Gravity-flow deposits in the Members 1 and 2 of Paleogene Shahejie Formation and their significance for oil-gas exploration in Liaodong Bay Depression,Bohai Bay Basin
1 Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,Sichuan; 2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059 Sichuan; 3 Tianjin Branch of CNOOC,Tianjin 300452
Abstract:Various gravity-flow deposits have been identified, using cores of the Liaodong Bay Depression in the early stage of faulted-depression phase, which consists of the Members 1 and 2 of Shahejie Formation. Gravity-flow deposits as documented in this study can be divided into turbidities,sandy debrites and slumps and slides based on sedimentary characteristics of cores,logging information and sediment gravity flow theory. These gravity-flow deposits in this period were developed in delta fronts in the Members 1 and 2 of Shahejie Formation which were triggered by paleoearthquakes and gravity. The sediment supply represents the most important controlling factor. With reference to previous studies,and superimposion,distributing locations and connecting-well sections of different gravity-flow deposits,this study establishes the depositional model of gravity flow in delta fronts at the early stage of faulted-depression phase,which can be divided into three facies belts: Slump-root belt,middle-slope belt,and basin plain belt. Based on the analysis of reservoir properties of different gravity-flow deposits,sandy debrites flow and near-source turbidities distributed in middle zone of slope,represtent favorable reservoir for hydrocarbon exploration. The scale of gravity-flow sandbodies in delta front of the Member 2 of Shahejie Formatiom is shown to be larger than that of Member 1. These sandbodies have a good condition of source,reservoir,cap and migration of hydrocarbon accumulation,which has the significance for oil and gas exploration.
Liu Lei,Chen Hongde,Zhong Yijiang et al. Gravity-flow deposits in the Members 1 and 2 of Paleogene Shahejie Formation and their significance for oil-gas exploration in Liaodong Bay Depression,Bohai Bay Basin[J]. JOPC, 2017, 19(5): 807-818.
[1] 操应长,刘晖. 2007. 湖盆三角洲沉积坡度带特征及其与滑塌浊积岩分布关系的初步探讨. 地质论评,53(4): 454-459. [Cao Y C,Liu H. 2007. Discussion on the relationship between distribution of fluxoturbidite and depositional slope of delta in lacustrine basin. Geological Review,53(4): 454-459] [2] 常艳艳,林畅松,周心怀,夏世强. 2014. 辽西凹陷北洼沙河街组沉积层序结构与有利砂体分布. 地球科学:中国地质大学学报,39(10): 1472-1480. [Chang Y Y,Lin C S,Zhou X H,Xia S Q. 2014. Depositional sequence and prediction of favorable reservoir sand of Shahejie Formation of Liaoxi Depression. Earth Science:Journal of China University of Geosciences,39(10): 1472-1480] [3] 加东辉,周心怀,李建平,赖维成,祝春荣. 2010. 辽中凹陷中北段重力流发育模式与控制因素. 