End-member modeling analysis and test of grain-size distribution:A case from the late Quaternary sediments of Borehole DK-12 in the western Jilantai-Hetao Basin
Mou Xue-Song1, Ma Jun1, Wang Yong-Da1, Fan Yu-Xin1, 2
1 Key Laboratory of Mineral Resources in Western China(Gansu Province),School of Earth Sciences,Lanzhou University,Lanzhou 730000,Gansu; 2 Key Laboratory of Western China’s Environmental Systems(Ministry of Education),Lanzhou University,Lanzhou 730000,Gansu;
Abstract:End-member modeling analysis is beneficial to extract the end-members with different transporting dynamics from sediments characterized by complex multimodal distribution. However,because the grain-size distribution of sediments is affected by many factors besides depositional environment,the effectiveness of this method and the geological significance of each end-member need to be tested. In this paper,the BEMMA algorithm is used to analyze grain size data of samples from the Borehole DK-12 obtained in the Dengkou sub-uplift at the western Jilantai-Hetao Basin. Four end-members are recognized including remote dust(EM 1),aeolian sand(EM 2),and fluvial sand(EM 3 and EM 4).
Mou Xue-Song,Ma Jun,Wang Yong-Da et al. End-member modeling analysis and test of grain-size distribution:A case from the late Quaternary sediments of Borehole DK-12 in the western Jilantai-Hetao Basin[J]. JOPC, 2018, 20(3): 489-500.
[1] 陈发虎,范育新,Madsen D B,春喜,赵晖,杨丽萍. 2008. 河套地区新生代湖泊演化与“吉兰泰—河套”古大湖形成机制的初步研究. 第四纪研究, 28(5): 866-873. [Chen F H,Fan Y X,Madsen D B,Chun X,Zhao H,Yang L P.2008. Prelminary study on the form ationmechanism of the “Jilantai-Hetao” Megalake and the lake evolutionary history in Hetao region. Quaternary Sciences, 28(5): 866-873] [2] 春喜. 2006. 晚第四纪吉兰泰盐湖古湖面与环境变化研究. 兰州大学博士学位论文,19-24. [Chun X.2006. Palaeo-Lake Level Variations of Jilantai Salt Lake and the Environmental Change Since Late Qatrenary. Doctoral Dissertation of Lanzhou University,19-24] [3] 郭峰,孙东怀,王飞,李再军,李宝锋. 2014. 巴丹吉林沙漠地层序列的粒度分布及其组分成因分析. 海洋地质与第四纪地质, 34(1): 165-173. [Guo F,Sun D H,Wang F,Li Z J,Li B F.2014. Grain-size distribution pattern of the depositional sequence in central Badain Jaran Desert and its genetic interpretation. Marine Geology & Quaternary Geology, 34(1): 165-173] [4] 侯仁之,俞伟超. 1973. 乌兰布和沙漠的考古发现和地理环境的变迁. 考古,(2): 92-107. [Hou R Z,Yu W C.1973. Archaeological discoveries and changes in geographical environment in Ulan Buh Desert. Archeology,(2): 92-107] [5] 贾铁飞,银山. 2004. 乌兰布和沙漠北部全新世地貌演化. 地理科学, 24(2): 217-221. [Jia T F,Yin S.2004. Geomorphic evolution in northern Ulan Buh Desert in the Holocene. Scientia Geographica Sinica, 24(2): 217-221] [6] 景爱. 1999.沙漠考古通论.北京: 紫禁城出版社,113-136. [Jing A.1999. Desert Archeology. Beijing: Forbidden City Publishing House,113-136] [7] 李炳元,葛全胜. 2003. 近2000年来内蒙后套平原黄河河道演变. 地理学报, 58(2): 239-246. [Li B Y,Ge Q S.2003. Evolution of the Yellow River in the Houtao Plain of Inner Mongolia in the past 2000 Years. Acta Geographica Sinica, 58(2): 239-246] [8] 鲁春霞. 1997. 粘土矿物在古环境研究中的指示作用. 中国沙漠, 17(4): 456-460. [Lu C X.1997. Clay minerals as indicators of paleoenironment. Journal of Desert Research, 17(4): 456-460] [9] 牛刚,王杰民. 2011. 关于黏土矿物粒级提取的方法探讨. 甘肃科技, 27(16): 42-44. [Niu G,Wang J M.2011. Discussion on the method of extraction of clay mineral particles. Gansu Science and Technology, 27(16): 42-44] [10] 彭淑贞,郭正堂. 2007. 风成三趾马红土与第四纪黄土的粘土矿物组成异同及其环境意义. 