Orientation of Irtysh River point bar gravels and its significance in Xinjiang
Huang Yuan-Guang1, 2, Zhang Chang-Min1, 2, Ding Yun1, 2, Wang Xu-Long3, Qu Jian-Hua3, Hu Hui1, 2, An Zhi-Yuan3
1 Key Laboratory of Oil and Gas Resources and Exploration, Yangtze University, Wuhan 430100, Hubei; 2 School of Geosciences,Yangtze University,Wuhan 430100,Hubei; 3 PetroChina Xinjiang Oilfield Company,Karamay 834000,Xingjiang
Abstract:In this paper,the rosette diagram and Curray's research method were used to study the orientation of gravels at 20 observation points in the Irtysh River point bar. It was found that the long axis of gravels in the study area had a directional arrangement,and the optimal direction was parallel to the flow direction of Irtysh River. However,the oriention of gravels was also influenced by other factors. Grain support mode affected gravels orientation in some degree,e.g., the multi-size particles supported gravels showed the best oriention,followed by particles support. The strength of water also had an influence on gravels orientation. The long axis of the gravels was perpendicular to the flow direction under the weak hydrodynamic force. When the hydrodynamic force became strong,the long axis of the gravels would be parallel to the flow direction. The orientation characteristics of the gravels are also related to their grain size. If the hydrodynamic force was weak,the long axis of smaller gravels(grain size less than 2cm)was perpendicular to the flow direction and the larger gravels(with grain size greater than 2cm)were parallel to the flow direction. However,when the hydrodynamic force became strong,the influence of the gravels size on orientation characteristics could be negligible. Therefore,when using long axis of gravel to determine the palaeo direction of flow,it is better to take into consideration other factors first,such as palaeoclimate and hydrodynamic force in the study area,and then a more accurate recovery of the relationship between river flow and the long axis of gravels can be obtained. Finally,you can determine the palaeo-flow direction of the study area comprehensively.
Huang Yuan-Guang,Zhang Chang-Min,Ding Yun et al. Orientation of Irtysh River point bar gravels and its significance in Xinjiang[J]. JOPC, 2018, 20(2): 263-270.
[1] 陈留勤,郭福生,梁伟. 2013. 江西抚崇盆地上白垩统河口组砾石统计特征及其地质意义. 现代地质, 27(3): 568-576. [Chen L Q,Guo F S,Liang W. 2013. Gravel fabric characteristics of the Upper Cretaceous Hekou Formation in Fuzhou-Chongren Basin,Jiangxi and the geological significance. Geoscience, 27(3): 568-576] [2] 何幼斌,王文广. 2007. 沉积岩与沉积相. 北京: 石油工业出版社,40-41. [He Y B,Wang W G. 2007. Sedimentary Rocks and Sedimentary Facies. Beijing: Petroleum Industry Press,40-41] [3] 李定枝. 1999. 额尔齐斯河流域水文特性. 水文,(3): 54-50. [Li D Z. 1999. The hydrological characteristics of Irtysh River Basin. Journal of China Hydrology,(3): 54-50] [4] 李捷,夏自强,郭利丹. 2008. 额尔齐斯河流域气候特征及变化趋势分析. 河海大学学报(自然科学版), 36(3): 311-315. [Li J,Xia Z Q,Guo L D. 2008. Characteristics and trends of change in the climate of the Irtysh River Basin. Journal of Hohai University(Natural Science Edition), 36(3): 311-315] [5] 倪良田,钟建华,李勇. 2016. 甘肃敦煌现代边滩砂级颗粒叠瓦构造研究. 沉积学报, 34(2): 207-221. [Ni L T,Zhong J H,Li Y. 2016. Study on the imbrication of sand-scale particles in modern point bar in Dunhuang city,Gansu. Acta Sedimentologica Sinica, 34(2): 207-221] [6] 彭楠,柳永清,旷红伟,陆军. 2013. 北祁连—北山地区早白垩世盆地物源分析: 来自古水流、砾石组分、砂岩组分和碎屑锆石年龄的证据. 地质通报, 32(2): 456-475. [Peng N,Liu Y Q,Kuang H W,Chen J. 2013. The provenance of Lower Cretacous basin in the Qilian Mountain-Beishan area: Evidence from paleocurrents,gravels,sandstone compositions and detrital zircon geochronology. Geological Bulletin of China, 32(2): 456-475] [7] 渠洪杰,胡健民,崔建军,武国利,田蜜,施炜,赵陕兰. 2009. 大巴山构造带东段秭归盆地侏罗纪沉积充填过程及其构造演化. 