Evolution of Microbially Induced Sedimentary Structures and their response to palaeoenvironment variation of the Lower Triassic Liujiagou Formation in Yiyang area,Henan Province
Xing Zhi-Feng1, 2, Zhou Hu1, Lin Jia1, Wang Min1, 2, Zheng Wei1, 2
1 College of Resource and Environment,Henan Polytechnic University,Jiaozuo 454003,Henan; 2 Key Laboratory of Biogenic Traces & Sedimentary Minerals of Henan Province,Jiaozuo 454003,Henan;
Abstract:There are dozens of Microbially Induced Sedimentary Structures(MISS)in the red sandstone of Lower Triassic Liujiagou Formation in Yiyang area,Henan Province,including wrinkle structures,desiccation cracks and mat chips. According to the morphology evolution of MISS,it is divided into 4 different fabrics,namely wrinkle structures fabric,petees fabric,mini desiccation cracks fabric and large desiccation cracks fabric from bottom to top. They reflect the nuance palaeoenvironment and palaeoclimate:(1)wrinkle structures fabric reflects the warm moist suboxic sedimentary environment;(2)petees fabric reflects the warm moist oxygen-enriched sedimentary environment;(3)mini desiccation cracks fabric reflects the warm semi-arid suboxic sedimentary environment;(4)large desiccation cracks fabric reflects the hot semi-arid oxygen-enriched sedimentary environment. The geochemical information also indicates that the palaeoenvironment in the Early Triassic in Yiyang area changed from warm and moist suboxic to hot and semi-arid oxygen-enriched. In conclusion,the development and evolution of MISS in Yiyang area were a response to subtle changes of continental palaeoenvironment in the Early Triassic.
Xing Zhi-Feng,Zhou Hu,Lin Jia et al. Evolution of Microbially Induced Sedimentary Structures and their response to palaeoenvironment variation of the Lower Triassic Liujiagou Formation in Yiyang area,Henan Province[J]. JOPC, 2018, 20(2): 191-206.
[1] 陈敬安,万国江,陈振楼. 1999. 洱海沉积物化学元素与古气候演化. 地球化学, 28(6): 562-570[Chen J A,Wan G J,Chen Z L. 1999. Chemical elements in sediments of lake Erhai and palaeoclimate evolution. Geochimica, 28(6): 562-570] [2] 陈留勤. 2013. 河北兴隆中元古界大红峪组微生成因构造特征及其地质意义. 岩石矿物学杂志, 32(3): 366-372. [Chen L Q. 2013. Characteristics and geological significance of Microbially Induced Sedimentary Structures(MISS)in Mesoproterozoic Dahongyu Formation of Xinglong County,Hebei Province. Acta Petrologica et Mineralogica, 32(3): 366-372] [3] 程明. 2014. 重庆地区早三叠世错时相沉积类型及形成机理. 成都理工大学博士论文. [Cheng M. 2014. Types,Distributions and Origins of Early Triassic Anachronistic Facies in Chongqing Area. Doctoral Dissertation of Chengdu University of Technology] [4] 冯兴雷,付修根,谭富文,陈文彬. 2014. 羌塘盆地孔孔茶卡地区石炭系擦蒙组烃源岩沉积环境分析. 现代地质, 28(5): 953-961. [Feng X L,Fu X G,Tan F W,Chen W B. 2014. Sedimentary environment characteristics of Upper Carboniferous Cameng Formation in Kongkong Chaka area of northern Qiangtang Basin,Tibet. Geoscience, 28(5): 953-961] [5] 郭荣涛,郭丽娜,霍荣. 2012. 皱饰构造研究进展综述. 地质科技情报, 31(3): 16-30. [Guo R T,Guo L N,Huo R. 2012. Review on the wrinkle structure. Geological Science and Technology Information, 31(3): 16-30] [6] 胡俊杰,马寅生,王宗秀,柳永清,高万里,钱涛. 2017. 地球化学记录揭示的柴达木盆地北缘地区中—晚侏罗世古环境与古气候. 古地理学报, 19(3): 480-490. [Hu J J,Ma Y S,Wang Z X,Liu Y Q,Gao WL,Qian T. 2017. Palaeoenvironment and palaeoclimate of the Middle to Late Jurassic Revealed by geochemical records in northern margin of Qaidam Basin. Journal of Palaeogeography(Chinese Edition), 19(3): 480-490] [7] 黄秀,张钊,周洪瑞,刘清俊. 2010. 