Characteristics, distribution and mechanisms of fine-grained turbidite: A case study from the Cambrian Guojiaba Formation in Tangjiahe Section, Northern Sichuan Basin
Gong Qiao-Lin1, Li Fei1, 2, Su Cheng-Peng1, Zeng Kai1, Tang Hao1, Tan Xiu-Cheng1, 2
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploration,Southwest Petroleum University,Chengdu 610500,Sichuan; 2 The Sedimentary and Accumulation Department of Key Laboratory of Carbonate Reservoirs,PetroChina,Chengdu 610500,Sichuan
Abstract:The fine-grained turbidites are different from traditional turbidites described by A. H. Bouma in light of their much finer particle sizes(more than 50% lower than 63μm)and diagnostic features in sedimentary sequences. Study on the upper Guojiaba Formation of lower Cambrian at Tangjiahe Section shows that the fine-grained turbidite system containing typical Stow fine-grained turbidite sequences are widely developed at the Northern Sichuan Basin. The lower sequence(T0-T3)of fine-grained turbidite is stacked by fine-sand,silty and muddy laminae in ascending order,and featured by scour structures and some soft-sediment deformation structures(e.g., dish-like water escape structure). The middle sequence(T4-T6)is comprised of muddy laminae embedded with several discontinuous silty laminae. The upper sequence(T7)is consisted of homogeneous muddy laminae,and overlain by abundant bioturbation structures(T8). Meanwhile,the fine-grained sequences show clear normal grading. Therein,the siliciclastic grains are mainly composed of quartzes,micas and lithic fragments,with few feldspars. The grain size frequency distribution curves(histograms)exhibit that the grain sorting is better than traditional sand-rich turbidite,and grain sizes decreasing gradually from sandy laminae from lower to upper sequence. In addition,the frequency grain sizes show that the types of “one line”and “convex broken line”with the suspended components are dominant. The characteristics of C and M values are parallel with the “C=M”baseline suggesting a feature of suspended sediments in the system of turbidity. Moreover,both C and M values shift to the lower left zone(but also along with the “C=M”line)due to the relatively small grain sizes. In consideration of the sedimentary background of the Qiongzhusi Stage(Series 2),the Motianling Old Land located in northwest direction is probably the main sediment source. The interior and marginal topographies of neighboring mixed siliciclastic-carbonate shallow deposits may provide a favorable topographic condition for the transportation of fine-grained sediments to the shelf. Suspended transportation and paroxysmal events,such as storms and floods,are possibly the main influencing factors for the deposition of fine-grained sediments. The study of fine-grained turbidite from the Guojiaba Formation would be in favor of understanding the lower Cambrian paleogeographic condition,and would have potential value for unconventional oil and gas exploration on the Northern Sichuan Basin.
