Sedimentary characters of carbonate platform marginal slope of the Early Cambrian in northern Sichuan Basin and perspective of deformation structures
Shen Cheng1,2, Tan Xiucheng1,2,3, Li Ling2,3, Shi Kailan2,3, Su Chengpeng2,3 Lian Chengbo2,3, Li Hongwei2,3, Xiao Di2,3
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Southwest Petroleum University,Chengdu 610500,Sichuan 2 Sichuan Province Key Laboratory of Natural Gas Geology,Southwest Petroleum University,Chengdu 610500,Sichuan 3 The Sedimentary and Accumulation Department of Key Laboratory of Carbonate Reservoirs,PetroChina, Southwest Petroleum University,Chengdu 610500,Sichuan
Abstract:In this paper,a case study of the Lower Cambrian Xiannüdong Formation in Tangjiahe,Wangcang County of western Micang Mountain was conducted. On the basis of the observation and analysis with microscope,the bottom of Xiannüdong Formation is composed of six major rock types,such as bioclastic mudstone,silty mudstone,analogous-nodular limestone,rudstone,algal clot limestone and calcareous sandstone with bioclastic,and is characterized by rudstone,analogous-nodular limestone,algal clot limestone,slump deformation structure and slide structure. Further analysis shows that L-M association was mostly deposited in low-energy slope environment. The rudstone,as a part of the L′-R association,deposited by the collapse and slump from the mud mounds in upper slope. The other part,analogous-nodular limestone,deformed from L-M association,was supposed synthetical effects by the collapse and slump from mud mounds,the force of differential compaction and the pressure solution caused by the differences of the components. These effects can be used to break the limestone layer to be rudstone shape,even lead to generate some slightly displacement. As a result,L-M,also be called ribbon rocks,become littery deformation structures. Mb association can be considered a mud mounds environment in upper slope. S-M association was deposited in turbidity environment of upper slope. After establishing the sedimentary model and the four associations of slope,all of the evidences indicate that at least during the Early Cambrian Xiannüdong period,the platform marginal slope was developed in western Micang Mountain.
. Sedimentary characters of carbonate platform marginal slope of the Early Cambrian in northern Sichuan Basin and perspective of deformation structures[J]. JOPC, 2015, 17(3): 321-334.
董云鹏,查显峰,付明庆,等. 2008. 秦岭南缘大巴山褶皱—冲断推覆构造的特征[J]. 地质通报,27(9):1493-1508. 杜金虎,邹才能,徐春春,等. 2014. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发,41(3):268-277. 郭福生,梁鼎新. 1993. 浙江江山砚瓦山组瘤状灰岩的成因[J]. 矿物岩石,13(3):74-80. 郝家栩,彭成龙,张国祥. 2012. 滇西上寒武统保山组瘤状灰岩成因[J]. 地质力学学报,18(4):410-417. 金民东,曾伟,谭秀成,等. 2014. 四川磨溪—高石梯地区龙王庙组滩控岩溶型储集层特征及控制因素[J]. 石油勘探与开发,41(6):1-11. 蓝光志,张廷山,高卫东. 1994. 川西北地区早志留世瘤状灰岩的类型、成因及意义[J]. 西南石油学院学报,16(3):1-6. 李春峰,张雄华,蔡雄飞. 2005. 赣西北上寒武统西阳山组碳酸盐岩岩石学特征及沉积环境分析[J]. 沉积学报,23(1):41-48. 李皎,何登发. 2014. 四川盆地及邻区寒武纪古地理与构造一沉积环境演化[J]. 古地理学报,16(4):441-460. 李鹏远,张进江,郭磊,等. 2010. 北大巴山逆冲推覆构造带前缘构造特征及变形年代学研究[J]. 地学前缘,17(3):191-199. 李忠权,赖芳,李应,等. 2015. 四川盆地震旦系威远—安岳拉张侵蚀槽特征及形成演化[J]. 石油勘探与开发,42(1):26-33. 梁薇. 2012. 湘中南地区寒武系沉积特征及沉积模式[D]. 中国地质科学院. 梁薇,牟传龙,周恳恳,等. 2012. 湘西花垣排碧寒武系花桥组上段—车夫组沉积环境的探讨[J]. 地质论评,58(2):259-267. 刘仿韩,苏春乾,杨友运,等. 1987. 米仓山南坡寒武系沉积相分析[J]. 长安大学学报(地球科学版),9(4):1-12. 孟祥化,乔秀夫,葛铭. 1986. 