豫西中元古代汝阳群微生物形成的沉积构造简介. 中国地质, 37(5): 1399-1404. [Huang X,Zhang Z,Zhou H R,Liu Q J. 2010. Microbial Induced Sedimentary Structures(MISS)of the Mesoproterozoic Ruyang Group in western Henan Province. Geology in China, 37(5): 1399-1404] [8] 刘兵,温泉波,刘永江,李伟民,冯志强,周建平,申亮. 2014. 大兴安岭中段上二叠统—下三叠统接触关系研究: 来自碎屑锆石年代学的证据. 大地构造与成矿学, 38(2): 408-420. [Liu B,Wen Q B,Liu Y J,Li W M,Feng Z Q,Zhou J P,Shen L. 2014. Contace relationship between the Upper Permian and Lower Triassic strata in the central Great Xing'an Ranges and its tectonic implication: Constraints from the setrital zircon U-Pb ages. Geotectonica et Metallogenia, 38(2): 408-420] [9] 李涛. 2011. 微生物席成因构造(MISS)组合及其古环境意义: 以豫西华北地台南缘中—上元古界为例. 中国地质大学(北京)博士论文. [Li T. 2011. Microbially Induced Sedimentary Structures(MISS)and their Paleoenvironmental Significance: An Example from the Meso-and Neoproterozoic of Southern North China Platform. Doctoral Dissertation of China University of Geosciences(Beijing)] [10] 罗根明,谢树成,刘邓,Algeo T J. 2014. 二叠纪—三叠纪之交重大地质突变期微生物对环境的作用. 中国科学: 地球科学, 44(6): 1193-1205. [Luo G M,Xie S C,Liu D,Algeo T J. 2014. Microbial influences on paleoenvironmental changes during the Permian-Triassic boundary crisis. Science in China: Earth Sciences, 44(6): 1193-1205] [11] 梅冥相. 2014. 微生物席的特征和属性: 微生物席沉积学的理论基础. 古地理学报, 16(3): 285-304. [Mei M X. 2014. Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography(Chinese Edition), 16(3): 285-304] [12] 苗建宇,赵建设,刘池洋,朱亚军,王武龙. 2007. 鄂尔多斯盆地二叠系烃源岩地球化学特征与沉积环境的关系. 中国地质, 34(3): 430-435. [Miao J Y,Zhao J S,Liu C Y,Zhu Y J,Wang W L. 2007. Relationship between the geochemical characteristics and sedimentary environment of Permian hydrocarbon source rocks in the Ordos Basin. Geology in China, 34(3): 430-435] [13] 任纪舜. 1984. 印支运动及其在中国大地构造演化中的意义. 中国地质科学院院报, 9: 31-44. [Ren J S. 1984. The Indosinian Orogeny and its significance in the tectonic evolution of China. Bulletin of the Chinese Academy of Geological Sciences, 9: 31-44] [14] 沈树忠,朱茂炎,王向东,李国祥,曹长群,张华. 2010. 新元古代—寒武纪与二叠—三叠纪转折时期生物和地质事件及其环境背景之比较. 中国科学: 地球科学, 40(9): 1228-1240. [Shen S Z,Zhu M Y,Wang X D,Li G X,Cao C Q,Zhang H. 2010. A comparison of the biological,geological events and environmental backgrounds between the Neoproterozoic-Cambrian and Permian-Triassic transitions. Science in China:Earth Science, 40(9): 1228-1240. doi:10.1007/s11430-010-4092-y] [15] 沈文杰. 2007. 二叠—三叠纪界线事件的矿物学、地球化学解译: 以煤山剖面为例. 中国科学院广州地球化学研究所博士论文. [Shen W J. 2007. Mineral and Geochemical Explaination of Boundary Events: Evendence from Meishan Permian-Triassic Section. Doctoral Dissertation of Guangzhou Institute of Geochemistry,Chinese Academy of Sciences] [16] 史晓颖,蒋干清,张传恒,刘娟,高林志. 2008a. 华北地台中元古代串岭沟组页岩中的砂脉构造: 17×10 8 年前甲烷气逃逸的沉积标识?地球科学, 33(5): 577-590. [Shi X Y,Jiang G Q,Zhang C H,Liu J,Gao L Z. 2008a. Sand veins and Mircrobially Induced Sedimentary Structures from the black shale of the Mesoproterozoic Chuanlinggou Formation(ca. 1.7 Ga)in North China: Imlications for methane degassing from Microbial Mat. Earth Science, 33(5): 577-590] [17] 史晓颖,王新强,蒋干清,刘典波,高林志. 2008b. 贺兰山地区中元古代微生物席成因构造: 元古时期微生物群活动的沉积标志. 地质论评, 54(5): 577-586. [Shi X Y,Wang X Q,Jiang G Q,Liu D B,Gao L Z. 2008b. Pervasive Microbial Mat colonization on Mesoproterozoic Peritidal Siliciclastic substrates: An example from the Huangqikou Formation(ca 1.6 Ga)in Helan Mountains,NW China. Geological Review, 54(5): 577-586] [18] 童金南,殷鸿福. 2009. 