摘要 近年来,根据泥质岩中常量元素的摩尔数计算出的化学蚀变指数(CIA: Chemical index of alteration)、化学风化指数(CIW: Chemical index of weathering)和斜长石蚀变指数(PIA: Plagioclase index of alteration)被广泛用来反映物源区的风化程度及物源区古气候,这些指数在应用时都有一些严格的限制因素,应给予足够重视。CIA计算公式未排除成岩作用过程中钾交代作用的影响,需要采用A-CN-K[Al2O3-(CaO*+Na2O)-K2O]三角图进行判断,对发生钾交代作用的样品利用A-CN-K三角图或CIAcorr计算公式进行校正。CIW计算公式中去掉了K2O,但没有排除钾长石中的Al元素。PIA计算公式中考虑了钾长石中的Al元素,但只适用于判断母岩中仅含有斜长石而不含钾长石的物源区风化程度。综合分析表明,在判断物源区风化程度及古气候时,CIA的干扰因素相对较少,值得推广。但即使利用从泥质岩常量元素获得的CIA值来判断物源区的风化程度时,仍需要考虑沉积分异作用、再旋回作用、沉积区进一步风化作用以及成土作用、成岩期的钾交代作用的影响,建议首先依据泥质岩常量元素的摩尔数计算出成分变异指数(ICV: Index of compositional variability),然后对ICV>1的样品进行CIA的计算,并利用A-CN-K三角图或CIAcorr计算公式对CIA值进行钾交代作用的校正,该校正过的CIAcorr计算值可用来判断物源区的风化程度。
Abstract:In recent years the chemical index of alteration(CIA),chemical index of weathering(CIW)and plagioclase index of alteration(PIA), have been widely used in attempts to quantify the degree of weathering in the provenance areas and to infer paleoclimatic conditions in provenance areas. There are,however,some limiting factors in the application of these indices which merit careful consideration. The CIA does not exclude the effect of potassium metasomatism so that it is necessary to use the A-CN-K[Al2O3-(CaO*+Na2O)-K2O]triangle to identify it and make corrections,or to utilize the CIAcorr formula. The CIW provides a correction for K2O,but no allowance is made for Al in potassium feldspar. The PIA considers the Al in potassium feldspar,but is only useful to judge changes involving plagioclase feldspars. Comprehensive analyses have shown that use of the CIA is the most effective way of obtaining an estimate of weathering severity and provenance. Before utilizing CIA values to estimate the degree of weathering in the provenance area,the influences of sedimentary differentiation(grain size differences),sediment recycling,further weathering in sedimentary region,pedogenesis and potassium metasomatism should be taken into account. We recommend a procedure,that is,(1)analyzing elemental compositions of mudstones,(2)calculating an index of compositional variability(ICV),(3)selecting samples with ICV>1 and using these values for the CIA calculation,(4)using the A-CN-K ternary diagram or CIAcorr formula to correct for potassium metasomatism. The corrected CIA values can then be used to estimate the degree of weathering to which the provenance area has been subjected.
Xu Xiao-Tao,Shao Long-Yi. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance[J]. JOPC, 2018, 20(3): 515-522.