华北古浅海碳酸盐风暴沉积和丁家滩相序模式[J]. 沉积学报,4(2):1-18. 牟传龙,梁薇,周恳恳,等. 2012. 中上扬子地区早寒武世(纽芬兰世—第二世)岩相古地理[J]. 沉积与特提斯地质,32(3):41-53. 牛新生,王成善. 2010. 异地碳酸盐岩块体与碳酸盐岩重力流沉积研究及展望[J]. 古地理学报,12(1):17-30. 苏德辰,孙爱萍,郑桂森,等. 2013. 北京西山寒武系滑塌构造的初步研究[J]. 地质学报,87(8):1067-1075. 王一刚. 1984. 关于碳酸盐岩滑动流及其沉积特征的探讨[J]. 石油实验地质,6(1):18-23. 王祥珍. 1981. 关于“竹叶状灰岩”的命名、分类、分布和形成机理的探讨[J]. 矿物岩石,(5):31-41. 魏显贵,杜思清,何政伟,等. 1997. 米仓山地区构造演化[J]. 矿物岩石,17(S):107-113. 项礼文,朱兆玲,李善姬,等. 1999. 中国地层典·寒武系[M]. 北京:地质出版社,1-95. 徐新煌,朱利东,刘登忠,等. 1997. 米仓山西段晚元古代—古生代层序地层及地层模型[J]. 矿物岩石,17(S):9-17. 杨威,谢武仁,魏国齐,等. 2012. 四川盆地寒武纪—奥陶纪层序岩相古地理、有利储集层展布与勘探区带[J]. 石油学报,33(S.2):21-34. 余宽宏,金振奎,董晓东,等. 2013a. 扬子地台北缘寒武纪同沉积断裂控制的斜坡沉积特征[J]. 古地理学报,15(3):401-412. 余宽宏,金振奎,苏奎,等. 2013b. 中、上扬子地台北缘寒武纪沉积特征及油气勘探意义[J]. 中国科学:地球科学,43(9):1418-1435. 余谦,牟传龙,张海全,等. 2011. 上扬子北缘震旦纪—早古生代沉积演化与储集层分布特征[J]. 岩石学报,27(3):672-680. 张廷山,兰光志,沈昭国,等. 2006. 大巴山、米仓山南缘早寒武世礁滩发育特征[J]. 天然气地球科学,16(6):710-714. 张霞,林春明,凌洪飞,等. 2009. 浙西地区奥陶系砚瓦山组瘤状灰岩及其成因探讨[J]. 古地理学报,11(5):481-490. 赵兵,杜思清,徐新煌. 1997. 米仓山南缘寒武纪岩石地层及层序地层[J]. 矿物岩石,17(1):18-28. 朱洪发,王恕一. 1992. 苏南、皖南三叠纪瘤状灰岩、蠕虫状灰岩的成因[J]. 石油实验地质,14(4):454-460. 邹才能,杜金虎,徐春春,等. 2014. 四川盆地震旦系—寒武系特大型气田形成分布,资源潜力及勘探发现[J]. 石油勘探与开发,41(3):278-293. Chen J T,Chough S K,Han Z, et al. 2011. An extensive erosion surface of a strongly deformed limestone bed in the Gushan and Chaomidian formations(late Middle Cambrian to Furongian),Shandong Province,China:Sequence-stratigraphic implications[J]. Sedimentary Geology,233(1):129-149. Chen J T,Han Z Z,Zhang X L, et al. 2010. Early diagenetic deformation structures of the Furongian ribbon rocks in Shandong Province of China:A new perspective of the genesis of limestone conglomerates[J]. Science China:Earth Sciences,53(2):241-252. Chen J T,Lee H S. 2013. Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits(Shandong Province,China):Differential liquefaction and fluidization triggered by storm-wave loading[J]. Sedimentary Geology,288:81-94. Coniglio M,Dix G R. 1992. Carbonate slopes[J]. Facies models:Response to sea level change,349-373. Hicks M,Rowland S M. 2009. Early Cambrian microbial reefs,archaeocyathan inter-reef communities,and associated facies of the Yangtze Platform[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,281(1):137-153. James N P. 1981. Megablocks of calcified algae in the Cow Head Breccia,western Newfoundland:Vestiges of a Cambro-Ordovician platform margin[J]. Geological Society of America Bulletin,92(11):799-811. Kullberg J C,Olóriz F,Marques B, et al. 2001. Flat-pebble conglomerates:A local marker for Early Jurassic seismicity related to syn-rift tectonics in the Sesimbra area(Lusitanian Basin,Portugal)[J]. Sedimentary Geology,139(1):49-70. Owen G,Moretti M. 2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands[J]. Sedimentary Geology,235(3):141-147. Playford P E. 1981. Devonian Reef Complexes of the Canning Basin,Western Australia:Field Excursion Guidebook[M]. Shen J W,Webb G E,Jell J S. 2008. Platform margins,reef facies,and microbial carbonates: A comparison of Devonian reef complexes in the Canning Basin,Western Australia,and the Guilin region,South China[J]. Earth-Science Reviews,88(1):33-59. Singh S,Jain A K. 2007. Liquefaction and fluidization of lacustrine deposits from Lahaul-Spiti and Ladakh Himalaya:Geological evidences of paleoseismicity along active fault zone[J]. Sedimentary Geology,196(1):47-57.