountains, Arkansas. Geology, 16: 229-232. 2.3.CO;2 target="_blank">
Shanmugam, G., Moiola, R. J., McPherson, J. G., O'Connell, S., 1988b. Comparison of turbidite facies associations in modern passive-margin Mississippi Fan with ancient active-margin fans. Sedimentary Geology, 58: 63-77.
Shanmugam, G., Lehtonen, L. R., Straume, T., Syversten, S. E., Hodgkinson, R. J., Skibeli, M., 1994. Slump and debris flow dominated upper slope facies in the Cretaceous of the Norwegian and Northern North Seas (61º-67º N): Implications for sand distribution. AAPG Bulletin, 78: 910-937.
Shanmugam, G., Bloch, R. B., Mitchell, S. M., Beamish, G. W. J., Hodgkinson, R. J., Damuth, J. E., Straume, T., Syvertsen, S. E., Shields, K. E., 1995. Basin-floor fans in the North Sea: Sequence-stratigraphic models vs. sedimentary facies. AAPG Bulletin, 79: 477-512.
Shanmugam, G., Spalding, T. D., Rofheart, D. H., 1993a. Process sedimentology and reservoir quality of deep-marine bottom-current reworked sands (sandy contourites): An example from the Gulf of Mexico. AAPG Bulletin, 77: 1241-1259.
Shanmugam, G., Spalding, T. D., Rofheart, D. H., 1993b. Traction structures in deep-marine bottom current-reworked sands in the Pliocene and Pleistocene, Gulf of Mexico. Geology, 21: 929-932. 2.3.CO;2 target="_blank">
Shanmugam, G., Shrivastava, S. K., Das, B., 2009. Sandy debrites and tidalites of Pliocene reservoir sands in upper-slope canyon environments, offshore Krishna-Godavari Basin (India): Implications. Journal of Sedimentary Research, 79: 736-756.
Sharpe, C. F. S., 1938. Landslides and Related Phenomena. New York: Columbia University Press, 137.
Shepard, F. P., Dill, R. F., 1966. Submarine Canyons and Other Sea Valleys. Chicago: Rand McNally & Co., 381.
Shepard, F. P., Emery, K. O., 1973. Congo submarine canyon and fan valley. AAPG Bulletin, 57: 1679-1691.
Shepard, F. P., Marshall, N. F., 1978. Currents in submarine canyons and other sea valleys. In: Stanley, D. J., Kelling, G., (eds). Sedimentation in Submarine Fans, Canyons, and Trenches. Stroudsburg, Pennsylvania: Hutchinson and Ross, 3-14.
Shipp, R. C., Weimer, P., Posamentier, H. W., (eds). 2011. Mass-Transport Deposits in Deepwater Settings. Tulsa, OK: SEPM Special Publication, 96.
Shoaei, Z., Ghayoumian, J., 1998. Seimareh landslide, the largest complex slide in the world. In: Moore, D., Hungr, O., (eds). Proceedings of 8th International Congress of the International Association for Engineering Geology and the Environment. Rotterdam: Balkema, 1-5: 1337-1342.
Shreve, R. L., 1968. The Blackhawk Landslide. GSA Special Paper, 108: 47.
Singer, K. N., McKinnon, W. B., Schenk, P. M., Moore, J. M., 2012. Massive ice avalanches on Iapetus mobilized by friction reduction during flash heating. Nature Geoscience, 5: 574-578.
Skempton, A. W., 1960. Terzaghi's discovery of effective stress. In: Bjerrum, L., Casagrande, A., Peck, R. B., Skempton, A. W., (eds). From Theory to Practice in Soil Mechanics. Hoboken, New Jersey: John Wiley, 42-53.
Smit, J., Roep, T. B., Alvarez, W., Montanari, A., Claeys, P., Grajales-Nishimura, J. M., et al., 1996. Coarse-grained, clastic sandstone complex at the K-T boundary around the Gulf of Mexico: Deposition by tsunami waves induced by the Chicxulub impact? In: Ryder, G., et al., (eds). The Cretaceous-Tertiary Event and Other Catastrophes in Earth History. Boulder, CO: GSA Special Paper, 307: 151-182.