Gong Qiao-Lin,Li Fei,Su Cheng-Peng et al. Characteristics, distribution and mechanisms of fine-grained turbidite: A case study from the Cambrian Guojiaba Formation in Tangjiahe Section, Northern Sichuan Basin[J]. JOPC, 2018, 20(3): 349-364.
[1] 陈全红,李文厚,郭艳琴,梁积伟,崔军平,张道锋. 2006. 鄂尔多斯盆地南部延长组浊积岩体系及油气勘探意义. 地质学报, 80(5): 656-663. [Chen Q H,Li W H,Guo Y Q,Liang J W,Cui J P,Zhang D F.2006. Turbidite systems and the significance of petroleum exploration of Yanchang Formation in the Southern Ordos Basin. Acta Geologica Sinica, 80(5): 656-663] [2] 陈旭,徐均涛. 1990. 论汉南古陆及大巴山隆起. 地层学杂志, 14(2): 81-116. [Chen X,Xu J T.1990. The view of Hannan old land and Daba mountain uplift. Journal of Stratigraphy, 14(2): 81-116] [3] 方爱民,李继亮,侯泉林. 1998. 浊流及相关重力流沉积研究综述. 地质论评, 44(3): 270-280. [Fang A M. Li J L,Hou Q L.1998. Sedimentation of turbidity currents and relative gravity flows: A review. Geological Review, 44(3): 270-280] [4] 方念乔,陈学方,胡超涌,丁旋,张振芳,刘勇勤. 2001. 东北印度洋深海记录基本特征及其对青藏高原隆升的响应. 第四纪研究, 21(6): 490-499. [Fang N Q,Chen X F,Hu C Y,Ding X,Zhang Z F,Liu Y Q.2001. Deep see sedimentary records in the Northeastern Indian ocean and their response to the uplift of the Qinghai-Xizang plateau. Quaternary Sciences, 21(6): 490-499] [5] 方念乔,陈萍,吴琳,石峰. 2002. 孟加拉湾深海记录中的等深流活动特征及其环境意义初探. 地球科学, 27(5): 570-575. [Fang N Q,Chen P,Wu L,Shi F.2002. Contour currents in deep-water records from bay of Bengal and its environmental implication. Earth Science, 27(5): 570-575] [6] 冯娟萍,李文厚,欧阳征健. 2012. 鄂尔多斯盆地黄陵地区上三叠统延长组长7、长6油层组浊积岩沉积特征及地质意义. 古地理学报, 14(3): 295-302. [Feng J P,Li W H,Ouyang Z J.2012. Sedimentary characters and geological implication of turbidite of the Chang 6 and Chang 7 intervals of Upper Triassic Yanchang Formation in Huangling area,Ordos Basin. Journal of Palaeogeography(Chinese Edition), 14(3): 295-302]. [7] 傅强,吕苗苗,刘永斗. 2008. 鄂尔多斯盆地晚三叠世湖盆浊积岩发育特征及地质意义. 沉积学报, 26(2): 186-192. [Fu Q,Lü M M,Liu Y D.2008. Developmental characteristics of turbidite and its implication on petroleum geology in late Triassic basin. Acta Sedimantologica Sinica, 26(2): 186-192] [8] 郝松立,李兆雨,李文厚. 2016. 鄂尔多斯盆地西南部延长组长7段浊积岩沉积特征. 地质通报,35(2/3): 424-432. [Hao S L,Li Z Y,Li W H.2016. Sedimentary characteristics of turbidite of Chang 7 member in Southwestern Ordos Basin. Geological Bulletin of China,35(2/3): 424-432] [9] 黄洁. 2010. 深水小凹陷的填充方式和砂体分布规律研究: 以墨西哥湾Mad Dog区为例. 中国地质大学(北京)博士学位论文, 61-99. [Huang J.2010. Fill and Spill Model and Sand Distribution for Deep-water Mini-basins—A Case Study in the Mad Dog Area,Gulf of Mexico. Doctor’s Thesis of China University of Geosciences(Beijing), 61-99] [10] 姜涛,解习农. 2003. 细粒浊积体研究现状与展望. 地球学报, 24(3): 289-292. [Jiang T,Xie X N.2003. Present condition and prospects of researches on fine-grained turbidite systems. Acta Geoscientica Sinica, 24(3): 289-292] [11] 姜在兴,梁超,吴靖,张建国,张文昭,王永诗,刘惠民,陈祥. 2013. 