早三叠世生物与环境研究进展. 古生物学报, 48(3): 497-508. [Tong J N,Yin H F. 2009. Advance in the study of Early Triassic life and environment. Acta Palaeontologica Sinica, 48(3): 497-508] [19] 田晓雪,雒昆利,谭见安,李日邦. 2005. 黑龙江嘉荫地区白垩系与古近系界线附近的古气候分析. 古地理学报, 7(3): 425-432. [Tian X X,Luo K L,Tan J A,Li R B. 2005. Analysis on palaeoclimateneighbouring the Cretaceous and Paleogene boundary in Jiayinarea,Heilongjiang Province. Journal of Palaeogeography(Chinese Edition), 7(3): 425-432] [20] 王惠勇. 2006. 豫西洛阳—伊川地区晚古生代、早中生代沉积体系与岩相古地理恢复. 山东科技大学博士论文. [Wang H Y. 2006. The Late Palaeozoic and Early Triassic Depositional System and Lithofacies Paleogeographic Recovery in Louyang-Yichuan in the West of Henan Province. Doctoral Dissertation of Shandong University of Science and Technology] [21] 熊小辉,肖加飞. 2011. 沉积环境的地球化学示踪. 地球与环境, 39(3): 405-414. [Xiong X H,Xiao J F. 2011. Geochemical indicators of sedimentary environments: A summary. Earth and Environment, 39(3): 405-414] [22] 邢智峰. 2010. 豫西中元古界云梦山组微生物成因沉积构造研究. 河南理工大学博士论文. [Xing Z F. 2010. Study on Microbially Induced Sedimentary Structures(MISS)from the Mesoproterozoic Yunmengshan Formation in Western Henan Province. Doctoral Dissertation of Henan Polytechnic University] [23] 邢智峰,齐永安,郑伟,袁余洋. 2011. 从微观角度认识微生物席在中元古代的繁盛: 以豫西云梦山组为例. 沉积学报, 29(5): 857-865. [Xing Z F,Qi Y A,Zheng W,Yuan Y Y. 2011. Microscopic characteristics of extensive Microbial Mats in Mesoproterozoic era: An example from the Yunmengshan Formation,western Henan. Acta Sedimentologica Sinica, 29(5): 857-865] [24] 杨文涛. 2009. 河南省三叠纪陆相沉积环境及演化规律. 河南理工大学博士论文. [Yang W T. 2009. The Continental Sedimentary Environment Analysis and Evolution of Triassic in Henan Province. Doctoral Dissertation of Henan Polytechnic University] [25] 殷鸿福,童金南. 1997. 地史转折期的生态系. 地学前缘, 4(3-4): 111-116. [Yin H F,Tong J N. 1997. Ecosystem at the turning point of geological history. Earth Science Frontiers, 4(3-4): 111-116] [26] 于水情. 2014. 河南宜阳下三叠统刘家沟组微生物成因沉积构造的古环境特征. 河南理工大学博士论文. [Yu S Q. 2014. Paleoenvironment Feature for Microbially Induced Sedimentary Structures from the Lower Triassic Liujiagou Formation on Yiyang County of Henan Province. Doctoral Dissertation of Henan Polytechnic University] [27] 于水情,邢智峰,周虎. 2015. 豫西下三叠统刘家沟组微生物成因沉积构造. 四川地质学报, 35(4): 483-486. [Yu S Q,Xing Z F,Zhou H. 2015. Microbially Induced Sedimentary Structure in the Lower Triassic Liujiagou Formation in west Henan. Acta Geologica Sichuan, 35(4): 483-486] [28] 曾艳,陈敬安,朱正杰,李键. 2011. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望. 地球科学进展, 26(8): 805-810. [Zeng Y,Chen J A,Zhu Z J,Li J. 2011. Advance and porspective of Rb/Sr ratios in lake sediments as an index of paleoclimate/paleoenvironmern. Advances in Earth Science, 26(8): 805-810] [29] 张利伟,杨文涛,牛永斌. 2014. 河南宜阳地区陆相二叠系—三叠系界线附近微生物成因沉积构造特征及意义. 地质论评, 60(5): 1051-1060. [Zhang L W,Yang W T,Niu Y B. 2014. Characteristics and geological significance of Microbially Induced Sedimentary Structures(MISS)in terrestrial P-T boundary in western Henan. Geological Review, 60(5): 1051-1060] [30] 赵英利,李伟民,温泉波,梁琛岳,冯志强,周建平,申亮. 2016. 内蒙古东部晚古生代构造格局: 来自中、晚二叠—早三叠世砂岩碎屑锆石U-Pb年代学的证据. 岩石学报, 32(9): 2807-2822. [Zhao Y L,Li W M,Wen Q B,Liang C Y,Feng Z Q,Zhou J P,Shen L. 2016. Late Paleozoic tectonic framework of eastern Inner Mongolia: Evidence from the detrital zircon U-Pb ages of the Mid-Late Permian to Early Triassic sandstones. Acta Petrologica Sinica, 32(9): 2807-2822] [31] 郑德顺,孟瑶,孙风波,王鹏晓. 2017. 