[1] 常丽华,陈曼云,金巍,李世超,于介江. 2006. 透明矿物薄片鉴定手册.北京: 地质出版社,1-236. [Chang L H,Chen M Y,Jin W,Li S C,Yu J J.2006. Manual for Identification of Nonopaque Mineral Thin Section. Beijing: Geological Publishing House,1-236] [2] 范翔,刘桂建,孙若愚,孙梅. 2015. 淮南二叠纪含煤地层泥质岩地球化学特征及其地质意义. 地学前缘, 22(4): 299-311. [Fan X,Liu G J,Sun R Y,Sun M.2015. Geochemical characteristics of argillaceous rocks in Permian coal-bearing strata in Huainan and their geological implications. Earth Science Frontiers, 22(4): 299-311] [3] 冯连君,储雪蕾,张启锐,张同钢. 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘, 10(4): 539-544. [Feng L J,Chu X L,Zhang Q R,Zhang T G.2003. CIA(chemical index of alteration)and its applications in the Neoproterozoic clastic rocks. Earth Science Frontiers, 10(4): 539-544] [4] 付亚飞,邵龙义,张亮,郭双庆,石彪,侯海海,闫晗,宋建军. 2018. 焦作煤田石炭—二叠纪泥质岩地球化学特征及古环境意义. 沉积学报,36(2):415-426. [Fu Y F,Shao L Y,Zhang L,Guo S Q,Shi B,Hou H H,Yan H,Song J J.2018. Geochemical characteristics of mudstones in the Permo-Carboniferous strata of the Jiaozuo coalfield and their paleoenvironmental significance. Acta Sedimentologica Sinica,36(2):415-426] [5] 何良彪. 1984. 渤海表层沉积物中的黏土矿物. 海洋学报, 6(2): 132-136. [He L B.1984. Clay minerals in the surface sediments of the Bohai Sea. Acta Oceanologica Sinica, 6(2): 132-136] [6] 雷开宇,刘池洋,张龙,吴柏林,寸小妮,孙莉. 2017. 鄂尔多斯盆地北部侏罗系泥岩地球化学特征: 物源与古沉积环境恢复. 沉积学报, 35(3): 621-636. [Lei K Y,Liu C Y,Zhang L,Wu B L,Cun X N,Sun L.2017. Element geochemical characteristics of the Jurassic mudstones in the northern Ordos Basin: Implications for tracing sediment sources and paleoenvironment restoration. Acta Sedimentologica Sinica, 35(3): 621-636] [7] 罗情勇,钟宁宁,王延年,张彦起,秦婧,齐琳,马勇,张毅,朱顺玲,黄小艳. 2013. 华北北部中元古界洪水庄组页岩地球化学特征: 物源及其风化作用. 地质学报, 87(12): 1913-1921. [Luo Q Y,Zhong N N,Wang Y Y,Zhang Y Q,Qin J,Qi L,Ma Y,Zhang Y,Zhu S L,Huang X Y.2013. Geochemistry of Mesoproterozoic Hongshuizhuang Formation shales in Northern North China: Implications for provenance and source weathering. Acta Geologica Sinica, 87(12): 1913-1921] [8] 罗忠,邵龙义,姚光华,邓光明,汪浩,韩俊. 2008. 滇东黔西上二叠统含煤岩系泥岩黏土矿物组成及环境意义. 古地理学报, 10(3): 297-304. [Luo Z,Shao L Y,Yao G H,Deng G M,Wang H,Han J.2008. Mudstones in the Upper Permian coal-bearing series in eastern Yunnan and western Guizhou: Clay minerals composition and their environmental significance. Journal of Palaeogeography(Chinese Edition), 10(3): 297-304] [9] 吕全荣,王效京. 1985. 长江口细颗粒沉积物的黏土矿物及地球化学特征. 沉积学报, 3(4): 144-156. [Lü Q R,Wang X J.1985. Clay minerals in fine-grained sediments at Changjiang estuary and their geochemical characteristics. Acta Sedimentologica Sinica, 3(4): 144-156] [10] 邵龙义,张鹏飞. 1992. 湘中下石炭统黏土矿物组合特征. 沉积学报, 10(4): 87-93. [Shao L Y,Zhang P F.1992. Clay mineral assemblages in the Lower Carboniferous of Central Hunan,South China. Acta Sedimentologica Sinica, 10(4): 87-93] [11] 邵龙义,何志平,罗文林,刘永福,张鹏飞. 2005. 河北省南部石炭、二叠纪煤系土壤特征. 西安石油大学学报(自然科学版), 20(3): 6-10. [Shao L Y,He Z P,Luo W L,Liu Y F,Zhang P F.2005. Characteristics of the palaeosoils in the coal measures of Carboniferous and Permian in southern Hebei,China. Journal of Xi’an Shiyou University(Natural Science Edition), 20(3): 6-10] [12] 杨江海,马严. 2017. 源-汇沉积过程的深时古气候意义. 地球科学: 中国地质大学学报, 42(11): 1910-1921. [Yang Y H,Ma Y.2017. Paleoclimate perspectives of source-to-sink sedimentary processes. Earth Science: Journal of China University of Geosciences, 42(11): 1910-1921] [13] 赵永胜. 1993. 云南星云湖断陷湖盆中黏土矿物组合特征与沉积环境关系的初步探讨. 海洋与湖沼, 24(5): 447-455. [Zhao Y S.1993. A preliminary study on the relationship between the characteristics of clay mineral assemblage and sedimentary environments in down-faulted lake basins of Xingyun lake,Yunnan Province. Oceanologia et Limnologia Sinica, 24(5): 447-455] [14] Armstrong-Altrin J S,Yong I L,Verma S P,Ramasamy S.2004. Geochemistry of sandstones from the Upper Miocene Kudankulam Formation,southern India: Implications for provenance,weathering,and tectonic setting. Journal of Sedimentary Research, 74(2): 285-297. [15] Armstrong-Altrin J S,Nagarajan R,Madhavaraju J,Rosalezhoz L,Yong I L,Balaram V,Cruzmartínez A,Avilaramírez G.2013. Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region,Hidalgo,eastern Mexico: Implications for source-area weathering,provenance,and tectonic setting. Comptes Rendus Geoscience, 345(4): 185-202. [16] Awasthi N.2017. Provenance and paleo-weathering of Tertiary accretionary prism-forearc sedimentary deposits of the Andaman Archipelago,India. Journal of Asian Earth Sciences, 150: 45-62. [17] Babeesh C,Achyuthan H,Jaiswal M K,Lone A.2017. Late Quaternary loess-like paleosols and pedocomplexes,geochemistry,provenance and source area weathering,Manasbal,Kashmir Valley,India. Geomorphology, 284: 191-205. [18] Barshad I.1966. The effect of a variation in precipitation on the nature of clay mineral formation in soils from acid and basic igneous rocks. Proceedings International Clay Conference: 167-173. [19] Cox R,Lowe D R,Cullers R L.1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica Et Cosmochimica Acta, 59(14): 2919-2940. [20] Ding H F,Ma D S,Yao C Y,Shu L S.2009. Sedimentary environment of Ediacaran glacigenic diamictite in Guozigou of Xinjiang,China. Chinese Science Bulletin, 54(18): 3283-3294. [21] Edzwald J K,O’Melia C R.1975. Clay distributions in recent estuarine sediments. Clays & Clay Minerals, 23(1): 39-44. [22] Effoudou-Priso E N,Onana V L,Boubakar L,Ekodeck G E.2014. Relationships between major and trace elements during weathering processes in a sedimentary context: Implications for the nature of source rocks in Douala,Littoral Cameroon. Chemie der Erde-Geochemistry, 74(4): 765-781. [23] Egli M,Mirabella A,Fitze P.2001. Clay mineral formation in soils of two different chronosequences in the Swiss Alps. Geoderma, 104(1-2): 145-175. [24] Egli M,Mirabella A,Sartori G.2008. The role of climate and vegetation in weathering and clay mineral formation in late Quaternary soils of the Swiss and Italian Alps. Geomorphology, 102(3-4): 307-324. [25] Fadipe O A,Carey P F,Akinua A,Adekola S A.2011. Provenance,diagenesis and reservoir quality of the lower cretaceous sandstone of the orange basin,South Africa. South African Journal of Geology, 114(3-4): 433-448. [26] Fagel N.2007. Clay Minerals,Deep Circulation and Climate . In: Developments in Marine Geology.Elsevier: 139-176. [27] Fedo C M,Nesbitt H W,Young G M.1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance. Geology, 23(10): 921-924. [28] Gaillardet J,Dupré B,Allègre C J.1999. Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer?Geochimica Et Cosmochimica Acta, 63(23-24): 4037-4051. [29] Garzanti E,Padoan M,Setti M,Najman Y,Peruta L,Villa I M.2013. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds. Geochemistry Geophysics Geosystems, 14(2): 292-316. [30] Harnois L.1988. The CIW index: A new chemical index of weathering. Sedimentary Geology, 55(3-4): 319-322. [31] Jayaprakash M,Nagarajan R,Velmurugan P M,Sathiyamoorthy J,Krishnamurthy R R,Urban B.2012. Assessment of trace metal contamination in a historical freshwater canal(Buckingham Canal),Chennai,India. Environmental Monitoring & Assessment, 184(12): 7407-7424. [32] Kamp P C V D,Leake B E.1985. Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Transactions of the Royal Society of Edinburgh Earth Sciences, 76(4): 411-449. [33] Mclennan S M.1993. Weathering and global denudation. Journal of Geology, 101(2):295-303. [34] Nesbitt H W,Young G M.1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715-717. [35] Nesbitt H W,Young G M.1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica Et Cosmochimica Acta, 48(7): 1523-1534. [36] Nesbitt H W,Young G M.1989. Formation and diagenesis of weathering profiles. Journal of Geology, 97(2): 129-147. [37] Nesbitt H W,Markovics G.1997. Weathering of granodioritic crust,long-term storage of elements in weathering profiles,and petrogenesis of siliciclastic sediments. Geochimica Et Cosmochimica Acta, 61(8): 1653-1670. [38] Nesbitt H W,Young G M,Mclennan S M,Keays R R.1996. