A discussion about origin of botryoidal dolostone of the Sinian Dengying Formation in Sichuan Basin
Lin Xiaoxian1,2, Peng Jun3, Yan Jianping3, Hou Zhongjian4
1 Post-doctoral Research Center,Southwest Petroleum University,Chengdu 610500,Sichuan 2 Key Laboratory of Sedimentary Basin and Oil and Gas Resources,Ministry of Land and Resources,Chengdu 610081,Sichuan 3 College of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500,Sichuan 4 College of Earth Sciences,Chengdu University of Technology,Chengdu 610059,Sichuan
Abstract:The botryoidal dolostone of the Sinian Dengying Formation in Sichuan Basin is an important type of gas reservoirs and host rocks of lead-zinc deposit. However,there are still some contentious issues on its characteristics and origin. In this paper,based on the traditional research methods of sedimentology and analyses of geochemistry,the origin of botryoidal dolostone is studied. Compared to the previous researches,the results show that the botryoidal dolostone of the Sinian Dengying Formation in Sichuan Basin is mainly composed of mimetic dolomitized botryoidal lumps,and botryoidal or ctenoid fillings and cements,which mainly develop along bed,interbed,or in the dissolved pores and fractures crossing bed. The botryoidal lumps develop mainly along bed,and are comprised of cores and coatings. The cores of botryoidal lumps are grapestones whose major components are cryptocrystalline and microcrystalline high-Mg calcites formed by marine deposition as well as microbial capturing and binding effects during the depositional stage. The major components of coatings are isopachous fibrous zoned aragonites formed during the depositional-contemporaneous stages. There are two kinds of coatings,in which,the thin coatings were formed in a relatively-turbulent seabed,while the thick ones in a relatively-quiet seabed. The botryoidal and ctenoid fillings develop in dissolved pores and fractures. Their major components are isopachous fibrous aragonites and high-Mg calcites formed by meteoric leaching and marine deposition during the penecontemporaneous stage. Meanwhile,there are also botryoidal and ctenoid cements or lamellar cement layers in the intergranular pore or top of grains (e.g. botryoidal lumps and intraclasts) along bed,which deposited in a marine phreatic zone during the contemporaneous-penecontemporaneous stages. During the forming process of botryoidal or ctenoid lumps,fillings and cements,aragonites and high-Mg calcites were immediately mimetic dolomitized after crystallization and precipitation,and preserved primary textures and structures. The research of botryoidal lumps and mimetic dolomitization can provide a new thought and understanding about the origin of botryoidal dolostone.
Lin Xiaoxian,Peng Jun,Yan Jianping et al. A discussion about origin of botryoidal dolostone of the Sinian Dengying Formation in Sichuan Basin[J]. JOPC, 2015, 17(6): 755-770.
