Mantle-originated hydrothermal-sedimentary dolostone in the Middle Permian in eastern Junggar Basin,China
Zhang Shuai1,2,3, Liu Yi-Qun1, Li Hong1, Jiao Xin1, Zhou Ding-Wu1
1 State Key Laboratory of Continental Dynamics,Northwest University,Department of Geology, Northwest University,Xi'an 710069,China; 2 Key Laboratory of Alpine Ecology(LAE),Institute of Tibetan Plateau Research,Chinese Academy of Sciences(CAS),Beijing 100101,China; 3 University of Chinese Academy of Sciences,Beijing 100049,China
Abstract:The Middle Permian Lucaogou Formation in Jimusar sag,eastern Junggar Basin,China,deposited in a salt-lake within an intracontinental rift basin,in which magmatic-hydrothermal activities were intensive. Mantle-originated hydrothermal-sedimentary dolostone in lake bottom are discovered. Three types of dolostones are found,including analcime-albite dolostone,silicic dolostone and buddingtonite-albite dolostone. The ore-forming fluid characteristics and detailed formation mechanism are discussed based on micrometer-scale petrographical and isotopic geochemical research. Both petrographic feature and syndepositional deformation have indicated these dolostones are formed in a depositional stage. The dolomites are relatively poor-ordered proto-dolomites,with micron-sized spherical or aciniform morphology,and coexist with hydrothermal minerals that include analcime,buddingtonite,albite and chalcedony. Albite clasts were replaced by dolomites under high temperatures. The remarkably low strontium isotopic composition of the dolostones(av. 0.705687)suggests abundant mantle-originated material in the ore-forming fluid. The dolostones have positive δ13 CPDB values(av. 6.94‰)and negative δ18 OPDB (av.-8.12‰). The calculated formation temperature of the dolomites by using δ18 OPDB is about 25-50 ℃ higher than that of the dolomitic rocks in Lucaogou Formation,based on the assumption that the fluid is the mixture of lake water and mantle-originated hydrothermal fluid. We conclude a possible genetic model that the dolomites precipitated directly from the mantle-originated hydrothermal fluid once it erupted to the lake bottom. We argue that the hydrothermal-sedimentary dolomite is an indispensable genetic type and this study is of great significance for both deciphering the formation rules of dolomite and supplementing the theory of petrogenesis.
Zhang Shuai,Liu Yi-Qun,Li Hong et al. Mantle-originated hydrothermal-sedimentary dolostone in the Middle Permian in eastern Junggar Basin,China[J]. JOPC, 2020, 22(1): 111-128.
[1] 常海亮,郑荣才,郭春利,文华国. 2016. 准噶尔盆地西北缘风城组喷流岩稀土元素地球化学特征. 地质论评, 62(3): 550-568. [Chang H L,Zheng R C,Guo C L,Wen H G.2016. Characteristics of rare earth elements of exhalative rock in Fengcheng Formation,Northwestern Margin of Jungger Basin. Geological Review, 62(3): 550-568] [2] 陈志鹏,任战利,于春勇,祁凯,任文波,杨燕,马骞. 2018. 银额盆地哈日凹陷下白垩统热水沉积岩特征及成因. 地球科学, 43(6): 1941-1956. [Chen Z P,Ren Z L,Yu C Y,Qi K,Ren W B,Yang Y,Ma Q.2018. Characteristics and genetic analysis of hydrothermal sediment of Lower Cretaceous in Hari Depression,Yin'e Basin. Earth Science, 43(6): 1941-1956] [3] 戴朝成,郑荣才,文华国,雷光明,谢春红. 2008. 