Snedden, J. W., Nummedal, D., Amos, A. F., 1988. Storm-and fair-weather combined flow on the Central Texas continental shelf. Journal of Sedimentary Petrology, 58: 580-595.
Solheim, A., Bryn, P., Sejrup, H. P., Mienert, J., Berg, K., 2005a. Ormen Lange—An integrated study for the safe development of a deep-water gas field within the Storegga Slide Complex, NE Atlantic continental margin; executive summary. Marine and Petroleum Geology, 22: 1-9.
Solheim, A., Berg, K., Forsberg, C. F., Bryn, P., 2005b. The Storegga slide complex: Repetitive large scale sliding with similar cause and development. Marine and Petroleum Geology, 22: 97-107.
Sowers, G., 1979. Introductory Soil Mechanics and Foundations. Geotechnical Engineering, 4th ed. New Jersey: Prentice Hall, 640.
Stanley, D. J., Palmer, H. D., Dill, R. F., 1978. Coarse sediment transport by mass flow and turbidity current processes and downslope transformations in Annot Sandstone canyon-fan valley systems. In: Stanley, D. J., Kelling, G., (eds). Sedimentation in Submarine Canyons, Fans, and Trenches. Stroudsburg, Pennsylvania: Hutchinson and Ross, 85-115.
Stow, D. A. V., 1985. Deep-sea clastics: Where are we and where are we going? In: Brenchly, P. J., Williams, P. J., (eds). Sedimentology: Recent Developments and Applied Aspects. Oxford: Blackwell Scientific Publications, Published for the Geological Society, 67-94.
Sultan, N., P., Cochonat, M., Canals, A., Cattaneo, B., Dennielou, H., Haflidason, J. S., Laberg, D., Long, J. J., Mienert, F., Trincardi, R., Urgeles, T. O., Vorren, C., Wilson, 2004. Triggering mechanisms of slope instability processes and sediment failures on continental margins: A geotechnical approach. Marine Geology, 213(1-4): 291-321.
Sundborg, A., 1956. The River Klarälven: A study of fluvial processes. Geografiska Annaler, Seies A, 38: 197.
Takayama, H., Tada, R., Matsui, T., Iturralde-Vinent, M. A., Oji, T., Tajika, E., et al., 2000. Origin of the Penalver Formation in northwestern Cuba and its relation to K/T boundary impact event. Sedimentary Geology, 135: 295-320.
Talling, P. J., 2014. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings. Marine Geology, 352: 155-182.
Talling, P. J., Wynn, R. B., Masson, D. G., Frenz, M., Cronin, B. T., Schiebel, R., Akhmetzhanov, A. M., Dallmeier-Tiessen, S., Benetti, S., Weaver, P. P. E., Georgiopoulou, A., Zühlsdorff, C., Amy, L. A., 2007. Onset of submarine debris flow deposition far from original giant landslide. Nature, 450: 541-544.
Talling, P. J., Masson, D. G., Sumner, F. J., Malgesini, G., 2012. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59: 1937-2003.
Tappin, D. R., 2010. Submarine mass failures as tsunami sources: Their climate control. Philosophical Transactions of the Royal Society A, 368: 2417-2434; DOI:10.1098/rsta.2010.0079.
Teale, T., Young, J. R., 1987. Isolated olistoliths from the Longobucco Basin Calabria, S. Italy. In: Leggett, J. K., Zuffa, G. G., (eds). Advances in Marine Clastic Sedimentology. London, U.K.: Graham & Trotman, 75-88.
Terzaghi, K., 1936. The Shear Resistance of Saturated Soils. Cambridge, MA: Proceedings of the First International Conference on Soil Mechanics and Foundation Engineering, 1: 54-56.
Terzaghi, K., 1950. Mechanism of landslides. In: Paige, S., (ed). Application of Geology to Engineering Practice (Berkey Volume). New York: Geological Society of America, 83-123.