成都理工大学学报(自然科学版),37(1): 69-74. [Jia D H,Zhou X H,Li J P,Lai W C,Zhu C R. 2010. Depositional model and controlling factors of sedimentary gravity flows in the central-northern Liaozhong sag,China. Journal of Chengdu University of Technology(Science & Technology Edition),37(1): 69-74] [4] 贾楠,刘池洋,张功成,黄雷,赵俊峰. 2015. 辽东湾坳陷新生代构造改造作用及演化. 地质科学,50(2): 377-390. [Jia N,Liu C Y,Zhang G C,Huang L,Zhao J F. 2015. Cenozoic multiple faulting and tectonic evolution in the Liaodong Bay Depression. Chinese Journal of Geology,50(2): 377-390] [5] 李存磊,任伟伟,唐明明. 2012. 流体性质转换机制在重力流沉积体系分析中应用初探. 地质论评,58(2): 285-296. [Li C L,Ren W W,Tang M M. 2012. Preliminary study on gravity flows depositional system based on fluid properties conversion theory. Geological Review,58(2): 285-296] [6] 李凤杰,李磊,魏旭,杨豫川,李俊武,代廷勇,杨承锦,师桂霞,林艳波. 2014. 鄂尔多斯盆地华池地区长 6油层组湖底扇内深水重力流沉积特征. 古地理学报,16(6): 827-834. [Li F J,Li L,Wei X,Yang Y C,Li J W,Dai T Y,Yang C J,Shi G X,Lin Y B. 2014. Characteristics of deep water gravity flows sediments in sublacustrine fan of the Chang 6 interval of Yanchang Formation in Huachi Area,Ordos Basin. Journal of Palaeogeography(Chinese Edition), 16(6): 827-834] [7] 李顺明,沈平平,严耀祖. 2010. 沾化凹陷桩西油田古近系东营组重力流水道的沉积特征及形成条件. 沉积学报,28(1): 83-89. [Li S M,Shen P P,Yan Y Z. 2010. Depositional features and controls on gravity flows channel of Dongying. Acta Sedimentologica Sinica,28(1): 83-89] [8] 李相博,刘化清,完颜容,魏立花,廖建波,马玉虎. 2009. 鄂尔多斯盆地三叠系延长组砂质碎屑流储集体的首次发现. 岩性油气藏,21(4): 19-21. [Li X B,Liu H Q,Wanyan R,Wei L H,Liao J B,Ma Y H. 2009. First discovery of the sandy debris flows from the Triassic Yanchang Formation,Ordos Basin. Lithologic Reservoirs,21(4): 19-21] [9] 廖纪佳,朱筱敏,邓秀芹,孙勃,惠潇. 2013. 鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式. 地学前缘,20(2): 29-39. [Liao J J,Zhu X M,Deng X Q,Sun B,Hui X. 2013. Sedimentary characteristics and model of gravity flow in Triassic Yanchang Formation of Longdong Area in Ordos Basin. Earth science Frontiers,20(2): 29-39] [10] 林畅松,李思田,刘景彦,钱一雄,罗宏,陈建强,彭莉,芮志峰. 2011. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化. 岩石学报,27(1): 210-219. [Lin C S,Li S T,Liu J Y,Qian Y X,Luo H,Chen J Q,Peng L,Rui Z F. 2011. Tectonic framework and paleogeographic evolution of theTarim basin during the Paleozoic major evolutionary stages. Acta Petrologica Sinica,27(1): 210-219] [11] 刘建平,鲜本忠,王璐,路智勇,李宇志,刘赛君,蒋健. 2016. 渤海湾盆地东营凹陷始新世三角洲供给型重力流地震沉积学研究. 古地理学报,18(6): 961-975. [Liu J P,Xian B Z,Wang L,Lu Z Y,Li Y Z,Liu S J, Jiang J. 2016. Seismic sedimentology of delta-fed turbidites of the Eocene in Dongying sag,Bohai Bay Basin. Journal of Palaeogeography(Chinese Edition),18(6): 961-975] [12] 刘磊,陈洪德,徐长贵,钟怡江,吴奎. 2015. 辽东湾古近系震积岩特征及其时空分布规律研究. 沉积学报,2015,33(5): 919-931. [Liu L,Chen H D,Xu C G,Zhong Y J,Wu K. 2015. Study on seismites features and its time-space distribution law of Paleogene in Liaodong bay Depression. Acta Sedimentologica Sinica, 33(5): 919-931] [13] 莫午零,吴朝东,张顺. 2012. 