Internal architecture of alluvial fan in the Triassic Lower Karamay Formation in Karamay Oilfield,Xinjiang
Wu Shenghe1,2, Fan Zheng1,2, Xu Changfu3, Yue Dali1,2, Zheng Zhan1,2, Peng Shouchang3, Wang Wei1,2
1 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249 2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249 3 Research Institute of Exploration and Development,Xinjiang Oilfield Company,PetroChina,Karamay 834000,Xinjiang
Abstract:Based on abundant borehole data of close-spacing wells and outcrop analogue,this paper mainly deals with the hierarchical system of internal architecture of alluvial fan and establishes the corresponding architectural model in the Triassic Lower Karamay Formation in Karamay Oilfield.Three orders of architectural elements are divided in each subfacies belt within alluvial fan to further demonstrate its depositional complexity.Inner fan,which can be dividied into main trench,sheet-flood belt,and overbank,is characterized by main trench-fill and sheet-flood sand-gravel deposits with thin discrete fine layer,resulting in a kind of pano-connective sand-gravel body.And in the main trench,gravel body(gravel bar and gulley deposits)and debris flow deposits are developed.In the sheet-flood belt,sand-gravel deposits(gravel bar and gulley deposits)are developed.In the overbank belt,sandbody and fine deposits are developed.Middle fan,which can be divided into braided-stream belt and overbank,is characterized by the pattern of lateral apartment and vertical interbedding of channel sand-gravel deposits with overbank fine ones.Braided fluvial belt mainly consists of braided channels,which can be divided further into sandy bar and gulley deposit.Outer fan,which can be divided into runoff belt and marshy,is characterized by narrow-belt runoff channel sandbodies inlaid into overbank and/or marshy mudstone.
Wu Shenghe,Fan Zheng,Xu Changfu et al. Internal architecture of alluvial fan in the Triassic Lower Karamay Formation in Karamay Oilfield,Xinjiang[J]. JOPC, 2012, 14(3): 331-340.
程立华,陈世悦,吴胜和,等.2006.云南大理盆地隐仙溪冲积扇沉积结构特征[J].西南石油学院学报,28(5):1-5. 关维东.1992.对冲积扇储集体的几点新认识[J].新疆石油地质,13(1):49-54. 黄彦庆,张昌民,汤军,等.2007.克拉玛依油田六中区克下组沉积微相及其含油气性[J].天然气地球科学,18(1):67-70. 雷振宇,卞德智,杜社宽,等.2005.准噶尔盆地西北缘扇体形成特征及油气分布规律[J].石油学报,26(1):8-12. 李新坡,莫多闻,朱忠礼,等.2007.一个片流过程控制的冲积扇——太原盆地风峪沟冲积扇[J].北京大学学报(自然科学版),43(4):560-566. 刘顺生,焦养泉,郎风江,等.1999.准噶尔盆地西北缘露头区克拉玛依组沉积体系及演化序列分析[J].新疆石油地质,20(6):485-489. 孙永传,李惠生.1985.碎屑岩沉积相和沉积环境[M].北京:地质出版社,97-104. 蔚远江,李德生,胡素云,等.2007.准噶尔盆地西北缘扇体形成演化与扇体油气藏勘探[J].地球学报,26(1):62-71. 吴胜和,伊振林,许长福,等.2008.新疆克拉玛依油田六中区三叠系克下组冲积扇高频基准面旋回与砂体分布型式研究[J].高校地质学报,14(2):157-163. 雍天寿.1987.准噶尔盆地晚古生代—新生代岩相古地理[J].新疆石油地质,8(2):24-34. 于兴河.2008.碎屑岩系油气储集层沉积学[M].北京:石油工业出版社,239-259. 张纪易.1980.克拉玛依洪积扇粗碎屑储集体[J].新疆石油地质,1(1):33-53. 张纪易.1985.粗碎屑洪积扇的某些特征和微相划分[J].沉积学报,3(3):75-85. Bull W B.1972.Recognition of alluvial fan deposits in the stratigraphic record[C].In:Rigby J K,Hambin W K(eds). Recognition of Ancient Sedimentary Environments.Society of Economic Paleontologists and Mineralogists Special Publication, No.16: 222-270. Chamayal L S,Khadkikar A S,Malik J N, et al.1997.Sedimentology of the Narmada alluvial fan,western India[J].Sedimentary Geology,107:263-279. DeCelles P G,Gray M B,Ridgway K D, et al.1991.Controls on synorogenic alluvial-fan architecture,Beartooth Conglomerate(Paleocene),Wyoming and Montana[J].Sedimentology,38(4):567-590. Galloway W E,Hobday D K.1983.Terrigenous Clastic Depositional Systems[M].New York: Springer,29-59. Gary J,Nichols J,Philip Hirst.1998.Alluval fans and fluvial distributary systems,Oligo-Miocene,northern Spain: Contrasting processes and products[J].Journal of Sdedimentary Research,68(6):879-889. Gole C V,Chitale S V.1966.Inland delta building activity of Kosi River[J].Journal of the Hydraulics Division, American Society of Civil Engineers,92:111-126. Heward A P.1978.Alluvial fan sequence and mega sequence models: With examples from Westphalian D-Stephanian B coalfields,northern Spain[C].In: Mail A D(ed).Fluvial Sedimentary.Canadian Society of Petroleum Geologists,5: 669-702. Jo H R,Rhee C W,Chough S K.1997.Distinctive characteristics of a streamflow-dominated alluvial fan deposit: Sanghori area,Kyongsang Basin(Early Cretaceous),southeastern Korea[J].Sedimentary Geology,110:51-79. Miall A D.1985.Architectural-element analysis: A new method of facies analysis applied to fluvial deposits[J].Earth Science Reviews,22:261-308. Miall A D.1988.Architectural elements and bounding surfaces in fluvial deposits: Anatomy of the Kayenta Formation(Lower Jurassic),Southwest Colorado[J]. Sedimentary Geology,55(3-4):233-262. Miall A D.1991.Hierarchies of architectural units in terrigenous clastic rocks,and their relationship to sedimentation rate[C].In: Miall A D,Tyler N(eds).The Three-Dimensional Facies Architecture of Terrigenous Clastic Sediments and Its Implications for Hydrocarbon Discovery and Recovery.SEPM,Concepts in Sedimentology and Paleontology,3:6-12. Peakall J,Ashworth P J,Best J L.2007.Meaner-bend evolution,alluvial architecture,and the role of cohesion in sinuous river channels: A flume study[J].Journal of Sedimentary Research,77: 197-212. Pimentel N L V.2002.Pedogenic and early diagenetic processes in Palaeogene alluvial fan and lacustrine deposits from the Sado Basin(S Portugal)[J].Sedimentary Geology,148:123-138. Shukla U K,Singh I B,Sharma M.2000.A model of alluvial mega fan sedimentation:Ganga Megfan[J].Sedimentary Geology,144: 243-262. Spearing D R.1974.Summary sheets of sedimentary deposits with bibliographies[M].Boulder,Geological Society of America Map and Chart Series,MC-8. Stanistreet I G,McCarthy T S.1993.The Okavango fan and the classification of subaerial fan systems[J].Sedimentary Geology,85(1):115-133.