Kuang Hongwei1, Liu Yongqing1, Peng Nan2, Liu Yanxue1, Li Jiahua3
1 Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037 2 School of the Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083 3 Shengli Oilfield Company, SINOPEC, Dongying 257051,Shandong
Abstract:Molar Tooth (abbreviated MT) carbonate rocks,i.e.,the Proterozoic carbonate rocks with particular texture,are characterized by the enigmatic micro-spar fabric,limitation of temporal and spatial distribution or diverse origin interpretations since the discovery of more than a hundred years,and attract the attention of numerous geologists worldwide.Based on the previous researches and our own new studies on MT microscopic fabric in the recent decade,some new results were proposed in this paper.MT is a stacked equant calcite sparry constructed by aggradated accretion of calcite microspar surrounding an initial nucleus of calcite.The Proterozoic ocean was a deoxidation or suboxidation environment with a high carbonate saturation.As a result,the crystallization and consolidation of lime mud on the bottom of the shallow sea became more slowly.Due to continuous decomposition of organic matter in lime mud,gas was generated.And then,within a closed system,the concentration of the gas was increased to a higher value,resulting in the formation of cracks and voids in the plastic lime mud.Cracks were perhaps generated by some unknown mechanisms and enlarged in size or deformed,destructed as well.By the catalyzed reaction of organic matter,calcites(mainly CaCO3)were precipitated quickly from liquids within voids or cracks,and then the initial nucleus of calcite appeared.Afterwards,a stacked equant calcite sparry was constructed by the aggradated accretion of calcite microspar surrounding an initial nucleus of calcite.Consequently,calcite sparry was solidified and deposited within the cracks.The proposed model for the MT formation indicates that the void-forming and crack-filling represents microscale gas-sediment interactions and the geophysical and geochemical condition of the Proterozoic paleo-ocean plays an important role,which is not only the geological setting constraint but also provides sediment materials and dynamic conditions,and temporally and spatially restricted the development and distribution of MT.
储雪蕾,张同钢,张启锐,等.2003.蓟县元古界碳酸盐岩的碳同位素变化[J].中国科学(D辑),33(10):951-959. 葛铭,孟祥化,旷红伟,等.2003.微亮晶(臼齿)碳酸盐岩:21世纪全球地学研究的新热点[J].沉积学报,21(1):81-89. 旷红伟,刘燕学,孟祥化,等.2004.吉辽地区新元古代臼齿碳酸盐岩岩相的若干岩石学特征研究[J].地球学报,25(6):647-652. 旷红伟,孟祥化,葛铭.2006a.臼齿碳酸盐岩成因探讨——以吉林—辽宁地区新元古界为例[J].古地理学报,8(1):63-73. 旷红伟,刘燕学,孟祥化,等.2006b.吉林南部通化二道江剖面新元古界万隆组臼齿构造及其沉积特征[J].古地理学报,8(4): 457-466. 旷红伟,金广春,刘燕学.2008.吉辽地区新元古代臼齿构造形态及其研究意义[J].中国科学(D辑),38(增Ⅱ): 123-130. 旷红伟,彭楠,罗顺社,等.2009.燕山中东部凌源地区雾迷山组MT构造的发现、地质特征及研究意义[J].自然科学进展,19(12):1308-1318. 柳永清,高林志,刘燕学.2005.苏皖辽地区新元古代微亮晶构造碳酸盐岩的沉积岩相与环境约束[J].沉积学报,23(1):49-59. 梅冥相.2005.天津蓟县剖面中元古界高于庄组臼齿状构造的层序地层位置及其成因的初步研究[J].古地理学报,7(4):437-447. 梅冥相,孟庆芬,刘智荣.2007.微生物形成的原生沉积构造研究进展综述[J].古地理学报,9(4):353-367. 梅冥相.2009.宏观藻类化石及其相关的“前寒武纪谜”:对天津蓟县剖面中元古代早期高于庄组第三段中一些现象的思考[J].现代地质,23(4):616-624. 彭楠,旷红伟.2010.大连金石滩新元古代碳酸盐岩臼齿构造形态及其沉积环境指示意义[J].岩石矿物学杂志,29(2):189-198. 乔秀夫,宋天锐,高林志等.1994.碳酸盐岩振动液化地震序列[J].地质学报,68(1):16-34. 张世红,李正祥,吴怀春,等.2000.华北地台新元古代古地磁研究新成果及其古地理意义[J].中国科学(D辑),30(增刊): 137-147. Anbar A D,Knoll A H.2002.Proterozoic ocean chemistry and evolution: A bioinorganic bridge?[J].Science,297(16):1137-1142. Bartley J K,Kah L C.2004.Marine carbon reservoir,Corg Ccarb coupling and the Proterozoic carbon isotope record[J].Geology,32:129-132. Bishop J W,Sumner D Y.2006.Molar tooth structures of the Neoarchean Montrvielle Formation,Transvaal supergroup,South Africa.Ⅰ: Constraints on microcrystalline CaCO3 precipitation[J].Sedimentology,53(5):1049-1068. Cowan C A,James N P.1992.Diastasis cracks: Mechanically generated synaeresis-like cracks in Upper Cambrian shallow water oolite and ribbon carbonates[J].Sedimentology,39: 1101-1118. Daly R A.1912.Geology of the North American Cordillera at the forty-ninth paralel[J].Canada Geol.Survey Mem.,38,pts.1,2,and 3. Dickinson S R,Henderson G E,Mcgrath K M.2002.Controlling the kinetic versus thermodynamic crystallization of calcium carbonate[J].Journal of Crystal Growth,244: 369-378. Eby D E.1975.Carbonate sedimentation under elevated salinities and implications for the origin of “Molar-Tooth” structure in the Middle Belt Carbonate Interval(late Precambrian),Northwestern Montana[J].Abstracts with Programs-Geological Society of America,7: 1063. Failchild I J,Song Tianrui.1997.Possible seismic origin of molar tooth structures in Neoproterozoic carbonate ramp deposit,north China[J].Sedimentology,44: 611-636. Folk R L.1959.Practical petrographic classification of limestones[J].AAPG Bulletin,43: 1-38. Frank T D,Lyons T W.1998.