松辽盆地嫩江组二三段陆相坳陷湖盆大型三角洲前积体形成机制. 石油天然气学报,34(1): 1-6. [Mo W L,Wu C D,Zhang S. 2012. Forming mechanism of continental depression-lacustrine large delta of the 2~3 members of Nenjiang Formation in Songliao Basin. Journal of Oil and Gas Technology,34(1): 1-6] [14] 潘树新,郑荣才,卫平生,王天奇,陈彬滔,梁苏娟. 2013. 陆相湖盆块体搬运体的沉积特征、识别标志与形成机制. 岩性油气藏,25(2): 9-25. [Pan S X,Zheng R C,Wei P S,Wang T Q,Chen B T,Liang S J. 2013. Deposition characteristics,recognition mark and form mechanism of mass transport deposits in terrestrial lake Basin. Lithologic Reservoirs,25(2): 9-25] [15] 王德坪,刘守义. 1987. 东营盆地渐新世早期前三角洲缓坡区的泥石流砂质碎屑沉积. 沉积学报,5(4): 4-24. [Wang D P,Liu S Y. 1987. Debris flows sediments of sandy clastic on the gentle slope area of prodelta in Oligocene,Dongying Basin. Acta Sedimentologica Sinica,5(4): 4-24] [16] 魏洪涛. 2015. 辽中凹陷北部东二下亚段湖底扇沉积数值模拟及应用. 岩性油气藏,27(5): 183-188. [Wei H T. 2015. Numerical simulation of sublacustrine fan deposition of lower Ed2 Formation and its application in northern Liaozhong Depression. Lithologic Reservoirs,27(5): 183-188] [17] 吴奎,吴俊刚,张中巧,金小燕,柳永军,于茜. 2012. 辽中凹陷北部湖底扇沉积模式及地震响应特征. 东北石油大学学报,36(5): 33-37. [Wu K,Wu J G,Zhang Z Q,Jin X Y,Liu Y J,Yu Q. 2012. Sedimentary model and seismic response characteristics of the sublacustrine fan in Northern Liaozhong Depression. Journal of Northeast Petroleum University,36(5): 33-37] [18] 鲜本忠,万锦峰,董艳蕾,马乾,张建国. 2013. 湖相深水块状砂岩特征、成因及发育模式: 以南堡凹陷东营组为例. 岩石学报,29(9): 3287-3298. [Xian B Z,Wan J F,Dong Y L,Ma Q,Zhang J G. 2013. Sedimentary characteristics,origin and model of lacustrine deep water massive sandstone: An example from Dongying Formation in Nanpu depression. Acta Petrologica Sinica,29(9): 3287-3298] [19] 鲜本忠,万锦峰,姜在兴,张建国,李振鹏. 2012. 断陷湖盆洼陷带重力流沉积特征与模式: 以南堡凹陷东部东营组为例. 地学前缘,19(1): 121-135. [Xian B Z,Wan J F,Jiang Z X,Zhang J G,Li Z P. 2012. Sedimentary characteristics and model of gravity flows deposition in the depresses belt of rift lacustrine basin: A case study from Dongying Formation in Nanpu Depression. Earth Science Frontiers,19(1): 121-135] [20] 鲜本忠,朱筱敏,岳大力,郑秀娟. 2014. 沉积学研究热点与进展: 第19届国际沉积学大会综述. 古地理学报,16(6): 816-826. [Xian B Z,Zhu X M,Yue D L,Zheng X J. 2014. Current hot topics and advances of sedimentology: A summary from 19th International Sedimentological Congress. Journal of Palaeogeography(Chinese Edition),16(6): 816-826] [21] 杨华,牛小兵,罗顺社,冯胜斌,吕奇奇. 2015. 鄂尔多斯盆地陇东地区长7段致密砂体重力流沉积模拟实验研究. 地学前缘,22(3): 322-332. [Yang H,Niu X B,Luo S S,Feng S B,Lü Q Q. 2015. Research of simulated experiment on gravity flow deposits of tight sand bodies of Chang 7 Formation in Longdong area,Ordos Basin. Earth Science Frontiers,22(3): 322-332] [22] 张庆石,张革,陈彬滔,王革,梁苏娟,刘彩燕. 2014. 松辽盆地坳陷期湖底扇沉积特征与分布规律: 以英台地区青山口组为例. 天然气地球科学,25(3): 318-325. [Zhang Q S,Zhang G,Chen B T,Wang G,Liang S J,Liu C Y. 2014. Deposition characteristics and distribution pattern of sublaucustrine fan in Qingshankou Formation,Songliao Basin. Natural Gas Geoscience,25(3): 318-325] [23] 郑荣才,李云,戴朝成,高博禹,胡晓庆,王昌勇. 2012. 