Abstract:Multipoint statistics(MPS)geological modeling technology has been put forward for more than 20 years,and it has become the international frontier research direction of reservoir geological modeling. Great progress has been made in both theory and application of MPS geological modeling technology. Taking the development history of MPS as the main clue,and the technical progress of MPS as the core,the paper discussed the research progress of MPS,classified the main MPS methods and systematically discussed the principle,characteristics and existing problems of potential MPS geological modeling methods. Finally,MPS geological models of porous carbonate Reservoir S in Zagros Basin were set up,and pros and cons of the MPS and sequential indicator simulation(SIS)were compared. Research shows that MPS has obvious advantages in complex facies modeling compared with SIS,and Dispat,a pattern-based modeling method,makes the facies distribution more accordant with the geological understanding of geologists by utilizing the strategy of replacing data event with pattern. The research results provide a new geological modeling method for porous carbonate reservoirs,and could be a reference for geological modeling of similar reservoirs.
Wang Mingchuan,Duan Taizhong,Ji Bingyu. Research progress and application of multipoint statistics geological modeling technology[J]. JOPC, 2017, 19(3): 557-566.
[1] 陈更新,赵凡,王建功,郑红军,严耀祖,王爱萍,李积永,胡云鹏. 2015. 分区域多点统计随机地质建模方法: 以柴达木盆地辫状河三角洲沉积储集层为例. 石油勘探与开发,42(5): 638-645. [Chen G X,Zhao F,Wang J G,Zheng H J,Yan Y Z,Wang A P,Li J Y,Hu Y P. 2015. Regionalized multiple-point stochastic geological modeling: A case from braided delta sedimentary reservoirs in Qaidam Basin,NW China. Petroleum Exploration and Development,42(5): 638-645] [2] 陈培元,杨辉廷,刘学利,钟学彬,杨新涛. 2014. 塔河油田6~7区孔洞型碳酸盐岩储集层建模. 地质论评,60(4): 884-892. [Chen P Y,Yang H T,Liu X L,Zhong X B,Yang X T. 2014. 3D Modeling of vug carbonate reservoir in the sixth-seventh blocks of Tahe Oilfield,Tarim Basin. Geological Review,60(4): 884-892] [3] 冯国庆,陈浩,张烈辉,李允. 2005. 利用多点地质统计学方法模拟岩相分布. 西安石油大学学报(自然科学版),20(5): 9-11. [Feng G Q,Chen H,Zhang L H,Li Y. 2005. Stochastic simulation of lithofacies distribution using multi-point geostatistics. Journal of Xi'an Shiyou University(Natural Science Edition),20(5): 9-11] [4] 冯文杰,吴胜和,印森林,石书缘,刘俊玲. 2014. 基于矢量信息的多点地质统计学算法. 中南大学学报(自然科学版),45(4): 1261-1268. [Feng W J,Wu S H,Yin S L,Shi S Y,Liu J L. 2014. A vector information based multiple-point geostatistic method. Journal of Central South University(Science and Technology),45(4): 1261-1268] [5] 付斌,石林辉,江磊,杜鹏,陈帅,白自龙. 2014. 多点地质统计学在致密砂岩气藏储集层建模中的应用:以s48-17-64区块为例. 断块油气田,21(6): 726-729. [Fu B,Shi L H,Jiang L,Du P,Chen S,Bai Z L. 2014. Application of multiple-point geostatistics method in reservoir modeling of tight sandstone gas reservoir: Taking Block S48-17-64 as an example. Fault-Block Oil & Gas Field,21(6): 726-729] [6] 李康,李少华,王浩宇,王勇标,李君,易雪斐. 2014. 多点地质统计学在三角洲相储集层建模中的应用. 重庆科技学院学报(自然科学版),16(5): 53-55,63. [Li K,Li S H,Wang H Y,Wang Y B,Li J,Yi X F. 2014. Application of multiple point geostatistics in delta reservoir stochastic modeling. Journal of Chongqing University of Science and Technology(Natural Sciences Edition),16(5): 53-55,63] [7] 李少华,张昌民,何幼斌,刘学峰. 2009. 