第四纪研究, 27(2): 277-285. [Peng S Z,Guo Z T.2007. Clay mineral composition of the tertiary red clay and the quaternary loess-palaeosols as well as its environmental implication. Quaternary Sciences, 27(2): 277-285] [11] 孙东怀,安芷生,苏瑞侠,吴锡浩,王苏民,孙千里,Rea D,Bloemendal J.2001. 古环境中沉积物粒度组分分离的数学方法及其应用. 自然科学进展, 11(3): 269-276. [Sun D H,An Z S,Su R X,Wu X H,Wang S M,Sun Q L,Rea D,Bloemendal J.2001. Mathematical approach to sedimentary component partitioning of polymodal sediments and its applications. Progress in Natural Science, 11(3): 269-276] [12] 孙湘君,王琫瑜,宋长青. 1996. 中国北方部分科属花粉—气候响应面分析. 中国科学D辑: 地球科学, 26(5): 431-436. [Sun X J,Wang B Y,Song C Q.1996. A part of the genus pollen-Climate Response Surface Analysis,northern China. Science in China(Series D): Earth Science, 26(5): 431-436] [13] 谭其骧. 1991. 简明中国历史地图集. 北京: 中国地图出版社,17-18. [Tan Q X.1991. Concise Historical Atlas of China. Beijing: China Cartographic Publishing House,17-18] [14] 汤艳杰,贾建业,谢先德. 2002. 粘土矿物的环境意义. 地学前缘, 9(2): 337-344. [Tang Y J,Jia J Y,Xie X D.2002. Environment significance of clay minerals. Earth Science Frontiers, 9(2): 337-344] [15] 杨丽萍. 2008. 基于遥感与DEM的“吉兰泰—河套”古大湖重建研究. 兰州大学博士学位论文,149-152. [Yang L P.2008. Reconstruction of Paleo-Megalae “Jilantai-Hetao” Based on Remote Sensing and DEM. Doctoral Dissertation of Lanzhou University,149-152] [16] 张乃娴,万国江,马玉光. 2000. 威宁草海沉积物中的粘土矿物及其环境记录. 地质科学, 35(2): 206-211. [Zhang N X,Wan G J,Ma Y G.2000. The clay mineral and its environmental record in the sediment core of Caohai,Weining. Chinese Journal of Geology, 35(2): 206-211] [17] Biscaye P E.1965. Mineralogy and sedimentation of recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans. Geological Society of America Bulletin, 76(7): 803-832. [18] Chen F H,Fan Y X,Chun X,Madsen D B,Oviatt C G,Zhao H,Yang L P,Sun Y.2008. Preliminary research on Megalake Jilantai-Hetao in the arid areas of China during the Late Quaternary. Chinese Science Bulletin, 53(11): 1725-1739. [19] Diekmann B,Petsehick R,Gingele F X,Fütterer D K,Abelmann A,Brathauer U,Gersonde R,Mackensen A.1996. Clay mineral fluctuations in Late Quaternary sediments of the southeastern South Atlantic: Implications for Past Changes of Deep Water Advection. The South Atlantic: Springer-Verlag Berlin Heidelberg,621-644. [20] Dietze E,Hartmann K,Diekmann B,IJmker J,Lehmkuhl F,Opitz S,Stauch G,Wünnemann B,Borchers A.2012. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona,NE Tibetan Plateau,China. Sedimentary Geology,243-244(1): 169-180. [21] Dietze E,Maussion F,Ahlborn M,Diekmann B,Hartmann K,Henkel K,Kasper T,Lockot G,Opitz S,Haberzettl T.2014. Sediment transport processes across the Tibetan Plateau inferred from robust grain-size end members in lake sediments. Climate of the Past, 10(1): 91-106. [22] Fan Y X,Chen F H,Wei G X,Madsen D B,Oviatt C G,Zhao H,Chun X,Yang L P,Fan T L,Li G Q.2010. Potential water sources for Late Quaternary Megalake Jilantai-Hetao,China,inferred from mollusk shell 87Sr/86Sr ratios. Journal of Paleolimnology, 43(3): 577-587. [23] Fan Y X,Wang Y D,Mou X S,Zhao H,Zhang F,Zhang F,Liu W H,Hui Z C,Huang X Z,Ma J.2017. Environmental status of the Jilantai Basin,North China,on the northwestern margin of the modern Asian summer monsoon domain during Marine Isotope Stage 3. Journal of Asian Earth Sciences, 147: 178-192. [24] Fieller N R J,Gilbertson D D,Griffin C M,Briggs D J,Jenkinson R D S.1992. The statistical modelling of the grain size distributions of cave sediments using log skew laplace distributions: Creswell