Terzaghi, K., Peck, R. B., Mesri, G., 1996. Soil Mechanics in Engineering Practice, 3rd Edition. Hoboken: Wiley, 592.
The Learning Channel, 1997. Landslides (videotape), produced for the Learning Channel (a cable television channel in the U.S.) by the BBC Television, London, England.
Tilling, R. I., Topinka, L., Swanson, D. A., 1990. Eruptions of Mount St. Helens: Past, Present, and Future. U.S. Geological Survey Special Interest Publication, 56.
Trincardi, F., Cattaneo, A., Correggiari, A., Mongardi, S., Breda, A., Asioli, A., 2003. Submarine slides during relative sea level rise: Two examples from the eastern Tyrrhenian margin. In: Locat, J., Mienert, J., (eds). Submarine Mass Movements and their Consequences. Dordrecht: Kluwer Academic Publishers, 469-478.
Tripsanas, E. K., Piper, D. J. W., Jenner, K. A., Bryant, W. R., 2008. Submarine mass-transport facies: New perspectives on flow processes from cores on the eastern North Atlantic margin. Sedimentology, 55: 97-136.
Twichell, D. C., Chaytor, J. D., ten Brink, U. S., Buczkowski, B., 2009. Morphology of late Quaternary submarine landslides along the U.S. Atlantic continental margin. Marine Geology, 264: 4-15.
Urgeles, R., Canals, M., Baraza, J., Alonso, B., Masson, D., 1997. The most recent megalandslides of the Canary Islands: El Golfo debris avalanche and Canary debris flow, west El Hierro Island. Journal of Geophysical Research, 102(B9): 20305-20323.
Urgeles, R., Camerlenghi, A., Ercilla, G., Anselmetti, F., Brückmann, W., Canals, M., Grácia, E., Locat, J., Krastel, S., Solheim, A., 2007. Scientific ocean drilling behind the assessment of geohazards from submarine slides: Barcelona, Spain, 25-27 October 2006. Eos Trans. AGU 88(17): 192.http://dx.doi.org/10.1029/2007EO170009 (accessed December 27, 2014).
USACE (U.S. Army Core of Engineers), 2003. Slope Stability: Washington, D. C., Department of the Army, Engineers Manual, EM 1110-2-1902, 31 October 2003, 205.
USGS (U.S. Geological Survey), 1994. Geologic features of the sea bottom around a municipal sludge dumpsite near 39_N, 73_W, Offshore New Jersey and New York: U.S. Geological Survey Open-file Report 94-152.
USGS (U.S. Geological Survey), 2010. Worldwide Overview of Large Landslides of the 20th and 21st Centuries.
Vail, P. R., Audemard, F., Bowman, S. A., Eisner, P. N., Perez-Cruz, C., 1991. The stratigraphic signatures of tectonics, eustacy and sedimentology — An overview. In: Einsele, G., Ricken, W., Seilacher, A., (eds). Cycles and Events in Stratigraphy. Berlin: Springer-Verlag, 618-659.
Vallance, J. W., Scott, K. M. 1997. The Oseola mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay-rich debris flow. GSA Bulletin, 109: 143-163. 2.3.CO;2 target="_blank">
Van der Lingen, G. J., 1969. The turbidite problem. New Zealand Journal of Geology and Geophysics, 12: 7-50.
van Loon, A. J., 1972. A prograding deltaic complex in the Upper Carboniferous of the Cantabrian Mountains (Spain): the Prioro-Tejerina Basin. Leidse Geologische Mededelingen, 48: 1-81.
Varnes, D. J., 1958. Landslide types and processes. In: Eckel, E. B. (ed). Landslide and Engineering Practice. Highway Research Board Special Report, 29: 20-47.
Varnes, D. J., 1978. Slope movement types and processes. In: Schuster, R. L. Krizek, R. J., (eds). Landslides: Analysis and Control. Washington, D. C. National Academy of Science, Special Report, 176: 11-33.