河道砂体内部物性分布趋势的模拟. 石油天然气学报, 31(1):23-25. [Li S H, Zhang C M, He Y B, Liu X F. 2009. Simulation on petrophysical property trends within channel sandbodies. Journal of Oil and Gas Technology, 31(1): 23-25] [8] 刘学利,汪彦. 2012. 塔河缝洞型油藏溶洞相多点统计学建模方法. 西南石油大学学报(自然科学版),34(6): 53-58. [Liu X L,Wang Y. 2012. Multi-point geostatistical approach to model karst facies of fracture-cavity reservoir in Tahe Oilfield. Journal of Southwest Petroleum University(Science & Technology Edition),34(6): 53-58] [9] 骆杨,赵彦超. 2008. 多点地质统计学在河流相储集层建模中的应用. 地质科技情报,27(3): 68-72. [Luo Y,Zhao Y C. 2008. Application of multiple-point geostatistics in fluvial reservoir stochastic modeling. Geological Science and Technology Information,27(3): 68-72] [10] 石书缘,尹艳树,和景阳,冯文杰. 2011. 基于随机游走过程的多点地质统计学建模方法. 地质科技情报,30(5): 127-131,138. [Shi S Y,Yin Y S,He J Y,Feng W J. 2011. A random walk-based multiple-point statistics modeling methods. Geological Science and Technology Information,30(5): 127-131,138] [11] 王东辉,张占杨,李君. 2014. 多点地质统计学方法在东胜气田岩相模拟中的应用. 石油地质与工程,28(3): 27-30.[Wang D H,Zhang Z Y,Li J. 2014. Application of multi-point geostatistics method in the simulation of Dongsheng gas field. Petroleum Geology and Engineering,28(3): 27-30] [12] 吴胜和,李文克. 2005. 多点地质统计学:理论、应用与展望. 古地理学报,7(1): 137-144. [Wu S H,Li W K. 2005. Multiple-point geostatistics: Theory,application and perspective. Journal of Palaeogeography(Chinese Edition),7(1): 137-144] [13] 杨宏伟. 2010. 利用多点地质统计学方法进行垦西71断块沉积微相建模. 石油天然气学报,32(6): 224-225,235. [Yang H W. 2010. Modeling of sedimentary microfacies of the 71 fault block in the west of Gansu Province by using multi-point geostatistics method. Journal of Oil and Gas Technology,32(6): 224-225,235] [14] 尹艳树,吴胜和,翟瑞,田永强. 2008a. 利用Simpat模拟河流相储集层分布. 西南石油大学学报,30(2): 19-22. [Yin Y S,Wu S H,Zhai R,Tian Y Q. 2008a. The forecasting of fluvial facies reservoir distribution by using Simpat. Journal of Southwest Petroleum University(Science & Technology Edition),30(2): 19-22] [15] 尹艳树,吴胜和,张昌民,李少华,尹太举. 2008b. 基于储集层骨架的多点地质统计学方法. 中国科学(D辑: 地球科学),38(S2): 157-164.[Yin Y S,Wu S H,Zhang C M,Li S H,Yin T J. 2008b. Multi-point geostatistics method based on reservoir skeleton. Science China-Earth Sciences,38(S2): 157-164] [16] 尹艳树,张昌民,李少华,王军,宋道万,龚蔚青. 2014. 一种基于沉积模式的多点地质统计学建模方法. 地质论评,60(1): 216-221. [Yin Y S,Zhang C M,Li S H,Wang J,Song D W,Gong W Q. 2014. A pattern-based multiple point geostatistics method. Geological Review,60(1): 216-221] [17] 尹艳树,张昌民,李玖勇,石书缘. 2011. 多点地质统计学研究进展与展望. 古地理学报,13(2): 245-252. [Yin Y S,Zhang C M,Li J Y,Shi S Y. 2011. Progress and prospect of multiple-point geostatistics. Journal of Palaeogeography(Chinese Edition),13(2): 245-252] [18] 张伟,林承焰,董春梅. 2008. 多点地质统计学在秘鲁D油田地质建模中的应用. 中国石油大学学报(自然科学版),32(4): 24-28. [Zhang W,Lin C Y,Dong C M. 2008. Application of multiple-point geostatistics in geological modeling of D Oilfield in Peru. Journal of China University of Petroleum(Edition of Natural Sciences),32(4): 24-28] [19] 张文彪,段太忠,郑磊,刘志强,许华明,赵磊. 2015. 基于浅层地震的三维训练图像获取及应用. 