含油气细粒沉积岩研究的几个问题. 石油学报, 34(6): 1031-1039. [Jiang Z X,Liang C,Wu J,Zhang J G,Zhang W Z,Wang Y S,Liu H M,Chen X.2013. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks. Acta Petrolei Sinica, 34(6): 1031-1039] [12] 匡文龙,杨绍祥,余沛然,劳可通. 2008. 湘西北花垣县下寒武统清虚洞组浊积岩沉积特征及其地质意义. 地质科学, 43(2): 347-358. [Kuang W L,Yang S X,Yu P R,Lao K T.2008. Sedimentary characteristics and geological significance of turbidites in the Lower Cambrian Qingxudong Formation at Huayuan County,northwestern Hunan. Chinese Journal of Geology, 43(2): 347-358] [13] 李皎,何登发. 2014. 四川盆地及邻区寒武纪古地理与构造-沉积环境演化. 古地理学报, 16(4): 441-460. [Li J,He D F.2014. Palaeogeography and tectonic-depositional environment evolution of the Cambrian in Sichuan Basin and adjacent areas. Journal of Palaeogeography(Chinese Edition), 16(4): 441-460] [14] 李景瑞,刘升发,吴建政,冯秀丽,孙兴全,曹鹏,王宇童,石学法. 2016. 孟加拉扇沉积作用与古气候研究进展. 海洋科学, 40(6): 139-157. [Li J R,Liu S F,Wu J Z,Feng X L,Sun X Q,Cao P,Wang Y T,Shi X F.2016. Advances in studies of sedimentation and paleoclimatology in the Bay of Bengal. Marine Sciences, 40(6): 139-157] [15] 李景瑞,刘升发,胡利民,冯秀丽,孙兴全,白亚之,石学法. 2017. 孟加拉湾中部表层沉积物有机碳分布特征及来源. 海洋科学进展, 35(1): 73-82. [Li J R,Liu S F,Hu L M,Feng X L,Sun X Q,Bai Y Z,Shi X F.2017. Distribution and source of organic carbon in surface sediment from Mid-Bengal Bay. Advances in Marine Science, 35(1): 73-82] [16] 李林,曲永强,孟庆任,武国利. 2011. 重力流沉积: 理论研究与野外识别. 沉积学报, 29(4): 677-688. [Li L,Qu Y Q,Meng Q R,Wu G L.2011. Gravity flow sedimentation: Theoretical studies and field identification. Acta Sedimantologica Sinica, 29(4): 677-688] [17] 梁百和,朱素琳. 1992. 湘西吉首地区寒武系碳酸盐岩沉积环境的初步探讨. 沉积学报,(2): 39-44. [Liang B H,Zhu S L.1992. Preliminary discussion on sedimentary environments of cambrian carbonatite in Jishou District of Western Hunan. Acta Sedimentologica Sinica,(2): 39-44] [18] 廖纪佳,朱筱敏,邓秀芹,孙勃,惠潇. 2013. 鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式. 地学前缘, 20(2): 29-39. [Liao J J,Zhu X M,Deng X Q,Sun B,Hui X.2013. Sedimentary characteristics and model of gravity flow in Triassic Yanchang Formation of Longdong Area in Ordos Basin. Earth Science Frontiers, 20(2): 29-39] [19] 刘仿韩,苏春乾,杨友运,李钟秀,叶俭. 1987. 米仓山南坡寒武系沉积相分析. 西安地质学院学报, 9(4): 3-14. [Liu F H,Su C Q,Yang Y Y,Li Z X,Ye J.1987. Sedimentary facies analysis of Cambrian in the south of Micangshan Mountain. Journal of Xi’an College of Geology, 9(4): 3-14] [20] 柳波,吕延防,孟元林,李新宁,郭小波,马强,赵万春. 2015. 湖相纹层状细粒岩特征、成因模式及其页岩油意义: 以三塘湖盆地马朗凹陷二叠系芦草沟组为例. 石油勘探与开发, 42(5): 598-607. [Liu B,Lü Y F,Meng Y L,Li X N,Guo X B,Ma Q,Zhao W C.2015. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang sag,Santanghu Basin,NW China. Petroleum Exploration and Development, 42(5): 598-607] [21] 吕玉珍. 2008. 川北米仓山地区寒武系沉积相及储层特征. 中国石油大学(北京)硕士学位论文, 20-41. [Lü Y Z.2008. Characteristics of Cambrian Sedimentary Facies and Reservoirs in Micang Mountain,Northern Sichuan Basin. Master’s Thesis of China University of Petroleum(Beijing), 20-41] [22] 莫雄. 2012. 