邵珠福1,2, 刘泽璇1, 钟建华3, John Howell2, 栾锡武4, 冉伟民4, 刘晶晶1, 张文鑫1, 赵冰1
1 东北石油大学地球科学学院,黑龙江大庆 163318; 2 Department of Geology and Petroleum Geology,University of Aberdeen,Aberdeen,AB24 3UE,UK; 3 中国石油大学地球科学与技术学院,山东青岛 266580; 4 中国地质调查局青岛海洋地质研究所,山东青岛 266071
Liquefaction structures induced by the M5.7 earthquake on May 28,2018 in Songyuan area,Jilin Province,China
Shao Zhu-Fu1,2, Liu Ze-Xuan1, Zhong Jian-Hua3, John Howell2, Luan Xi-Wu4, Ran Wei-Min4, Liu Jing-Jing1, Zhang Wen-Xin1, Zhao Bing1
1 School of Geosciences,Northeast Petroleum University,Heilongjiang Daqing 163318,China; 2 Department of Geology and Petroleum Geology,University of Aberdeen,Aberdeen AB24 3UE,UK; 3 School of Geosciences,China University of Petroleum,Shandong Qingdao 266580, China; 4 Qingdao Institute of Marine Geology,China Geological Survey,Shandong Qingdao 266071,China
Abstract:An earthquake of magnitude M5.7 occurred in Yamutu village,Songyuan City,Jilin Province of Northeast China(45°16'12″N,124°42'35″E)on May 28,2018,with a focal depth of 13 km. The epicenter is located at the intersection of the Fuyu/Songyuan-Zhaodong fault,Second Songhua River fault and Fuyu north fault which lie west of Tanlu Fault. The earthquake-induced widespread liquefication structures and ground cracks within 3 km from the epicenter,bringing serious disasters to the local surroundings. The visible liquefied structures are mainly composed of sand volcanos,followed by liquefied sand mounds,sand dikes and sand sills. The liquefied sand volcanoes can be divided into volcanoes with craters,volcanoes without craters and water volcanoes(sand-free). Other soft-sediment deformation structures(SSDSs)induced by earthquakes include deformation lamination,load structures and flame structures,deformation folds,dish structures,convolute bedding and some water-escape structures. The formation process of the sand volcanos comprises building up excess pore-fluid pressure in the liquefied layer,cracking of the low-permeability overlying layer and sand-water venting out of the ground surface inthree stages. During the upwelling,the liquefied sand is injected into the low-permeability layer to form sand veins,sand sills and various types of deformation structures. The vertical seismic liquefaction structure can be divided into the four parts of the bottom clean unconsolidated liquefiable sand,the lower liquefied deformation layer,the upper liquefied deformation layer and the ground surface liquefied sand volcano layer. The liquefaction occurred at a buried depth of 2-5 m,causing a thickness of 2 m of sand to liquefy. NE-SW(35°~215°)trending compressive stress that caused the fault to reactivate may be the seismogenic mechanism of the Songyuan M5.7 earthquake,and the Fuyu/Songyuan-Zhaodong fault was conjectured to be the major seismogenic fault. The study of the Songyuan seismic liquefaction structures provides guidance for the prediction of modern earthquake activity areas and disaster-prone areas and provides abundant basis material for studying earthquakes induced SSDSs in modern sediments,which will be of great significance in interpreting the theories of “the present is the key to the past”,which provides the latest practical data to reveal that the northern part of tanlu fault zone has entered into a stage of strong faults and seismicity since the beginning of this century.
Shao Zhu-Fu,Liu Ze-Xuan,Zhong Jian-Hua et al. Liquefaction structures induced by the M5.7 earthquake on May 28,2018 in Songyuan area,Jilin Province,China[J]. JOPC, 2020, 22(1): 75-96.