曹仁关. 2002. 川滇震旦系灯影组葡萄石的沉积环境[J]. 云南地质,21(2):208-214. 陈明,许效松,万方,等. 2002. 上扬子台地晚震旦世灯影组中葡萄状—雪花状白云岩的成因意义[J]. 矿物岩石,22(4):33-37. 方少仙,侯方浩,董兆雄. 2003. 上震旦统灯影组中非叠层石生态系兰细菌白云岩[J]. 沉积学报,21(1):96-105. 冯增昭,王英华,刘焕杰,等. 1994. 中国沉积学[M]. 北京:石油工业出版社. 黄志诚,陈智娜,杨守业,等. 1999. 中国南方灯影峡期海洋碳酸盐岩原始δ13C和 δ18O 组成及海水温度[J]. 古地理学报,1(3):1-7. 雷怀彦,朱莲芳. 1992. 四川盆地震旦系白云岩成因研究[J]. 沉积学报,10(2):69-78. 林孝先. 2014. 四川汉源地区震旦系灯影组白云岩及其中铅锌矿成矿规律研究[D]. 四川成都:成都理工大学. 刘怀仁,刘明星,胡登新,等. 1991. 川西南上震旦统灯影组沉积期的暴露标志及其意义[J]. 岩相古地理,(5):208-214. 罗贝维,魏国齐,杨威,等. 2013. 四川盆地晚震旦世古海洋环境恢复及地质意义[J]. 中国地质,40(4):1099-1111. 施泽进,梁平,王勇,等. 2011. 川东南地区灯影组葡萄石地球化学特征及成因分析[J]. 岩石学报,27(8):2263-2271. 斯春松,郝毅,周进高,等. 2014. 四川盆地灯影组储集层特征及主控因素[J]. 成都理工大学学报(自然科学版),41(3):266-273. 陶夏妍,范鹏,王振宇,等. 2013. 川东南地区遵义松林剖面震旦系准同生岩溶发育特征[J]. 重庆科技学院学报(自然科学版),15(5):10-13. 王东. 2010. 南江地区灯影组白云岩优质储集层形成机制研究[D]. 四川成都:成都理工大学. 王士峰,向芳. 1999. 资阳地区震旦系灯影组白云岩成因研究[J]. 岩相古地理,19(3):21-29. 王兴志,黄继样,侯方浩,等. 1996. 四川资阳及邻区灯影组古岩溶特征与储集空间[J]. 矿物岩石,16(2):47-54. 王兴志,穆曙光,方少仙,等. 2000. 四川盆地西南部震旦系白云岩成岩过程中的孔隙演化[J]. 沉积学报,18(4):549-554. 王秀平,牟传龙,梁薇,等. 2014. 上扬子区灯影组白云岩葡萄体特征及成因初探:以南江杨坝地区灯影组一段为例[C]. 见: 第十三届全国古地理学及沉积学学术会议论文摘要集.北京:125. 王则江. 1981. 康滇地轴北段东缘晚震旦世沉积—再造铅锌矿床成矿地质特征[J]. 地质与勘探,(10):7-15. 向芳,陈洪德,张锦泉. 1998. 资阳地区震旦系灯影组白云岩中葡萄花边的成因研究[J]. 矿物岩石,18(增刊):136-138. 杨应选,柯成熙,林方成,等. 1994. 康滇地轴东缘铅锌矿床成因及成矿规律[M]. 四川成都:四川科学技术出版社. 姚根顺,郝毅,周进高,等. 2014. 四川盆地震旦系灯影组储集层储集空间的形成与演化[J]. 天然气工业,34(3):31-37. 曾允孚,夏文杰. 1986. 沉积岩石学[M]. 北京:地质出版社. 张杰,Brian J,潘立银,等. 2014a. 四川盆地震旦系灯影组葡萄状白云岩成因[J]. 古地理学报,16(5):715-725. 张杰,寿建峰,张天付,等. 2014b. 白云石成因研究新方法:白云石晶体结构分析[J]. 沉积学报,32(3):550-559. 张丽丽,左文,赫云兰. 2010. 川西南汉源地区白云岩的碳、氧同位素特征及成因初探[J]. 内蒙古石油化工,14:20-22. 张荫本. 1966. 川西南区震旦系地层岩石变质了吗?[J]. 石油实验地质,(1):34-41. 张荫本. 1980. 震旦纪白云岩中的葡萄状构造成因初探[J]. 石油实验地质,(4):40-43. Aissaoui D M. 1985. Botryoidal aragonite and its diagenesis[J]. Sedimentology,32(3):345-361. Dana E S. 1947. A Textbook of Mineralogy[M]. New York:John Wiley & Sons,851. de Boever E,Birger D,Muchez P, et al. 2011. Fabric and formation of grapestone concretions within anunusual ancient methane seep system(Eocene,Bulgaria)[J]. Terra Nova,23(1):56-61. Dickson J A D. 1993. Crystal growth diagrams as an aid to interpreting the fabrics of calcite aggregates[J]. Journal of Sedimentary Research,63(1):1-17. Ginsburg R N,James N P. 1976. Submarine botryoidal aragonite in Holocene reef limestones,Belize[J]. Geology,4(7):431-436. Gutstadt A M. 1968. Petrology and depositional environments of the Beck Spring Dolomite(Precambrian),Kingston Range,California[J]. Journal of Sedimentary Research,38(4):1280-1289. Hardie L A. 1996. Secular variation in seawater chemistry:An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600m.y.[J]. Geology,24(3):279-283. Hardie L A. 2003. Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas[J]. Geology,31(9):785-788. Harris P M. 2010. Delineating and quantifying depositional facies patterns in carbonate reservoirs:Insight from modern analogs[J]. American Association of Petroleum Geologists Bulletin,94(1):61-86. Hood A V S,Wallace M W. 2012. Synsedimentary diagenesis in a Cryogenian reef complex:Ubiquitous marine dolomite precipitation[J]. Sedimentary Geology,255-256:56-71. Hood A V S,Wallace M W,Drysdale R N. 2011. Neoproterozoic aragonite-dolomite seas?Widespread marine dolomite precipitation in Cryogenian reef complexes[J]. Geology,39(9):871-874. Illing L V. 1954. Bahaman calcareous sands[J]. American Association of Petroleum Geologists Bulletin,38(1):1-95. James