川北广元地区寒武纪地层及沉积体系差异性研究. 成都理工大学硕士学位论文, 49-50. [Mo X.2012. Study of stratigraphic classification and the variance of sedimentary system of Cambrian stratum in Guangyuan area,Sichuan. Master’s Thesis of Chengdu University of Technology, 49-50] [23] 牟传龙,梁薇,周恳恳,葛祥英,康建威,陈小炜. 2012. 中上扬子地区早寒武世(纽芬兰世—第二世)岩相古地理. 沉积与特提斯地质, 32(3): 41-53. [Mou C L,Liang W,Zhou K K,Ge X Y,Kang J W,Chen X W.2012. Sedimentary facies and palaeogeography of the middle-upper Yangtze area during the Early Cambrian(Terreneuvian-Series 2). Sedimentary Geology and Tethyan Geology, 32(3): 41-53] [24] 庞雄,陈长民,朱明,何敏,柳保军,申俊,连世勇. 2007. 深水沉积研究前缘问题. 地质论评, 53(1): 38-45. [Pang X,Chen C M,Zhu M,He M,Liu B J,Shen J,Lian S Y.2007. Frontier of deep-water deposition study. Geological Review, 53(1): 38-45] [25] 裴羽,何幼斌,李华,肖彬. 2015. 高密度浊流和砂质碎屑流关系的探讨. 地质论评, 61(6): 1281-1292. [Pei Y,He Y B,Li H,Xiao B.2015. Discuss about relationship between high-density turbidity current and sandy debris flow. Geological Review, 61(6): 1281-1292] [26] 秦建华. 1991. 南盘江印支期前陆盆地泥质浊积岩沉积特征及其环境意义. 岩相古地理,(5): 11-18. [Qin J H.1991. Sedimentary characteristics and environmental significance of the muddy turbidites in the indosinian Nanpanjiang Foreland Basin. Sedimentary Facies and Palaeogeography,(5): 11-18] [27] 饶孟余,钟建华,郭泽清,杨和山,刘金友. 2004a. 济阳坳陷牛庄洼陷沙三段三角洲前缘浊积岩特征. 高校地质学报, 10(4): 624-633. [Rao M Y,Zhong J H,Guo Z Q,Yang H S,Liu J Y.2004a. Turbidite characteristics of delta front for the 3rd member of Shahejie Formation in Niuzhuang Sag,Jiyang Depression. Geological Journal of China Universities, 10(4): 624-633] [28] 饶孟余,钟建华,赵志根,严家平,唐修义. 2004b. 浊流沉积研究综述和展望. 煤田地质与勘探,(6): 1-5. [Rao M Y,Zhong J H,Zhao Z G,Yan J P,Tang X Y.2004b. Overview and prospect on study of turbidity deposits. Coal Geology and Exploration,(6): 1-5] [29] 沈骋,谭秀成,李凌,施开兰,苏成鹏,连承波,黎虹玮,肖笛. 2015. 川北早寒武世碳酸盐岩台缘斜坡沉积特征及变形构造形成机制探讨. 古地理学报, 17(3): 321-334. [Shen C,Tan X C,Li L,Shi K L,Su C P,Lian C B,Li H W,Xiao D.2015. Sedimentary characters of carbonate platform marginal slope of the Early Cambrian in northern Sichuan Basin and perspective of deformation structures. Journal of Palaeogeography(Chinese Edition), 17(3): 321-334]. [30] 沈骋,谭秀成,周博,李凌,曾伟,陈虹宇,苏成鹏,施开兰. 2016. 川北旺苍唐家河剖面仙女洞组灰泥丘沉积特征及造丘环境分析. 地质论评, 62(1): 202-214. [Shen C,Tan X C,Zhou B,Li L,Zeng W,Chen H Y,Su C P,Shi K L.2016. Construction of mud mounds and their forming models of Xiannudong Formation in Tangjiahe Section of Wangcang,North Sichuan. Geological Review, 62(1): 202-214] [31] 石学法,申顺喜,Yi Hi-il,陈志伟,孟毅. 2001. 南黄海现代沉积环境及动力沉积体系. 科学通报,46(s1): 1-6. [Shi X F,Shen S X,Yi Hi-il,Chen Z W,Meng Y.2001. Modern sedimentary environments and dynamic depositional systems in the southern Yellow Sea. Chinese Science Bulletin,46(s1): 1-6] [32] 斯尚华,李建明,刘雪峰. 2009. 湘西王村剖面寒武系浊积岩特征. 海洋地质动态, 25(8): 22-26. [Si S H,Li J M,Liu X F.2009. The characteristics of the Cambrian turbidite in the Wang Village section of Xiangxi. Marine Geology Letters, 25(8): 22-26] [33] 宋明水,向奎,张宇,蔡攀,刘建磊,杨仁超. 2017. 