辽东湾盆地沙河街组湖相白云岩成因研究. 成都理工大学学报(自然科学版), 35(2): 187-193. [Dai C C,Zheng R C,Wen H G,Lei G M,Xie C H.2008. Origin of lacustrine dolomite in the Paleogene Shahejie Formation of Liaodongwan basin,China. Journal of Chengdu University of Technology(Science & Technology Edition), 35(2): 187-193] [4] 方世虎,贾承造,郭召杰,宋岩,徐怀民,刘楼军. 2006. 准噶尔盆地二叠纪盆地属性的再认识及其构造意义. 地学前缘, 13(3): 108-121. [Fang S H,Jia C Z,Guo Z J,Song Y,Xu H M,Liu L J.2006. New view on the Permian evolution of the Junggar basin and its implications for tectonic evolution. Earth Science Frontiers, 13(3): 108-121] [5] 傅饶,郑荣才,常海亮,祁利祺,文华国,李云. 2015. 湖相“白烟型”喷流岩: 新型的致密油储层类型: 以准噶尔盆地西缘乌尔禾地区风城组为例. 岩性油气藏, 27(3): 32-42. [Fu R,Zheng R C,Chang H L,Qi L Q,Wen H G,Li Y.2015. Lacustrine “white smoke type”exhalative rock: A new type of tight oil reservoir: A case study from Lower Permian Fengcheng Formation in Urho area,western margin of Junggar Basin. Lithologic Reservoirs, 27(3): 32-42] [6] 郭强,钟大康,张放东,刘新刚,范凌霄,李君军. 2012. 内蒙古二连盆地白音查干凹陷下白垩统湖相白云岩成因. 古地理学报, 14(1): 59-68. [Guo Q,Zhong D K,Zhang F D,Liu X G,Fan L X,Li J J.2012. Origin of the Lower Cretaceous lacustrine dolostones in Baiyinchagan sag of Erlian Basin,Inner Mongolia. Journal of Palaeogeography(Chinese Edition), 14(1): 59-68] [7] 焦鑫,柳益群,靳梦琪,周鼎武. 2017a. 新疆三塘湖薄层状岩浆—热液白云质喷流沉积岩. 沉积学报, 35(6): 1087-1096. [Jiao X,Liu Y Q,Jin M Q,Zhou D W.2017a. Thin bed magmatic-hydrothermal dolomitic exhalative sedimentary rocks in Santanghu Basin,Xinjiang. Acta Sedimentologica Sinica, 35(6): 1087-1096] [8] 焦鑫,柳益群,杨晚,周鼎武. 2017b. 水下火山喷发沉积特征研究进展. 地球科学进展, 32(9): 926-936. [Jiao X,Liu Y Q,Yang W,Zhou D W.2017b. Progress on sedimentation of subaqueous volcanic eruption. Advances in Earth Science, 32(9): 926-936] [9] 焦鑫. 2017. 新疆三塘湖盆地二叠系岩浆—热液喷流沉积岩特征与形成机理. 西北大学博士论文,59. [Jiao X.2017. Features and forming mechanism of magmatic-hydrothermal exhalative sedimentary rocks in Permian Lucaogou Formation,Santanghu Basin,Xinjiang. Doctoral Dissertation of Northwest University,59] [10] 匡立春,胡文瑄,王绪龙,吴海光,王小林. 2013. 吉木萨尔凹陷芦草沟组致密油储集层初步研究: 岩性与孔隙特征分析. 高校地质学报, 19(3): 529-535. [Kuang L C,Hu W X,Wang X L,Wu H G,Wang X L.2013. Research of the tight oil reservoir in the Lucaogou Formation in Jimusar sag: Analysis of lithology and porosity characteristics. Geological Journal of China Universities, 19(3): 529-535] [11] 李红,柳益群,张丽霞,周鑫,牛元哲,李旭,刘永杰. 2017. 准噶尔盆地东部中二叠统平地泉组具“斑状”结构热水喷流沉积岩的成因及地质意义. 古地理学报, 19(2): 211-226. [Li H,Liu Y Q,Zhang L X,Zhou X,Niu Y Z,Li X,Liu Y J.2017. Origin and geological significance of sedimentary exhalative rocks with “porphyritic”structures in the Middle Permian Pingdiquan Formation,eastern Junggar Basin. Journal of Palaeogeography(Chinese Edition), 19(2): 211-226] [12] 李锦轶,肖序常,汤耀庆,赵民,朱宝清,冯益民. 1990. 新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征. 地质论评, 36(4): 305-316. [Li J Y,Xiao X C,Tang Y Q,Zhao M,Zhu B Q,Feng Y M.1990. Main characteristics of late Paleozoic plate tectonics in the southern part of east Junggar,Xinjiang. Geological Review, 36(4): 305-316] [13] 柳益群,李红,朱玉双,胡亭,傅国斌,刘洪福,周小虎,郑朝阳,樊婷婷. 2010. 白云岩成因探讨: 新疆三塘湖盆地发现二叠系湖相喷流型热水白云岩. 