N P,Choquette P W. 1983. Diagenesis 6. Limestones:The sea floor diagenetic environment[J]. Geoscience Canada,10(4):162-179. Kaczmarek S E,Sibley D F. 2014. Direct physical evidence of dolomite recrystallization[J]. Sedimentology,61(6):1862-1882. Kendall A C,Tucker M E. 1971. Radiaxial fibrous calcite as a replacement after syn-sedimentary cement[J]. Nature(Physical Science),232:62-63. Kendall A C,Tucker M E. 1973. Radiaxial fibrous calcite:A replacement after acicular carbonate[J]. Sedimentology,20(3):365-389. Kendall A C. 1985. Radiaxial fibrous calcite:A reappraisal[C]. Schneidermann N,Harris P M(eds). Carbonate Cements. Society of Economic Paleontologists and Mineralogists,Special Publication 36,Tulsa,Oklahoma,59-77. Krumbein W E. 1983. Microbial Geochemistry[M]. Oxford:Blackwell Scientific Publications,330. Purdy E G. 1963. Recent calcium carbonate facies of the Great Bahama Bank:1. Petrography and reaction groups[J]. The Journal of Geology,71(3):334-355. Rao C P,Naqvi I H. 1983. Cold-water spherical grains from a fresh-water drainage pipe,Gordon Dam,Tasmania,Australia[J]. Journal of Sedimentary Research,53(4):1169-1173. Richter D K,Heinrich F,Geske A, et al. 2014. First description of Phanerozoic radiaxial fibrous dolomite[J]. Sedimentary Geology,304:1-10. Ross D J. 1991. Botryoidal high-magnesium calcite marine cements from the Upper Cretaceous of the Mediterranean region[J]. Journal of Sedimentary Research,61(3):349-353. Snchez-Romn M,McKenzie J A,Wagener A L R, et al. 2009. Presence of sulfate does not inhibit low-temperature dolomite precipitation[J]. Earth and Planetary Science Letters,285(1-2):131-139. Sandberg P A. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy[J]. Nature,305(5929):19-22. Scholle P A,Ulmer-Scholle D S. 2003. A Color Guide to the Petrography of Carbonate Rocks:Grains,Textures,Porosity,Diagenesis[M]. Tulsa,Oklahoma:American Association of Petroleum Geologists,2-11. Schroeder J H. 1972. Fabrics and sequences of submarine carbonate cements in Holocene Bermuda cup reefs[J]. International Journal of Earth Sciences,61(2):708-730. Shinn E A. 1969. Submarine lithification of Holocene carbonate sediments in the Persian Gulf[J]. Sedimentology,12(1-2):109-144. Sibley D F. 1991. Secular changes in the amount and texture of dolomite[J]. Geology,19(2):151-154. Sorby H C. 1879. The structure and origin of limestones[J]. Proceedings of the Geological Society of London,35:56-95. Tucker M E. 1983. Diagenesis,geochemistry,and origin of a Precambrian dolomite:The Beck Spring Dolomite of eastern California[J]. Journal of Sedimentary Research,53(4):1097-1119. Tucker M E,Wright V P. 1990. Carbonate Sedimentology[M]. Blackwell Science: 11-13. Veizer J,Hoefs J. 1976. The nature of18O/16O andl3C/12C secular trends in sedimentary carbonate rocks[J]. Geochimica et Cosmochimica Acta,40(11):1387-1395. Wilson P A,Dickson J A D. 1996. Radiaxial calcite:Alteration product of and petrographic proxy for magnesian calcite marine cement[J]. Geology,24(10):945-948. Winland H D,Matthews R K. 1974. Origin and significance of grapestone,Bahama Islands[J]. Journal of Sedimentary Research,44(3):921-927.张西娟