泥质重力流沉积研究进展及其页岩油气地质意义: 以东营凹陷古近系沙河街组三段为例. 沉积学报, 35(4): 740-751. [Song M S,Xiang K,Zhang Y,Cai P,Liu J L,Yang R C.2017. Research progress on muddy gravity flow deposits and their significances on shale oil and gas: A case study form the 3rd oil-member of the Paleogene Shahejia Formation in the Dongying Sag. Acta Sedimantologica Sinica, 35(4): 740-751] [34] 汪明洲,成汉钧,陈祥荣,许安东. 1989. 大巴山区寒武系的研究. 西安地质学院学报, 11(4): 1-9. [Wang M Z,Cheng H J,Chen X R,Xu A D.1989. A study of the Cambrain system of the Dabashan Region. Journal of Xi’an College of Geology, 11(4): 1-11] [35] 魏显贵,杜思清,何政伟,刘援朝,吴德超. 1997. 米仓山地区构造演化. 矿物岩石,12(s1): 107-113. [Wei X G,Du S Q,He Z W,Liu Y C,Wu D C.1997. The tectonic evolution of micangshan area. Acta Petrologica et Mineralogica,12(s1): 107-113] [36] 闫臻,杨长春,李继亮,王真理,肖文交,徐兴旺,段秋梁. 2005. 鲁西地区馒头组下部滑塌堆积的地质特征及其意义. 沉积学报, 23(1): 29-33. [Yan Z,Yang C C,Li J L,Wang Z L,Xiao W J,Xu X W,Duan Q L.2005. Geological features and significance of listostromes from Lower Part of the Mantou Formation in the Luxi Areas,Shandong Province. Acta Sedimantologica Sinica, 23(1): 29-33] [37] 杨江海,马严. 2017. 源-汇沉积过程的深时古气候意义. 地球科学,(11): 1910-1921. [Yang J H,Ma Y.2017. Paleoclimate perspectives of source-to-sink sedimentary processes. Earth Science,(11): 1910-1921] [38] 杨仁超,金之钧,孙冬胜,樊爱萍. 2015. 鄂尔多斯晚三叠世湖盆异重流沉积新发现. 沉积学报, 33(1): 10-20. [Yang R C,Jin Z J,Sun D S,Fan A P.2015. Discovery of hyperpycnal flow deposits in the Late Triassic Lacustrine Ordos Basin. Acta Sedimantologica Sinica, 33(1): 10-20] [39] 杨威,谢武仁,魏国齐,刘满仓,曾富英,谢增业,金惠. 2012. 四川盆地寒武纪—奥陶纪层序岩相古地理、有利储层展布与勘探区带. 石油学报,33(s2): 21-34. [Yang W,Xie W R,Wei G Q,Liu M C,Zeng F Y,Xie Z Y,Jin H.2012. Sequence lithofacies paleogeography,favorable reservoir distribution and exploration zones of the Cambrian and Ordovician in Sichuan Basin,China. Acta Petrolei Sinica,33(s2): 21-34] [40] 尹海权,周洪瑞,程瑞,张维杰,郑小明,杨立业,李杰,王晟宇. 2015. 内蒙古阿拉善北部杭乌拉地区圆包山组时代、沉积特征及大地构造意义. 沉积学报, 33(4): 665-678. [Yin H Q,Zhou H R,Cheng R,Zhang W J, Zheng X M,Yang L Y,Li J,Wang S Y.2015. The age,sedimentary characteristics and tectonic significance on the Yuanbaoshan Formation in the Southern Margin of the Siberian Plate,North of Alxa,Inner Mongolia. Acta Sedimantologica Sinica, 33(4): 665-678] [41] 袁庆东,李本亮,刘海涛,刘少举,王蕾. 2010. 川西北地区构造演化阶段及岩相古地理. 东北石油大学学报, 34(6): 42-52. [Yuan Q D,Li B L,Liu H T,Liu S J,Wang L.2010. The tectonics evolution and lithofacies palaeogeography in the northwest of the Sichuan Basin. Journal of Northeast Petroleum University, 34(6): 42-52] [42] 张海峰,田景春,张涛,王峰,张锦泉. 2012. 华池—庆阳地区延长组长6-长7油层组浊积岩特征及成因. 成都理工大学学报(自然科学版), 39(3): 238-243. [Zhang H F,Tian J C,Zhang T,Wang F,Zhang J Q.2012. Characteristics and genesis of turbidite of Chang 6 and Chang 7 oil reservoirs in Huachi-Qingyang area of Ordos Basin,China. Journal of Chengdu University of Technology, 39(3): 238-243] [43] 张满郎,谢增业,李熙喆,谷江锐,杨威,刘满仓. 2010. 