沉积学报, 28(5): 861-867. [Liu Y Q,Li H,Zhu Y S,Hu T,Fu G B,Liu H F,Zhou X H,Zheng C Y,Fan T T.2010. Permian lacustrine eruptive hydrothermal dolomites,Santanghu Basin,Xinjiang. Acta Sedimentologica Sinica, 28(5): 861-867] [14] 柳益群,周鼎武,南云,焦鑫,李哲萱,李红,周小虎. 2018. 新疆北部地区二叠系幔源碳酸岩质喷积岩研究. 古地理学报, 20(1): 49-63. [Liu Y Q,Zhou D W,Nan Y,Jiao X,Li Z X,Li H,Zhou X H.2018. Permian mantle-derived carbonatite originated exhalative sedimentary rocks in North Xinjiang. Journal of Palaeogeography(Chinese Edition), 20(1): 49-63] [15] 卢苗安. 2007. 天山东段盆山构造格局的多期演变. 中国地震局地质研究所博士学位论文,1-394. [Lu M A.2007. Multistage evolution of the basin-and-range structure of the eastern section of the Tienshan Mountains. Docteral Dissertation of Institution of Geology,China Earthquake Administration,1-394] [16] 邵雨,杨勇强,万敏,邱隆伟,操应长,杨生超. 2015. 吉木萨尔凹陷二叠系芦草沟组沉积特征及沉积相演化. 新疆石油地质, 36(6): 635-641. [Shao Y,Yang Y Q,Wan M,Qiu L W,Cao Y C,Yang S C.2015. Sedimentary characteristic and facies evolution of Permian Lucaogou Formation in Jimusar sag,Junggar Basin. Xinjiang Petroleum Geology, 36(6): 635-641] [17] 宋永,周路,郭旭光,常秋生,王霞田. 2017. 准噶尔盆地吉木萨尔凹陷芦草沟组湖相云质致密油储层特征与分布规律. 岩石学报, 33(4): 1159-1170. [Song Y,Zhou L,Guo X G,Chang Q S,Wang X T.2017. Characteristics and occurrence of lacustrine dolomitic tight-oil reservoir in the Middle Permian Lucaogou Formation,Jimusar sag,southeastern Junggar Basin. Acta Petrologica Sinica, 33(4): 1159-1170] [18] 陶刚,杨文光,朱利东,李智武,解龙,范维,和源,刘和,李超. 2016. 羌塘地块南缘新近系唢呐湖组湖相喷流岩岩石学特征及沉积模式. 矿物岩石, 36(1): 72-81. [Tao G,Yang W G,Zhu L D,Li Z W,Xie L,Fan W,He Y,Li C.2016. Lithological characteristics and sedimentary models of the lacustrine hydrothermal sedimentary rocks of the Neogene Suonahu Formation on the southern edge of Qiangtang. Journal of Mineralogy and Petrology, 36(1): 72-81] [19] 葸克来,操应长,朱如凯,邵雨,薛秀杰,王小军,高阳,张景. 2015. 吉木萨尔凹陷二叠系芦草沟组致密油储层岩石类型及特征. 石油学报, 36(12): 1495-1507. [Xi K L,Cao Y C,Zhu R K,Shao Y,Xue X J,Wang X J,Gao Y,Zhang J.2015. Rock types and characteristics of tight oil reservoir in Permian Lucaogou Formation,Jimsar sag. Acta Petrolei Sinica, 36(12): 1495-1507] [20] 肖云. 1995. 察尔汗湖表层卤水及沉积物中各类水体的氢氧同位素研究. 厦门大学学报(自然科学版), 34(2): 249-255. [Xiao Y.1995. Oxygen and hydrogen isotope research of different waters in Qarhan Salt Lake and lake sediments. Journal of Xiamen University(Natural Science), 34(2): 249-255] [21] 张帅,柳益群,焦鑫,周鼎武,张旭,陆申童,周宁超. 2018. 准噶尔盆地吉木萨尔凹陷中二叠统芦草沟组云质岩沉积环境及白云石成因探讨. 古地理学报, 20(1): 33-48. [Zhang S,Liu Y Q,Jiao X,Zhou D W,Zhang X,Lu S T, Zhou N C.2018. Sedimentary environment and formation mechanisim of dolomitic rocks in the Middle Permian Lucaogou Formation,Jimusar Depression,Junggar Basin. Journal of Palaeogeography(Chinese Edition), 20(1): 33-48] [22] 张晓宝,王志勇,徐永昌. 2000. 特殊碳同位素组成白云岩的发现及其意义. 沉积学报, 18(3): 449-452. [Zhang X B,Wang Z Y,Xu Y C.2000. Finding of the dolostones with special carbon isotopic composition and its significance. Acta Sedimentologica Sinica, 18(3): 449-452] [23] 郑荣才,王成善,朱利东,刘红军,方国玉,杜文博,王崇孝,汪满福. 2003. 酒西盆地首例湖相“白烟型”喷流岩: 热水沉积白云岩的发现及其意义. 