“Molar-tooth” structures: A geochemical perspective on a Proterozoic enigma[J].Geology(Boulder),26(8):683-686. Furniss G,Rittle J F,Winston D.1998.Gas bubble and expansion crack origin of “molar tooth” calcite structures in the Middle Proterozoic Belt Supergroup,Western Montana[J].Journal of Sedimentary Research,68(1):104-114. James N P,Narbonne G M,Sherman A G.1998.Molar tooth carbonate:Shallow subtidal facies of the Mid to Late Proterozoic[J].Journal of Sedimentary Ressearch,68(5):716-722. James W B,Dawn Y S,Nicolas J H.2006.Molar tooth structures of the Neoarchean Monteville Formation,Transvaal Supergroup,South Africa Ⅱ: A wave-induced fluid flow model[J].Sedimentology,53: 1069-1082. Kaufman A J, Xiao Shuhai. 2003. High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils [J]. Nature, 425:279-282. Kempe S,Degens E T.1985.An early soda ocean?[J].Chemical Geology,53: 95-108. Kitamura M.2002.Controlling factor of polymorphism in crystallization process[J].Journal of Crystal Growth,237-239:2205-2214. Knoll A H.1984.Microbiotas of the Late Precambrian Hunnberg formation,Nordaustlandet,Svalbard[J].Journal of Paleontology,58: 131-162. Marshall D,Anglin C D.2004.CO2-clathrate destabilization: A new model of formation for molar tooth structures[J].Precambrian Research,129: 325-341. Michael C P,Julie K B,Andrew H K, et al.2003.PetrovMolar tooth structures in calcareous nodules,early Neoproterozoic Burovaya Formation,Turukhansk region,Siberia[J].Sedimentary Geology,158: 235-248. Naka K,Chujo Y.2001.Control of crystal nucleation and growth of calcium carbonate by synthetic substrates[J].Chemical Materials,13: 3245-3259. Naka K,Tanaka Y,Chujo Y, et al.1999.Effect of an anionic starburst dendrimer on the crystallization of CaCO3 in aqueous solution[J].Chemical Communications,1931-1932. Neumann A C,Land L S.1975.Lime mud deposition and calcareous algae in the Bight of Abaca,Bahamas: A budget[J].Journal of Sedimentary Petrology,45(4):763-786. OConnor M P. 1972.Classification and environmental interpretation of the cryptalgal organosedimentary “molar-tooth” structure from the late Precambrian Belt-Purcell Supergroup[J].Journal of Geology,80(5):592-610. Pollock M D,Kah L C,Bartley J K.2006.Morphology of molar-tooth structures in Precambrian carbonates: Influence of substrate rheology and implacation for genesis[J].Journal of Sedimentary Research,76: 310-323. Pratt B R.1992.Shrinkage feature(molar tooth structure)in Proterozoic limestrone—New model for their origin through synsedimentary earthquake-induced dewatering[J].In:Programs-Geological Society of America. Geological Society of America 1992 Annual Meeting Abstracts, 24(7): 53. Pratt B R. 1998.Molar-tooth structure in Proterozoic carbonates rocks: Origin from synsedimentary earthquake and implications for the nature and evolution of basins and marine sedimentary[J].GSA Bulletin,110(8):1028-1045. Robert F,Chaussidon M. 2006. A palaeo temperature curve for the Precambrian Oceans based on silicon isotopes in cherts[J].Nature, 443:969-972.doi:10.1038105239 Ross C P.1959.The geology of Glacier National Park and the Flathead region,northwestern Montana: U.S.A.[J].Geol.Survey Prof.Paper,296: 125. Shields A S.2002.Molar-tooth microspar: A chemical explanation for its disappearance-700Ma[J].Terra Nova,14(2):108-113. Smith A G.1968.The origin and deformation of some “Molar-tooth” structure in the Precambrian Belt-Purcell supergroup[J].Journal of Geology,76: 426-433. Sumner D Y.1997.Carbonate precipitation and oxygen stratification in late archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco Formations,Transvaal Supergroup,South Africa[J].American Journal of Science,297: 455-487. Winston D.1990.Evidences for intracratonic,fluvial and lacustrine setting of Middle to Late Proterozoic Laurentia-Baltica[J].Geological Association of Canada Special Paper,38: 535-564. Zhao Guochun,Min Suna,Simon Wilde, et al.2004.A Paleo-Mesoproterozoic supercontinent: Assembly,growth and breakup[J].Earth-Science Reviews,67: 91-123.