四川盆地寒武纪岩相古地理特征. 沉积学报, 28(1): 128-139. [Zhang M L,Xie Z Y,Li X J,Gu J R,Yang W,Liu M C.2010. Characteristics of lithofacies paleogeography of Cambrian in Sichuan Basin. Acta Sedimantologica Sinica, 28(1): 128-139] [44] 张廷山,兰光志,沈昭国,王顺玉,姜照勇. 2005. 大巴山、米仓山南缘早寒武世礁滩发育特征. 天然气地球科学, 16(6): 710-714. [Zhang T S,Lan G Z,Shen Z G,Wang S Y,Jiang Z Y.2005. Early Cambrian reefs and banks development in Southern margin of Daba Mountain and Micang Mountain. Natural Gas Geoscience, 16(6): 710-714] [45] 赵兵,杜思清,徐新煌. 1997. 米仓山南缘寒武纪岩石地层及层序地层. 矿物岩石,17(s1): 18-28. [Zhao B,Du S Q,Xu X H.1997. The lithostratigraphy and sequence stratigraphy of Cambrian in the South of Micangshan area. Journal of Mineralogy and Petrology,17(s1): 18-28] [46] 赵宁,黄江琴,李栋明,吴向红,黄奇志. 2013. 远源缓坡型薄层细粒浊积岩沉积规律: 以松南西斜坡大布苏地区青一段地层为例. 沉积学报, 31(2): 291-301. [Zhao N,Huang J Q,Li D M,Wu X H,Huang Q Z.2013. Sedimentary laws of thin-layer,fine-grain turbidites of distant-gentle slope: A case study from the 1st member of Qingshankou Formation. Acta Sedimantologica Sinica, 31(2): 291-301] [47] 甄甄,刘招君,孙平昌,孟庆涛. 2012. 桦甸盆地始新统桦甸组扇三角洲和水下扇粒度分析与对比. 世界地质, 31(4): 681-692. [Zhen Z,Liu Z J,Sun P C,Meng Q T.2012. Grain size analysis and contrast between fan delta and underwater fan in Eocene Huadian Formation in Huadian Basin. Global Geology, 31(4): 681-692] [48] 郑晓东,朱明,何敏,李宏伟,连世勇,张昕. 2007. 珠江口盆地白云凹陷荔湾深水扇砂体分布预测. 石油勘探与开发, 34(5): 529-533. [Zheng X D,Zhu M,He M,Li H W,Lian S Y,Zhang X.2007. Prediction of Liwan deep submarine fan sand body distribution,Baiyun Sag,Pearl River Mouth Basin. Petroleum Exploration and Development, 34(5): 529-533] [49] 邹才能,朱如凯,吴松涛,杨智,陶士振,袁选俊,侯连华,杨华,徐春春,李登发,白斌,王岚. 2012. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例. 石油学报, 33(2): 173-187. [Zou C N,Zhu R K,Wu S T,Yang Z,Tao S Z,Yuan X J,Hou L H,Yang H,Xu C C,Li D F,Bai B,Wang L.2012. Types characteristics,genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance. Acta Petrolei Sinica, 33(2): 173-187] [50] Bouma A H.1962. Sedimentology of some flysch deposits: A graphic approach to facies interpretation. Amsterdam: Elsevier,313. [51] Bouma A H.2000a. Coarse-grained and fine-grained turbidite systems as end member models: Applicability and dangers. Marine & Petroleum Geology, 17(2): 137-143. [52] Bouma A H.2000b. Fine-grained,mud-rich turbidite systems: Model and comparison with coarse-grained,sand rich systems. In: Bouma A H, Stone C G(eds.). Fine-grained turbidite systems,AAPG Memoir 72/SEPM Special Publication, 68: 9-20. [53] Bouma A H.2001. Fine-grained submarine fans as possible recorders of long- and short-term climatic changes. Global & Planetary Change, 28(1): 85-91. [54] Bouma A H,Gwang H,Wagoner Antwerepen O.1995. Channel complex architecture of fine-grained submarine fans at the base-of-slope. AAPG Bulletin, 45: 65-70. [55] Bourget J,Zaragosi S,Ellouz-Zimmermann N,Mouchot N,Garlan T,Schneider J,Lanfumey V,Lallemant