成都理工大学学报(自然科学版), 30(1): 1-8. [Zheng R C,Wang C S,Zhu L D,Liu H J,Fang G Y,Du W B,Wang C X,Wang M F.2003. Discovery of the first example of “white smoke type” of exhalative rock(hydrothermal sedimentary dolostone)in Jiuxi Basin and its significance. Journal of Chengdu University of Technology(Science & Technology Edition), 30(1): 1-8] [24] 郑荣才,文华国,范铭涛,汪满福,吴国瑄,夏佩芬. 2006. 酒西盆地下沟组湖相白烟型喷流岩岩石学特征. 岩石学报, 22(12): 3027-3038. [Zheng R C,Wen H G,Fan M T,Wang M F,Wu G X,Xia P F.2006. Characteristics of rare earth elements of lacustrine exhalative rock in the Xiagou Formation,Lower Cretaceous in Qingxi sag,Jiuxi Basin. Journal of Mineralogy and Petrology, 22(12): 3027-3038] [25] 钟大康,姜振昌,郭强,孙海涛,杨喆. 2015. 内蒙古二连盆地白音查干凹陷热水沉积白云岩的发现及其地质与矿产意义. 石油与天然气地质, 36(4): 587-595. [Zhong D K,Jiang Z C,Guo Q,Sun H T,Yang Z.2015. Discovery of hydrothermal dolostones in Baiyinchagan sag of Erlian Basin,Inner Mongolia,and its geologic and mineral significance. Oil and Gas Geology,36(4):587-595] [26] 钟大康,杨喆,孙海涛,张硕. 2018. 热水沉积岩岩石学特征: 以内蒙古二连盆地白音查干凹陷下白垩统腾格尔组为例. 古地理学报, 20(1): 19-32. [Zhong D K,Yang Z,Sun H T,Zhang S.2018. Petrological characteristics of hydrothermal-sedimentary rocks: A case study of the Lower Cretaceous Tengger Formation in the Baiyinchagan sag of Erlian Basin,Inner Mongolia. Journal of Palaeogeography(Chinese Edition), 20(1): 19-32] [27] Al-Aasm I S,Lonnee J,Clarke J.2002. Multiple fluid flow events and the formation of saddle dolomite: Case studies from the Middle Devonian of the Western Canada Sedimentary Basin. Marine and Petroleum Geology, 19: 209-217. [28] Al-Aasm I S.2003. Origin and characterization of hydrothermal dolomite in the Western Canada Sedimentary Basin. Journal of Geochemical Exploration, 78: 9-15. [29] Allan J R,Wiggins W D.1993. Dolomite Reservoirs: Geochemical Techniques for Evaluating Origin and Distribution. American Association of Petroleum Geologists, 14: 262-263. [30] Arvidson R S,Mackenzie F T.1999. The dolomite problem: Control of precipitation kinetics by temperature and saturation state. American Journal of Science, 299: 257-288. [31] Barker D S.1964. Ammonium in alkali feldspars. American Mineralogist: Journal of Earth and Planetary Materials, 49: 851-858. [32] Bian W,Hornung J,Liu Z,Wang P,Hinderer M.2010. Sedimentary and palaeoenvironmental evolution of the Junggar Basin,Xinjiang,northwest China. Paleobiodiversity and Paleoenvironments, 90: 175-186. [33] Boni M,Parente G,Bechstaedt T,De Vivo B,Iannace A.2000. Hydrothermal dolomites in SW Sardinia(Italy): Evidence for a widespread late-Variscan fluid flow event. Sedimentary Geology, 131: 181-200. [34] Carroll A R,Brassell S C,Graham S A.1992. Upper Permian lacustrine oil shales,southern Junggar Basin,northwest China. American Association of Petroleum Geology Bulletin, 76: 1874-1902. [35] Carroll A R,Graham S A,Hendrix M S,Ying D,Zhou D.1995. Late Paleozoic tectonic amalgamation of northwestern China: Sedimentary record of the northern Tarim,northwestern Turpan,and southern Junggar basins. Geological Society of American Bulletin, 107: 571-594. [36] Carroll A R,Graham S A,Smith M E.2010. Walled sedimentary basin of China. Basin Research, 22: 17-32. [37] Charlou J L,Donval J