石油与天然气地质,36(6): 1030-1037. [Zhang W B,Duan T Z,Zheng L,Liu Z Q,Xu H M,Zhao L. 2015. Genereation and application of three-dimensional MPS training images based on shallow seismic data. Oil & Gas Geology,36(6): 1030-1037] [20] 周金应,桂碧雯,林闻. 2010. 多点地质统计学在滨海相储集层建模中的应用. 西南石油大学学报(自然科学版),32(6): 70-74. [Zhou J Y,Gui B W,Lin W. 2010. Application of multiple-point geostatistics in offshore reservoir modeling. Journal of Southwest Petroleum University(Science & Technology Edition),32(6): 70-74] [21] Abdollahifard M J,Faez K. 2013. Stochastic simulation of patterns using Bayesian pattern modeling. Computational Geosciences,17(1): 99-116. [22] Abdollahifard M J,Faez K. 2014. Fast direct sampling for multiple-point stochastic simulation. Arabian Journal of Geosciences,7(5): 1927-1939. [23] Arpat G B. 2005. Sequential Simulation with Patterns. Doctoral Dissertation of Stanford University. [24] Apart G B,Caers J. 2004. A multiple-scale,pattern-based approach to sequential simulation. In: Leuangthong O,Deutsch C V(eds). Geostatistics Banff 2004,255-264. [25] Arpat G B,Caers J. 2007. Conditional simulation with patterns. Mathematical Geology,39(2): 177-203. [26] Caers J,Journel A G. 1998. Stochastic reservoir simulation using neural networks trained on outcrop data. SPE Annual Technical Conference and Exhibition,New Orleans,LA,USA,SPE 49026,321-336. [27] Caers J,Zhang T. 2002. Multiple-point geostatistics: A quantitative vehicle for integrating geologic analogs into multiple reservoir models. Stanford University,Stanford Center for Reservoir Forecasting,1-24. [28] Deutsch C V. 1992. Annealing Techniques Applied to Reservoir Modeling and the Integration of Geological and Engineering(Well Test)Data. Doctoral Dissertation of Stanford University. [29] Eskandari K,Srinivasan S. 2007. Growthsim: A multiple point framework for pattern simulation. 7th International Conference & Exposition on Petroleum Geophysics. [30] Eskandari K,Srinivasan S. 2010. Reservoir modelling of complex geological systems: A multiple-point perspective. Journal of Canadian Petroleum Technology,49(8): 59-68. [31] Gardet C,Le Ravalec M,Gloaguen E. 2016. Pattern-based conditional simulation with a raster path: A few techniques to make it more efficient. Stochastic Environmental Research and Risk Assessment,1-18. [32] Guardiano F B,Srivastava R M. 1993. Multivariate geostatistics: Beyond bivariate moments. In: Soares A. Geostatistics Troia'92,Springer Netherlands,5: 133-144. [33] Honarkhah M,Caers J. 2010. Stochastic simulation of patterns using distance-based pattern modeling. Mathematical Geosciences,42(5): 487-517. [34] Honarkhah M,Caers J. 2012. Direct pattern-based simulation of non-stationary geostatistical models. Mathematical Geosciences,44(6): 651-672. [35] Hu L Y,Chugunova T. 2008. Multiple-point geostatistics for modeling subsurface heterogeneity: A comprehensive review. Water Resources Research,44(11): 2276-2283. [36] Huang T,Lu D,Li X,Wang L. 2013. GPU-based SNESIM implementation for multiple-point statistical simulation. Computers & Geosciences,54(4): 75-87. [37] Journel A G. 1993. Geostatistics: Roadblocks and challenges. In: Soares A. Geostatistics Troia'92,Springer Netherlands,5: 213-224. [38] Mariethoz