Crags,near Sheffield,England. Journal of Archaeological Science, 19(2): 129-150. [25] Flenley E C,Fieller N R J,Gilbertson D D.1987. The statistical analysis of ‘mixed’ grain size distributions from aeolian sands in the Libyan Pre-Desert using log skew Laplace models. Geological Society London Special Publications, 35(1): 271-280. [26] Ijmker J,Stauch G,Dietze E,Hartmann K,Diekmann B,Lockot G,Opitz S,Wünnemann B,Lehmkuhl F.2012. Characterisation of transport processes and sedimentary deposits by statistical end-member mixing analysis of terrestrial sediments in the Donggi Cona lake catchment,NE Tibetan Plateau. Sedimentary Geology, 281(1): 166-179. [27] Kondolf G M,Adhikari A.2000. Weibull vs. lognormal distributions for fluvial gravels. Journal of Sedimentary Research, 70(3): 456-460. [28] Leys J,McTainsh G,Koen T,Mooney B,Strong C.2005. Testing a statistical curve-fitting procedure for quantifying sediment populations within multi-modal particle-size distributions. Earth Surface Processes & Landforms, 30(5): 579-590. [29] Li Z J,Sun D H,Chen F H,Wang F,Zhang Y B,Guo F,Wang X,Li B F.2014. Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China. Quaternary Science Reviews, 85(1): 85-98. [30] Parker E J,Bloemendal J.2005. Aeolian process and pedogenesis under the influence of the East Asian monsoon: A statistical approach to particle-size distribution variability. Sedimentary Geology, 181(3-4): 195-206. [31] Purkait B.2002. Patterns of grain-size distribution in some point bars of the Usri River,India. Journal of Sedimentary Research, 72(3): 367-375. [32] Stuut J B W,Prins M A,Schneider R R,Weltje G J,Jansen J H F,Postma G.2002. A 300-kyr record of aridity and wind strength in southwestern Africa: Inferences from grain-size distributions of sediments on Walvis Ridge,SE Atlantic. Marine Geology, 180(1-4): 221-233. [33] Sun D H,Bloemendal J,Rea D K,Vandenberghe J,Jiang F C,An Z S,Su R X.2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments,and numerical partitioning of the sedimentary components. Sedimentary Geology, 152(3-4): 263-277. [34] Sun D H,Bloemendal J,Rea D K,An Z S,Vandenberghe J,Lu H Y,Su R X,Liu T S.2004. Bimodal grain-size distribution of Chinese loess,and its palaeoclimatic implications. Catena, 55(3): 325-340. [35] Sutherland R A,Lee C T.1994. Application of the log-hyperbolic distribution to Hawai’ian beach sands. Journal of Coastal Research, 10(2): 251-262. [36] Vandenberghe J.2013. Grain size of fine-grained windblown sediment: A powerful proxy for process identification. Earth-Science Reviews, 121(6): 18-30. [37] Vriend M,Prins M A.2005. Calibration of modelled mixing patterns in loess grain-size distributions: An example from the north-eastern margin of the Tibetan Plateau,China. Sedimentology, 52(6): 1361-1374. [38] Weltje G J.1997. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem. Mathematical Geology, 29(4): 503-549. [39] Weltje G J,Prins M A.2007. Genetically meaningful decomposition of grain-size distributions. Sedimentary Geology, 202(3): 409-424. [40] Yang L P,Chen F H,Chun X,Fan Y X,Sun Y J,Madsen D B,Zhang X.2008. The Jilantai Salt Lake shorelines in Northwestern arid China revealed by remote sensing images. Journal of Arid Environments, 72(5): 861-866. [41] Yu S Y,Colman S M,Li L X.2016. BEMMA: A hierarchical bayesian end-member modeling analysis of sediment grain-size distributions. Mathematical Geosciences, 48(6): 723-741.