P,Fouquet Y,Jean-Baptiste P,Holm N.2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field(36°14'N,MAR). Chemical Geology, 191: 345-359. [38] Cohen A S.2003. Paleolimnology: The history and evolution of lake systems. Oxford: Oxford University Press,86. [39] Coombs D S,Whetten J T.1967. Composition of analcime from sedimentary and metamorphic rocks. Geological Society of American Bulletin, 78: 269-282. [40] Del Cura M A G,Calvo J P,Ordóñez S,Jones B F,Cañaveras J C.2001. Petrographic and geochemical evidence for the formation of primary,bacterially induced lacustrine dolomite: La Roda‘white earth’(Pliocene,central Spain). Sedimentology, 48: 897-915. [41] Erd R C,White D E,Fahey J J,Lee D E.1964. Buddingtonite,an ammonium feldspar with zeolitic water. American Mineralogist: Journal of Earth and Planetary Materials, 49: 831-850. [42] Faure G.1986. Principles of Isotope Geology. 2nd. New York: John Wiley and Sons,160-230. [43] Fisher R V,Schmincke H U.1984. Pyroclastic rocks. Springer Science & Business Media:265-296. [44] Gaines A M.1977. Protodolomite redefined. Journal of Sedimentary Research, 47: 543-546. [45] Goldstein S J,Jacobsen S B.1987. The Nd and Sr isotopic systematics of river-water dissolved material: Implications for the sources of Nd and Sr in seawater. Chemical Geology: Isotope Geoscience section, 66: 245-272. [46] Graham S A,Brassell S,Carroll A R,Xiao X,Demaison G,McKnight C L,Liang Y,Chu J,Hendrix M S.1990. Characteristics of selected petroleum source rocks,Xianjiang Uygur Autonomous Region,Northwest China. American Association of Petroleum Geology Bulletin, 74: 493-512. [47] Gránásy L,Pusztai T,Tegze G,Warren J A,Douglas J F.2005. Growth and form of spherulites. Physical Review E, 72(1). doi: 10.1103/physieve.72.011605. [48] Gregg J M,Bish D L,Kaczmarek S E,Machel H G.2015. Mineralogy,nucleation and growth of dolomite in the laboratory and sedimentary environment: A review. Sedimentology, 62: 1749-1769. [49] Hallam M,Eugster H P.1976. Ammonium silicate stability relations. Contributions to Mineralogy and Petrology, 57: 227-244. [50] Hori H.1986. Ammonioleucite,a new mineral from Tatarazawa,Fujioka,Japan. American Mineralogist, 71: 1022-1027. [51] Ilich M.1974. Hydrothermal-sedimentary dolomite: The missing link? American Association of Petroleum Geology Bulletin, 58: 1331-1347. [52] Jiang Y Q,Liu Y Q,Yang Z,Nan Y,Wang R,Zhou P,Yang Y J,Kou J Y,Zhou N C.2015. Characteristics and origin of tuff-type tight oil in Jimusar Depression,Junggar Basin,NW China. Petroleum Exploration & Experiment, 42: 741-749. [53] Jiao X,Liu Y,Yang W,Zhou D,Li H,Nan Y,Jin M.2018. A magmatic-hydrothermal lacustrine exhalite from the Permian Lucaogou Formation,Santanghu Basin,NW China: The volcanogenic origin of fine-grained clastic sedimentary rocks. Journal of Asian Earth Science, 156: 11-25. [54] Kelley D S,Karson J A,Blackman D K,FruÈh-Green G L,Butterfield D A,Lilley M D,Olson E J,Schrenk M O,Roe K K,Lebon G T,Rivizzigno P.2001. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature, 412: 145. [55] Kokelaar B P.1982. Fluidization of wet sediments during the emplacement and cooling of various igneous bodies. Journal of the Geological Society, 50: 358-367. [56] Korte C,Jasper T,Kozur H W,Veizer J.2006. 87Sr/86Sr record of Permian seawater. Palaeogeography Palaeoclimatology Palaeoecology, 240: 89-107. [57] Krohn M D,Kendall C,Evans J R,Fries T L.1993. Relations of ammonium minerals at several hydrothermal systems in the western US. Journal of Volcanology and Geothermal Research, 56: 401-413. [58] Krohn M D.1987. Near-infrared detection of ammonium minerals. Geophysics, 52: 924-930. [59] Land L S. 1983. The application of stable isotopes to studies of the origin of dolomite and to problems of diagenesis of clastic sediments. In: Authur M A,Anderson T F,Kaplan I R, et al(eds). Stable Isotopes in Sedimentary Geology,SEPM Short Course 10. Tulsa: Society for Sedimentary Geology,1-22. [60] Land L S.1998. Failure to precipitate dolomite at 25 ℃ from dilute solution despite 1000-fold oversaturation after 32 years. Aquatic Geochemistry, 4: 361-368. [61] Last W M.1990. Lacustrine dolomite: An overview of modern,Holocene,and Pleistocene occurrences. Earth Science Review, 27: 221-263. [62] Li H,Liu Y,Niu Y,Feng S,Lei Y,Liu Y.2017. Comparisons on Mineralogy and Lithology between Paleozoic Marine and Lacustrine Dolostones,Northern China. Acta Geologica Sinica(English Edition),91(supp. 1): 281-282. [63] Liu Y Q,Jiao X,Li H,Yuan M S,Yang W,Zhou X H,Liang H,Zhou D W,Zheng C Y,Sun Q,Wang S S.2012. Primary dolostone formation related to mantle-originated exhalative hydrothermal activities,Permian Yuejingou section,Santanghu area,Xinjiang,NW China. Science China: Earth Sciences,55(2):183-192. [64] Luczaj J A,Harrison Ⅲ W B,Smith Williams N.2006. Fractured hydrothermal dolomite reservoirs in the Devonian Dundee Formation of the central Michigan Basin. American Association of Petroleum Geology Bulletin, 90: 1787-1801. [65] Machel H G. 2004. Concepts and Models of Dolomitization: A Critical Reappraisal. In: Braithwaite C J R,Rizzi G, Darke G(eds). The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs,Geological Society. London: Special Publications, 235: 7-63. [66] Machel H G,Lonnee J.2002. Hydrothermal dolomite: A product of poor definition and imagination. Sedimentary Geology, 152: 163-171. [67] Marcoux E,Le Berre P,Cocherie A.2004. The Meillers Autunian hydrothermal chalcedony: First evidence of a~295 Ma auriferous epithermal sinter in the French Massif Central. Ore Geology Reviews, 25: 69-87. [68] Nishiyama T.1990. CO2-metasomatism of a metabasite block in a serpentine melange from the Nishisonogi metamorphic rocks,Southwest Japan. Contributions to Mineralogy and Petrology, 104: 35-46. [69] Norman D I,Landis G P.1983. Source of mineralizing components in hydrothermal ore fluids as evidenced by87Sr/86Sr and stable isotope data from the Pasto Bueno deposit,Peru. Economic Geology, 78: 451-465. [70] Palmer M R,Elderfield H.1985. Sr isotope composition of sea water over the past 75 Myr. Nature, 314: 526-528. [71] Pampeyan E H.2010. Buddingtonite in Menlo Park,California(No.2010-1053). US