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments,with implications for provenance studies. Journal of Geology, 104(5): 525-542. [39] Panahi A,Young G M,Rainbird R H.2000. Behavior of major and trace elements(including REE)during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie,Québec,Canada. Geochimica Et Cosmochimica Acta, 64(13): 2199-2220. [40] Parker A.1970. An index of weathering for silicate rocks. Geological Magazine, 107(6): 501-504. [41] Passchier S,Ciarletta D J,Miriagos T,Bijl P,Bohaty S M.2017. An Antarctic stratigraphic record of step-wise ice-sheet growth through the Eocene-Oligocene transition. Geological Society of America Bulletin, 129(3): 1-18. [42] Perri F.2014. Composition,provenance and source weathering of Mesozoic sandstones from Western-Central Mediterranean Alpine Chains. Journal of African Earth Sciences, 91: 32-43. [43] Perri F.2017. Reconstructing chemical weathering during the Lower Mesozoic in the Western-Central Mediterranean area: A review of geochemical proxies. Geological Magazine, 155(4): 944-954. [44] Perri F,Ohta T.2014. Paleoclimatic conditions and paleoweathering processes on Mesozoic continental redbeds from Western-Central Mediterranean Alpine Chains. Palaeogeography Palaeoclimatology Palaeoecology, 395: 144-157. [45] Rainbird R H,Nesbitt H W,Donaldson J A.1990. Formation and diagenesis of a Sub-Huronian Saprolith: Comparison with a modern weathering profile. Journal of Geology, 98(6): 801-822. [46] Retallack G J.1986. The fossil record of soils. In: Wright V P. Paleosols,their recognition and interpretation. Oxford,United Kingdom: Blackwell Scientific Publications,1-57. [47] Rieu R,Allen P A,Plötze M,Pettke T.2007. Climatic cycles during a Neoproterozoic “snowball”glacial epoch. Geology, 35(4): 299-302. [48] Skiba M.2007. Clay mineral formation during Podzolization in an Alpine environment of the Tatra Mountains,Poland. Clays & Clay Minerals, 55(6): 618-634. [49] Szymański W,Szkaradek M.2018. Andesite weathering and soil formation in a moderately humid climate: A case study from the western carpathians(southern poland). Carpathian Journal of Earth & Environmental Sciences, 13(1): 93-105. [50] Varma A K,Mishra D K,Samad S K,Prasad A K,Panigrahi D C,Mendhe V A,Singh B D.2017. Geochemical and organo-petrographic characterization for hydrocarbon generation from Barakar Formation in Auranga Basin,India. International Journal of Coal Geology, 186: 97-114. [51] Wedepohl K H.1969. Handbook of Geochemistry. Springer: 59-60. [52] Wilson M J.2004. Weathering of the primary rock-forming minerals: Processes,products and rates. Clay Minerals, 39(3): 233-266. [53] Wronkiewicz D J,Condie K C.1989. Geochemistry and provenance of sediments from the Pongola Supergroup,South Africa: Evidence for a 3.0-Ga-old continental craton. Geochimica Et Cosmochimica Acta, 53(7): 1537-1549. [54] Yang J H,Cawood P A,Du Y,Feng B,Yan J.2014. Global continental weathering trends across the Early Permian glacial to postglacial transition: Correlating high-and low-paleolatitude sedimentary records. Geology, 42(10): 835-838. [55] Yang J H,Du Y S.2017. Weathering geochemistry and palaeoclimate implication of the Early Permian mudstones from eastern Henan Province,North China. Journal of Palaeogeography, 6(4): 370-380. [56] Young G M,Nesbitt H W.1999. Paleoclimatology and provenance of the glaciogenic Gowganda Formation(Paleoproterozoic),Ontario,Canada: A chemostratigraphic approach. Geological Society of America Bulletin, 111(2): 264-274. [57] Young G M,Minter W E L,Theron J N.2004. Geochemistry and palaeogeography of upper Ordovician glaciogenic sedimentary rocks in the Table Mountain Group,South Africa. Palaeogeography Palaeoclimatology Palaeoecology, 214(4): 323-345. [58] Ujv ri G,Varga A,Raucsik B,Kov cs J.2014. The Paks loess-paleosol sequence: A record of chemical weathering and provenance for the last 800ka in the mid-Carpathian Basin. Quaternary International, 319: 22-37.