白云凹陷珠江组深水扇砂质碎屑流沉积学特征. 吉林大学学报(地球科学版),42(6): 1581-1588. [Zheng R C,Li Y,Dai C C,Gao B Y,Hu X Q,Wang C Y. 2012. Depositional feature of sandy debris flows of submarine fan in Zhujiang Formation,Baiyun Sag. Journal of Jilin University(Earth Science Edition),42(6): 1581-1588] [24] 朱伟林,吴景富,张功成,任建业,赵志刚. 2015. 中国近海新生代盆地构造差异性演化及油气勘探方向. 地学前缘,22(1): 88-101. [Zhu W L,Wu J F,Zhang G C,Ren J Y,Zhao Z G. 2015. Discrepancy tectonic evolution and petroleum exploration in China offshore Cenozoic basins. Earth Science Frontiers,22(1): 88-101] [25] 朱筱敏,董艳蕾,杨俊生,张琴,李德江,徐长贵,于水. 2008. 辽东湾地区古近系层序地层格架与沉积体系分布. 中国科学D辑: 地球科学,38(增刊Ⅰ): 1-10. [Zhu X M,Dong Y L,Yang J S,Zhang Q,Li D J,Xu C G,Yu S. 2008. Sequence framework and sediment system of Eogene in Liaodong Bay area. Science in China: Series D,38(SupplementⅠ): 1-10] [26] 朱筱敏,李顺利,潘荣,谈明轩,陈贺贺,王星星,陈锋,张梦瑜,侯冰洁,董艳蕾. 2016. 沉积学研究热点与进展: 第 32届国际沉积学会议综述. 古地理学报,18(5): 699-716. [Zhu X M,Li S L,Pan R,Tan M X,Chen H H,Wang X X,Chen F,Zhang M Y,Hou B J,Dong Y L. 2016. Current hot topics and advances of sedimentology: A summary from 32nd IAS Meeting of Sedimentology. Journal of Palaeogeography(Chinese Edition),18(5): 699-716] [27] 邹才能,赵政璋,杨华,付金华,朱如凯,袁选俊,王岚. 2009. 陆相湖盆深水砂质碎屑流成因机制与分布特征: 以鄂尔多斯盆地为例. 沉积学报,27(6): 1065-1075. [Zou C N,Zhao Z Z,Yang H,Fu J H,Zhu R K,Yuan X J,Wang L. 2009. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin. Acta Sedimentologica Sinica,27(6): 1065-1075] [28] Bouma A H. 1962. A graphic approach to facies interpretation. Sedimentology of Some Flysch Deposits. Amsterdam: Elsevier. [29] Greene T J,Gingras M K,Cordon G S, McKeel D R. 2012. The significance of deep-water eryptic bioturbation in slope-channel massive sand deposits of the Lower Rio Dell Formation,Eel River basin,California. Marine and Petroleum Geology,29(1): 152-174. [30] Johanssom M,Braakenburg N E,Stow DAV and Faugeres J C. 1998. Deep-water massive sands: Facies,processes and channel geometry in the Numidian flysch,sicily. Sedimentary Geology,115(1-4): 233-265. [31] Kuenen P H,Migliorini C I. 1950. Turbidity currents as a cause of graded bedding. The Journal of Geology,58(2): 91-127. [32] Middleton G V,Hampton M A. 1973. Sediment Gravity Flows: Mechanics of Flow and Deposition. Turbidites and Deep-water Sedimentation. Los Angeles: Pacific Section of the Society of Economic Paleontologists and Mineralogists,1-38. [33] Shanmugam G. 1997. The Bouma Sequence and the turbidite mind set. Earth-Science reviews,42(4): 201-229. [34] Shanmugam G. 1996. High-density turbidity currents: Are they sandy debris flows?Journal of Sedimentary research,66(1): 2-10. [35] Shanmugam G. 2000. Deep-water process and facies model: A critical perspective. Marine and petroleum Geology,17(2): 285-342.