Geological Survey. [72] Qing H,Mountjoy E W.1994. Formation of coarsely crystalline,hydrothermal dolomite reservoirs in the Presqu'ile Barrier,Western Canada sedimentary basin. American Association of Petroleum Geology Bulletin, 78: 55-77. [73] Ramseyer K,Diamond L W,Boles J R.1993. Authigenic K-NH4-feldspar in sandstones: A fingerprint of the diagenesis of organic matter. Journal of Sedimentary Research, 63: 1092-1099. [74] Rodriguez-Blanco J D,Shaw S,Benning L G.2015. A route for the direct crystallization of dolomite. American Mineralogist, 100: 1172-1181. [75] Shanks Ⅲ W C.2001. Stable isotopes in seafloor hydrothermal systems: Vent fluids,hydrothermal deposits,hydrothermal alteration,and microbial processes. Reviews in Mineralogy and Geochemistry, 43: 469-525. [76] Sibley D F,Gregg J M.1987. Classification of dolomite rock texture. Journal of Sedimentary Petrology, 57: 967-975. [77] Spötl C,Longstaffe F J,Ramseyer K,Rüdinger B.1999. Authigenic albite in carbonate rocks-a tracer for deep-burial brine migration?. Sedimentology, 46: 649-666. [78] Stettler A.1977. 87Rb-87Sr systematics of a geothermal water-rock association in the Massif Central,France. Earth and Planetary Science Letters, 34: 432-438. [79] Stettler A,Allègre C J.1978. 87Rb-87Sr studies of waters in a geothermal area: The Cantal,France. Earth and Planetary Science Letters, 38: 364-372. [80] Tucker M E,Wright V P.1990. Carbonate Sedimentology. Boston: Blackwell Scientific Publications, 482. [81] Valley J W,Taylor H P,O'Neil J R.1986. Stable isotopes in high temperature geological processes. Mineralogical Society of America, 16: 227-271. [82] Veizer J,Ala D,Azmy K B, et al.1999.87Sr/86Sr,δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161: 59-88. [83] Wartes M A,Carroll A R,Greene T J.2002. Permian sedimentary record of the Turpan-Hami basin and adjacent regions,northwest China: Constraints on postamalgamation tectonic evolution. Geological Society of America Bulletin, 114: 131-152. [84] Wen H G,Zheng R C,Qing H R,Fan M T,Li Y N,Gong B S.2013. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag,Jiuquan Basin on the northern Tibetan Plateau. Science China: Earth Sciences, 56: 2080-2093. [85] White J D L.2000. Subaqueous eruption-fed density currents and their deposits. Precambrian Research, 101: 87-109. [86] You J,Liu Y,Zhou D,Zheng Q,Vasichenko K,Chen Z.2019. Activity of hydrothermal fluid at the bottom of a lake and its influence on the development of high-quality source rocks: Triassic Yanchang Formation,southern Ordos Basin,China. Australian Journal of Earth Sciences: 1-14. [87] Zhang W Z,Yang H,Xie L Q,Yang Y H.2010. Lake-bottom hydrothermal activities and their influence on high-quality source rock development: A case from Chang 7 source rocks in Ordos Basin. Petroleum Exploration and Development,37(4):424-429. [88] Zhou D W,Liu Y Q,Xing X J,Hao J R,Dong Y P,Ouyang Z J.2006. The paleotectonic setting reverting and regional tectonic setting tracking of basalt during Permian in Tu-Ha,Santanghu basin in Xinjiang. Science China: Earth Sciences, 36(2): 143-153.