伊川中元古界兵马沟组砂岩稀土元素地球化学特征. 河南理工大学学报(自然科学版), 36(1): 38-45. [Zheng D S, Meng Y, Sun F B, Wang P X. 2017. REE geochemical characteristics of sandstones of Mesoproterozoic Bingmagou Formation in Yichuan. Journal of Henan Polytechnic University (Natural Science), 36(1): 38-45] [32] 郑伟,邢智峰. 2015. 山西黎城中元古界常州沟组微生物成因构造(MISS)及其地质意义. 现代地质, 29(4): 825-832. [Zheng W,Xing Z F. 2015. Characteristics and geological significance of Microbially Induced Sedimentary Structures(MISS)in Changzhougou Formation of Mesoproterozoic in Licheng County,Shanxi Province. Geoscience, 29(4): 825-832] [33] 朱筱敏. 2008. 沉积岩石学(第四版). 北京: 石油工业出版社. [Zhu X M. 2008. Sedimentary Geology(Ⅳ Edition). Beijing: Petroleum Industry Press] [34] Bose S,Chafetz H S. 2009. Topographic control on distribution of modern Microbially Induced Sedimentary Structures(MISS): A case study from Texas coast. Sedimentary Geology, 213: 136-149. [35] Chu D L,Tong J N,Song H J,Benton M J,Bottjer D J,Song H Y,Tian L. 2015. Early Triassic wrinkle structures on land: Stressed environments and oases for life. Scientific Reports,| 5:e 10109. doi:10.1038/srep10109. [36] Dasch E J. 1969. Strontium isotopes in weathering profiles,deep-sea sediments,and sedimentary rocks. Geochimica et Cosmochimica Acta, 33(12): 1521-1552. [37] Getaneh W. 2002. Geochemistry provenance and tectonic setting of the Adigrat sandstone northern Ethiopia. Journal of African Earth Sciences, 35: 185-198. [38] Gerdes G,Klenke T,Noffke N. 2000. Microbial signatures in peritidal siliciclastic sediments: A catalogue. Sedimentology, 47: 279-308. [39] Hagadorn J W,Bottjer D J. 1997. Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. Geology, 25: 1047-1050. [40] Porada H,Bouougri E H. 2007. Wrinkle structures: A critical review. Earth-Science Reviews, 81: 199-215. [41] Jones B,Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstone. Chemical. Geology., 111(1): 111-129. [42] Kalugin I,Daryin A,Smolyaninova L. 2007.800-yr-long records of annual air temperature and precipitation over southern Siberia inferred from Teletskoye Lake sediments. Quaternary Research, 67(3): 400-410. [43] Mata S A, Bottjer D J. 2009. The paleoenvironmental distribution of Phanerozoic wrinkle structure. Earth-Science Reviews, 96: 181-195 [44] Meng Y,Zheng D S,Li M L. 2017. Geochemistry evidence for depositional settings and provenance of Jurassic argillaceous rocks of Jiyuan Basin,North China. Journal of Earth System Science, 126: 14. [45] Noffke N. 2000. Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment(lower Arenigian,Montagne Noire,France). Sedimentary. Geology., 136: 207-215. [46] Noffke N. 2010. Geobiology: Microbial Mats in Sandy Deposits from the Archean Era to Today. Berlin: Springer,1-194. [47] Noffke N,Eriksson K A,Hazen R M,Simpson E L. 2006. A new window into Early Archean life: Microbial mats in Earth's oldest siliciclastic tidal deposits(3.2 Ga Moodies Group,South Africa). Geology, 34: 253-256. [48] Noffke N,Gerdes G,Klenke T. 1997. Biofilm impact on sedimentary structures in siliciclastic tidal flats. Courier Forschungsinstitut Senckenberg, 201: 297-305. [49] Noffke N,Gerdes G,Klenke T,Krumbein W E. 2001. Microbially induced sedimentary structures: A new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71: 649-656. [50] Noffke N,Gerdes G,Klenke T. 2003. Benthic eyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems(siliciclastic,evaporitic salty,and evaporitic carbonatic). Earth-Science Reviews, 62: l63-176. [51] Peterffy O. 2016. Early Jurassic microbial mats: A potential response to reduced biotic activity in the aftermath of the end-Triassic mass extincti. Palaeogeography, Palaeoclimatology, Palaeoecology,464:76-85. [52] Pruss S,Fraiser M,Bottjer D J. 2004. Proliferation of Early Triassic wrinkle structures: Implications for environmental stress following the end-Permian mass extinction. Geology, 32: 461-464. [53] Riding R, Awramik S. 2000. Microbial Sediments. Heidelberg: Springer-Verlag, 1-331. [54] Rimmer S M. 2004. Geochemical palaeoredox indicators in Devonian-Mississippian black shales,central Appalachian Basin(USA). Chemical Geology, 206(3-4): 373-391. [55] Taj R J,Mahmoud A M,Aref B. 2014. Charlotte Schreiber: The influence of microbial mats on the formation of sand volcanoes and mounds in the Red Sea coastal plain,south Jeddah,Saudi Arabia. Sedimentary Geology, 311: 60-74. [56] Sarkar S, Choudhuri A, Mandal S, Eriksson P G. 2016. Microbial mat-related structures shared by both siliciclastic and carbonate formations. Journal of Palaeogeography, 5(3): 278-291. [57] Schieber J. 2004. Microbial Mats in the Silisiclastic Rock Record: A Summary of the Diagnostic Features. In: Eriksson P G,Ahermann W,Nelson D R, et al (eds). The Precambrian Earth: Tempos and Events. Amsterdam: Elsevier, 12: 663-673. [58] Schieber J,Bose P K,Eriksson P G,Banerjee S,Sarkar S,Alterman W,Catuneanu O. 2007. Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record.In: Atlases in Geosciences. Amsterdam: Elsevier,1-311. [59] Scotese C R. 1994. Early Triassic Paleogeographic Map. In: Klein G D(ed). Pangea: Paleoclimate,Tectonics and Sedimentation During Accretion,Zenith and Breakup of a Supercontinent. Geological Society of America Special Paper, 288:7. [60] Shi X Y, Zhang C H, Jiang G Q, Liu J, Wang Y, Liu D B. 2008. Microbial mats in the Mesoproterozoic carbonates of the North China platform and their potential for hydrocarbon generation. Geoscience, 22(5): 669-682. [61] Tang D J,Shi X Y,Jiang G Q. 2014. Sunspot cycles recorded in Mesoproterozoic carbonate biolaminites. Precambrian Research, 248: 1-16. [62] Tribovillard N,Algeo T W,Lyons T,Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232: 12-32. [63] Tu C Y,Chen Z Q,Gregory J. Retallack,Huang Y G,Fang Y H. 2016. Proliferation of MISS-related microbial mats following the end-Permian mass extinction in terrestrial ecosystems: Evidence from the Lower Triassic of the Yiyang area,Henan Province,North China. Sedimentary Geology, 333: 50-69. [64] Wang Z W,Fu X G,Feng X L,Song C Y,Wang D,Chen W B,Zeng S Q. 2015. Geochemical features of the black shales from the Wuyu Basin,southern Tibet: Implications for palaeoenvironment and palaeoclimate. Geological Journal,doi:10.1002/gj. 2756. [65] Wilmeth D T,Dornbos S,Isbell J L,Czaja A D. 2014. Putative domal microbial structures in fluvial siliciclastic facies of the Mesoproterozoic(1.09 Ga)Copper Harbor Conglomerate,Upper Peninsula of Michigan,USA. Geobiology, 12: 99-108. [66] Yang J H,Jiang S Y,Ling H F,Feng H Z,Chen Y Q,Chen J H. 2004. Paleoceangraphic significance of redox-sensitive metals of black shales in the basal Lower Cambrian Niutitang Formation in Guizhou Province,South China. Progress in Natural Science, 14: 152-157.