S.2011. Turbidite system architecture and sedimentary processes along topographically complex slopes: The Makran convergent margin. Sedimentology, 58(2): 376-406. [56] Cartwright J A,Haddock R C,Pinheiro L M.1993. The lateral extent of sequence boundaries. Geological Society of London Special Publications, 71(1): 15-34. [57] Chen F,Cai F,Yang B H,Song W L,Chen C H.1992. Characterization of fine-graine turbidite deposits from the south China sea sediment cores. Chinese Journal of Oceanology and Limnology, 10(2): 184-192. [58] Clare M A,Talling P J,Challenor P, Malgesini G, Hunt J.2014. Distal turbidites reveal a common distribution for large(>0.1 km3)submarine landslide recurrence. Geology, 42(3): 263-266. [59] Curray J R.1994. Sediment volume and mass beneath the Bay of Bengal. Earth & Planetary Science Letters, 125: 371-383. [60] Curray J R.2014. The Bengal Depositional System: From rift to orogeny. Marine Geology, 352(2): 59-69. [61] Curray J R,Emmel F J,Moore D G.2003. The Bengal Fan: Morphology,geometry,stratigraphy,history and processes. Marine & Petroleum Geology, 19(10): 1191-1223. [62] Hesse R.1975. Turbiditic and non-turbiditic mudstone of Cretaceous flysch sections of the East Alps and other basins. Sedimentology, 22(3): 387-416. [63] Kneller B C,McCaffrey M. 1995. Modelling the effects of salt-induced topography on deposition from turbidity currents. In: Travis C S, Harrison H, Hudec M R,Vendeville B C, Peel F S, Perkins B E(eds). Salt,Sediment and Hydrocarbons: Proceedings of GCSSEPM Foundation 16th Annual Research,SEPM, 137-145. [64] Krumbein W C.1934. Size frequency distributions of sediments. Journal of Sedimentary Research, 4(2): 65-77. [65] Kuenen P H.1964. Deep-Sea sands and ancient turbidites. Developments in Sedimentology, 3(7): 3-33. [66] Lash G G.1988. Sedimentology and evolution of the Martinsburg Formation(Upper Ordovician)fine-grained turbidite depositional system,central Appalachians. Sedimentology, 35(3): 429-447. [67] Lowe D R.1982. Sediment gravity flows: Ⅱ. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Research, 52(6): 343-61. [68] Passega R.1957. Texture as characteris tic of clas tic deposition. Bulletin of the American Association of Petroleum Geologists, 41(9): 1952-1984. [69] Passega R.1964. Grain size representation by CM patterns as a geologic tool. Journal of Sedimentary Research, 34(4): 830-847. [70] Piper D J W. 1978. Turbidite muds and silts on deep sea fans and abyssal plains. In: Stanley D J, Kelling G(eds). Sedimentation in Submarine Canyons,Fans,and Trenches. Dowden,Hutchinson and Ross,Stroudsburg,Penn,163-176. [71] Posamentier H W,Kolla V.2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research, 73(3): 367-388. [72] Postma G,Kleverlaan K,Cartigny M J B.2015. Recognition of cyclic steps in sandy and gravelly turbidite sequences,and consequences for the Bouma facies model. Sedimentology, 61(7): 