地质学报, 83(9): 1255-1268. [Qu H J,Hu J M,Cu J J,Wu G L,Tian M,Shi W,Zhao S L. 2009. Jurassic sedimentary filling process of Zigui Basin in the Eastern Section of Daba Mountain Tectonic Belt and its structural evolution. Acta Geologica Sinica, 83(9): 1255-1268] [8] 邵珠福,钟建华,李勇,毛毳,刘圣鑫,倪良田,田媛,刘云田,催新颖. 2014. 青岛灵山岛纹层控制的砂级颗粒支撑叠瓦构造的发现及其意义. 中国科学: 地球科学, 44(8): 1761-1776. [Shao Z F,Zhong J H,Li Y,Mao C,Liu S X,Ni L T,Tian Y,Liu Y T,Cui X Y. 2014. Characteristics and sedimentary processes of lamina-controlled sand-particle imbricate structure in depositson Lingshan Island,Qingdao, China. Science China: Earth Sciences, 44(8): 1761-1776] [9] 吴磊伯. 1957. 砾石定向测量的意义与方法. 中国地质,(12): 3-8. [Wu L B. 1957. The significance and method of gravel orientation measurement. Geology in China,(12): 3-8] [10] 吴磊伯,沈淑敏. 1962. 海滨砾石组构分析的一个实例. 地质学报, 42(4): 3-11. [Wu L B,Shen S M. 1962. A example of fabric analysis of seaside gravel. Acta Geologica Sinica, 42(4): 3-11] [11] 吴磊伯,马胜云,沈淑敏. 1958. 砾石排列方位的分析并论述长沙等地白沙井砾石层的沉积构造. 地质学报, 38(2): 59-89. [Wu L B,Ma S Y,Shen S M. 1958. Gravel arrangement and analysis of the sedimentary structure of the Baisha mud gravel layer in Changsha and other places. Acta Geologica Sinica, 38(2): 59-89] [12] 武安斌. 1977. 兰州许家滩—雁滩河漫滩砾石的沉积组构分析. 兰州大学学报(自科版),(3): 122-128. [Wu A B. 1977. Sedimentary organization analysis of gravel in Xujiatan-Yantan River floodplain in Lanzhou. Journal of Lanzhou University(Natural Science Edition),(3): 122-128] [13] 杨富程,夏自强,黄峰. 2012. 额尔齐斯河流域降水变化特征. 河海大学学报(自然科学版), 40(4): 432-437. [Yang F C,Xia Z Q,Huang F. 2012. Variation characteristics of precipitation over Irtysh River Basin. Journal of Hohai University(Natural Science Edition), 40(4): 432-437] [14] 曾允孚,夏文杰. 1986. 沉积岩石学. 北京: 地质出版社,17-31. [Zeng Y F,Xia W J. 1986. Sedimentary Petrology. Beijing: Geological Publishing House,17-31] [15] 张云鹏,任建业,赵学钦,汤艳,王珊,杨承志. 2012. 黑龙江东部林口地区下白垩统穆棱组砾岩的成因及其意义. 地质通报, 31(10): 1731-1738. [Zhang Y P,Ren J Y,Zhao X Q,Tang Y,Wang S,Yang C Z. 2012. Genesis and significance of conglomerate in Lower Cretaceous Muling Formation of Linkou area,Heilongjiang Province. Geological Bulletin of China, 31(10): 1731-1738] [16] 朱筱敏. 2012. 沉积岩石学. 北京: 石油工业出版社,21-22. [Zhu X M. 2012. Sedimentary Petrology. Beijing: Petroleum Industry Press,21-22] [17] Cailleux A. 1938. La Disposition individuelle des galets dans les formations détritiques: Rev. géographie phys. et géologie dynamique. Société de Géographie Physique, 16(9): 74-92. [18] Curray J R. 1956. The analysis of two-dimensional orientation data. The Journal of Geology, 64(2): 117-131. [19] Doeglas D J. 1962. The structure of sedimentary deposits of braided rivers. Sedimentology, 1(3): 167-190. [20] Hjulström F. 1936. Einige morphologische Beobachtungen im südöstlichen Storsjögebiet in Jämtland,Schweden. Geografiska Annaler, 348-362. [21] Johansson C E. 1963. Orientation of pebbles in running water. A laboratory study. Geog. Annaler,45(2/3): 85-112. [22] Johansson C E. 1965. Structural studies of sedimentary deposits. Geologiska Föreningen I Stockholm Förhandlingar: 3-61. [23] Krumbein W C. 1940. Flood gravel of San Gabriel Canyon,California. Geological Society of America Bulletin, 51(5): 639-676. [24] Krumbein W C. 1942. Flood deposits of Arroyo Seco,Los Angeles County,California. Geological Society of America Bulletin, 53(9): 1355-1402. [25] Potter P E,Pettijohn F J. 2012. Paleocurrents and basin analysis. Springer Science & Business Media,36-41. [26] Richter K. 1936. Gefügestudien im Engebrae,Fondalsbrae und ihren Vorlandsedimenten. Borntraeger,6-9. [27] Rust B R. 1972. Pebble orientation in fluvial sediments. Journal of Sedimentary Research,42(2):384-388. [28] Schlee J. 1957. Fluvial gravel fabric. Journal of Sedimentary Research, 27(2): 162-176. [29] Seminar S P. 1965 Gravel fabric in Wolf run. Sedimentology, 4(4): 273-283. [30] Twenhofel W H. 1933. Treatise on sedimentation. The Journal of Physical Chemistry, 37(2): 261-262. [31] Unrug R. 1957. Recent transport and sedimentation of gravels in the Dunajec valley(western Carpathians). Acta Geologica Polonica, 7(2): 217-257.