Varnes, D. J., 1984. Landslide hazard zonation: A review of principles and practice. Paris: UNESCO, International Association of Engineering Geology, Commission on Landslides and Other Mass Movements on Slopes, 60.
Voight, B., Faust, C., 1982. Frictional heat and strength loss in some rapid landslides. Geotechnique, 32(1): 43-54.
Voight, B., Janda, R. J., Glicken, H., Douglass, P. M., 1983. Nature and mechanics of the Mount St. Helens rockslide-avalanche of May 1980. Geotechnique, 33: 243-273.
Vrolijk, P. J., Southard, J. B., 1997. Experiments on rapid deposition of sand from high-velocity flow. Geoscience Canada, 24: 45-54.
Ward, W. H., 1945. The stability of natural slopes. Geographical Journal, 105: 170-197.
Ward, S. N., 2001. Landslide tsunami. Journal of Geophysical Research, 106: No. B6, 11,201-11,215.
Warme, J. E., Slater, R. A., Cooper, R. A., 1978. Bioerosion in submarine canyons. In: Stanley, D. J., Kelling, G. K., (eds). Sedimentation in Submarine Canyons, Fans, and Trenches. Stroudsburg, Pennsylvania: Dowden, Hutchinson & Ross, Inc., 65-70.
Weber, M. E., Wiedicke, M. H., Kudrass, H. R., Huebscher, C., Erlenkeuser, H., 1997. Active growth of the Bengal Fan during sea-level rise and highstand. Geology, 25: 315-318. 2.3.CO;2 target="_blank">
Weidinger, J. T., Korup, O., 2009. Frictionite as evidence for a large Late Quaternary rockslide near Kanchenjunga, Sikkim Himalayas, India-Implications for extreme events in mountain relief destruction. Geomorphology, 103: 57-65.
Weimer, P., 1989. Sequence stratigraphy of the Mississippi Fan (Plio-Pleistocene), Gulf of Mexico. Geo-Marine Letters, 9: 185-272
Weimer, P., 1990. Sequence stratigraphy, facies geometries, and depositional history of the Mississippi Fan, Gulf of Mexico. AAPG Bulletin, 74: 425-453.
Welbon , A. I. F., Brockbank, P. J., Brunsden, D., Olsen, T. S., 2007. Characterizing and producing from reservoirs in landslides: Challenges and opportunities. In: Jolley, S. J., Barr, D., Walsh, J. J., Knipe, R. J., (eds). Structurally complex reservoirs. London: Geological Society Special Publication, 292: 49-74.
Wieczorek, G. F., Snyder, J. B., 2009. Monitoring slope movements. In: Young, R., Norby, L., (eds). Geological Monitoring. Boulder, Colorado: GSA, 245-271.
Wikipedia (the free Encyclopedia), 2014. 2014 Oso mudslide.
Woodcock, N. H., 1976. Structural style in slump sheets: Ludlow Series, Powys, Wales. Journal of Geological Society of London, 132: 399-415.
Woodcock, N. H., 1979. Sizes of submarine slides and their significance. Journal of Structural Geology, 1: 137-142.
Wynn, R. B., Masson, D. G., Stow, D. A. V, Weaver, P. P. E, 2000. The Northwest African slope apron: A modern analogue for deep-water systems with complex seafloor topography. Marine and Petroleum Geology, 17: 253-265.
Xu, J. P., Noble, M. A., Rosenfeld, L. K., 2004. In-situ measurements of velocity structure within turbidity currents. Geophysical Research Letters, 31, L09311. 10.1029/2004GL019718, 2004.
Yatsu, E., 1967. Some problems on mass movements. Geografiska Annaler Series A, 49a(2-4): 396-401.
Zaruba, Q., Mencl. V., 1969. Landslides and Their Control. Prague: Academia & Elsevier, 205.
Zou, C., Wang, L., Li, Y., Tao, S., Hou, L., 2012. Deep-lacustrine transformation of sandy debrites into turbidites, Upper Triassic, Central China. Sedimentary Geology, 265-266: 143-155.