2268-2290. [73] Schieber J,Zimmerle W.1998. The history and promise of shale research. In: Schieber J,Zimmerle W,Sethi P(eds). Shales and Mud-stone: Basin Studies,Sedimentology and Paleontology.Stuttgart:Schweizerbart’sche Verlagsbuchhandlung, 1: 1-10. [74] Scott E D,Bouma A H,Wickens H D.2000. Influence of tectonics on submarine fan deposition,Tanqua and Laingsburg Subbasins,South Africa. AAPG Memoir 72/SEPM Special Publication No.68, Chapter 5. [75] Shanmugam G.2000.50 years of the turbidite paradigm(1950s-1990s): Deep-water processes and facies models-a critical perspective. Marine & Petroleum Geology, 17(2): 285-342. [76] Shanmugam G.2006. Deep-water Processes and Facies Models: Implications for Sandstone Petroleum Reservoirs. Elsevier,313. [77] Soreghan G S,Moses A M,Soreghan M J,Hamilton M A,Fanning C M,Link P K.2007. Palaeoclimatic inferences from upper Palaeozoic siltstone of the Earp Formation and equivalents,Arizona-New Mexico(USA). Sedimentology, 54: 701-719. [78] Stow D A V.2005. Sedimentary Rocks in the Field: A Color Guide. Gulf Professional Publishing. [79] Stow D A V,Shanmugam G.1980. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments. Sedimentary Geology, 25(1-2): 23-42. [80] Stow D A V,Piper D J W.1984. Deep-water fine-grained sediments: Facies models. Geological Society London Special Publications, 15(1): 611-646. [81] Stow D A V,Howell D G,Nelson C H.1983. Sedimentary,tectonic,and sea-level controls on submarine fan and slope-apron turbidite systems. Geo-Marine Letters, 3(2-4): 57-64. [82] Stow D A V,Howell D G,Nelson C H.1985. Sedimentary,Tectonic,and Sea-Level Controls. Submarine Fans and Related Turbidite Systems. Springer, New York,15-22. [83] Sumner E J,Talling P J,Amy L A,Wynn R B,Stevenson C J,Frenz M.2012. Facies architecture of individual basin-plain turbidites: Comparison with existing models and implications for flow processes. Sedimentology, 59(6): 1850-1887. [84] Talling P J,Masson D G,Sumner E J,Malgesini G.2012. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59(7): 1937-2003. [85] Weber M E,Niessen F,Kuhn G,Wiedicke M.1997. Calibration and application of marine sedimentary physical properties using a multi-sensor core logger. Marine Geology, 136(3-4): 151-172. [86] Yang A H,Zhu M Y,Zhuravlev A,Yuan K X,Zhang J M,Chen Y Q.2016. Archaeocyathan zonation of the Yangtze Platform: Implications for regional and global correlation of lower Cambrian stages. Geological Magazine, 153(3): 388-409. [87] Yang R,Fan A,Han Z, van Loon A J.2017. Lithofacies and origin of the Late Triassic muddy gravity-flow deposits in the Ordos Basin,central China. Marine and Petroleum Geology, 85: 194-219. [88] Yuan S,Wu S,Thomas L,Yao G Y,Lü F L,Cao F,Wang H,Li L.2009. Fine-grained Pleistocene deepwater turbidite channel system on the slope of Qiongdongnan Basin,northern South China Sea. Marine & Petroleum Geology, 26(8): 1441-1451.