G,Renard P. 2010. Reconstruction of incomplete data sets or images using direct sampling. Mathematical Geosciences,42(3): 245-268. [39] Mariethoz G,Renard P,Straubhaar J. 2010. The direct sampling method to perform multiple-point geostatistical simulations. Water Resources Research,136(1): 1-14. [40] Meerschman E,Pirot G,Mariethoz G,Straubhaar J,Van Meirvenne M,Renard P. 2013. A practical guide to performing multiple-point statistical simulations with the Direct Sampling algorithm. Computers & Geosciences,52(1): 307-324. [41] Mohammadmoradi P,Rasaei M. 2012. Modified FILTERSIM algorithm for unconditional simulation of complex spatial geological structures. Geomaterials,2(3): 49-56. [42] Ortiz J M,Deutsch C V. 2004. Indicator simulation accounting for multiple-point statistics. Mathematical Geology,36(5): 545-565. [43] Ortiz J M,Emery X. 2004. Integrating multiple-point statistics into sequential simulation algorithms. In: Leuangthong O,Deutsch C V(eds). Geostatistics Banff 2004: 969-978. [44] Pickel A,Frechette J D,Comunian A,Weissmann,G S. 2015. Building a training image with Digital Outcrop Models. Journal of Hydrology,531: 53-61. [45] Pyrcz M J,Boisvert J B,Deutsch C V. 2008. A library of training images for fluvial and deepwater reservoirs and associated code. Computers & Geosciences,34(5): 542-560. [46] Sebacher B,Stordal A S,Hanea R. 2015. Bridging multipoint statistics and truncated Gaussian fields for improved estimation of channelized reservoirs with ensemble methods. Computational Geosciences,19(2): 341-369. [47] Srivastava R M. 1992. Reservoir characterization with probability field simulation. Annual Technical Conference and Exhibition of the Society of Petroleum Engineering,Washington,DC,SPE 24753: 927-938. [48] Straubhaar J,Walgenwitz A,Renard P. 2013. Parallel multiple-point statistics algorithm based on list and tree structures. Mathematical Geosciences,45(2): 131-147. [49] Strebelle S B. 2000. Sequential Simulation Drawing Structures from Training Images. Doctoral Dissertation of Stanford University. [50] Strebelle S B,Journel A G. 2001. Reservoir modeling using multiple-point statistics. SPE Annual Technical Conference and Exhibition,New Orleans,Louisiana,SPE 71324: 1-11. [51] Wang L. 1996. Modeling complex reservoir geometries with multiple-point statistics. Mathematical Geology,28(7): 895-907. [52] Wu J,Zhang T,Journel A. 2008. Fast FILTERSIM simulation with score-based distance. Mathematical Geosciences,40(7): 773-788. [53] Xu W L. 1996. Conditional curvilinear stochastic simulation using pixel-based algorithms. Mathematical Geology,28(7): 937-949. [54] Xu W L,Journel A G. 1993. GTSIM: Gaussian truncated simulations of reservoir units in a W. Texas carbonate field. Stanford Center for Reservoir Forecasting Stanford University,SPE 27412: 1-27. [55] Zhang T,Du Y,Huang T,Yang J,Li X. 2015. Stochastic simulation of patterns using ISOMAP for dimensionality reduction of training images. Computers & Geosciences,79(C): 82-93. [56] Zhang T,Switzer P,Journel A. 2006. Filter-based classification of training image patterns for spatial simulation. Mathematical Geology,38(1): 63-80.