[1] 陈希哲. 2003. 土力学地基基础. 北京: 清华大学出版社,414-419,511-521. [Chen X Z. 2003. Foundation of Soil Mechanics. Beijing: Tsinghua University Press,414-419,511-521] [2] 陈颙,李娟,李丽. 2000. 地震、断层与断层作用. www.jy.zjdz.gov.cn: 科技委论坛,No.13: 1-5. [Chen Y,Li J,Li L.2000. Earthquake and fault with faulting. www.Jy.zjdz.gov.cn: Tribune of Science and Technology Committee,No.13: 1-5] [3] 陈作全,武成智,张淑洁,肖玉明,王迪. 2015.2013前郭M5.8级强震群序列特征分析. 防灾减灾学报, 31(3): 11-15. [Chen Z Q,Wu C Z,Zhang S J,Xiao Y M,Wang D.2015. Sequence analysis of strong earthquake group in the M5.8 in 2013. Journal of Disaster Prevention and Reduction, 31(3): 11-15] [4] 杜远生,余文超. 2017. 地震和非地震引发的软沉积物变形. 古地理学报, 19(1): 65-72. [Du Y S,Yu W C.2017. Earthquake-caused and non-earthquake-caused soft-sediment deformations. Journal of Palaeogeography(Chinese Edition), 19(1): 65-72] [5] 冯增昭,鲍志东,郑秀娟,王媛. 2017. 中国软沉积物变形构造及地震岩研究简评. 古地理学报, 19(1): 7-12. [Feng Z Z,Bao Z D,Zheng X J,Wang Y.2017. Researches of soft-sediment deformation structures and seismites in China: A brief review. Journal of Palaeogeography(Chinese Edition), 19(1): 7-12] [6] 冯增昭. 2017. 一次成功的专题研讨会: “多成因的软沉积物变形构造及地震岩”. 古地理学报, 19(1): 1-6. [Feng Z Z.2017. A successful symposium of “Multi-origin of soft-sediment deformation structures and seismites”. Journal of Palaeogeography(Chinese Edition), 19(1): 1-6] [7] 葛荣峰,张庆龙,王良书,解国爱,徐士银,陈娟,王锡勇. 2015. 松辽盆地构造演化与中国东部构造体制转换. 地质论评, 56(2): 180-195. [Ge R F,Zhang Q L,Wang L S,Xie G A,Xu S Y,Chen J,Wang X Y.2015. Tectonic evolution of Songliao Basin and the prominent tectonic regime transition in eastern China. Geological Review, 56(2): 180-195] [8] 郭伟静,陈树良,刘杰. 2007. 松辽盆地南缘四平—双辽地区第四系全新统地层划分. 地质与资源, 16(1): 7-11. [Guo W J,Chen S L,Liu J.2007. Quaternary Holocene Stratigraphy in Siping-Shuangliao area in the south margin of Songliao Basin. Geology and Resources, 16(1): 7-11] [9] 韩江涛,郭振宇,刘文玉,侯贺晟,刘国兴,韩松,刘立家,王天琪. 2018. 松辽盆地岩石圈减薄的深部动力学过程. 地球物理学报, 61(6): 2265-2279. [Han J T,Guo Z Y,Liu W Y,Hou H S,Liu G X,Han S,Liu L J,Wang T Q.2018. Deep dynamic process of lithosphere thinning in Songliao basin. Chinese Journal of Geophysics, 61(6): 2265-2279] [10] 何委徽,真允庆,陈中,巫静,刁谦,韩红庆,包怡,周瑾,杨伟,王佩业,张宏伟,吴金凤,孙雪芳. 2011. 松辽盆地“三层式”构造格局与深部找藏. 地质调查与研究, 34(3): 228-240. [He W H,Zhang Y Q,Chen Z,Wu J,Diao Q,Han H Q,Bao Y,Zhou J,Yang W,Wang P Y,Zhang H W,Wu J F,Sun X F.2011. Three-layer tectonic framework and deep oil reservoir prospecting in the Songliao Basin. Geological Survey and Research, 34(2): 228-240] [11] 李君,王勤彩. 2018.2013年松原5级震群序列精定位、震源机制解及发震构造特征. 地震, 38(4): 62-73. [Li J,Wang Q C.2016. Relocation and focal mechanism of the Songyuan earthquake swarm sequence in 2013. Earthquake, 38(4): 62-73] [12] 刘俊清,刘财,雷建设,甘卫军,杨清福,张晨侠. 2017.2013年前郭MS 5.8震群矩张量研究. 地球物理学报, 60(9): 3418-3431. [Liu J Q,Liu C,Lei J S,Gan W J,Yang Q F,Zhang C X.2017. The moment tensors of the 2013 Qianguo MS5.8 seismic swarm. Chinese Journal of Geophysics, 60(9): 3418-3431] [13] 刘权锋,盛俭,卢滔,张洪艳,盘晓东. 2017. 扶余/松原—肇东断裂研究综述. 防灾科技学院学报, 19(3): 8-16. [Liu Q F,Sheng J,Lu T,Zhang H Y,Pan X D.2017. Research status of Fuyu/Songyuan-Zhaodong Fault. Journey of Institute of Disaster Prevention, 19(3): 8-16] [14] 罗志立,李景明,李小军,刘树根,赵锡奎,孙玮. 2005. 试论郯城—庐江断裂带形成、演化及问题. 吉林大学学报(地球科学版), 35(6): 699-706. [Luo Z L,Li J M,Li X J,Liu S G,Zhao X K,Sun W.2005. Discussion on the formation,evolution and problems of the Tancheng Lujiang Fault Zone. Journal of Jilin University(Earth Science Edition), 35(6): 699-706] [15] 梅冥相,高金汉,孟庆芬,刘智荣. 2009. 前寒武纪与微生物席相关的粉砂岩岩墙: 以天津蓟县古元古界串岭沟组为例. 古地理学报, 11(1): 37-50. [Mei M X,Gao J H,Meng Q F,Liu Z R.2009. Microbialmatrelated silty dykes of the Precambrian: An example from the Paleoproterozoic Chuanlinggou Formation at Jixian section in Tianjin. Journal of Palaeogeography(Chinese Edition), 11(1): 37-50] [16] 孟元林,胡安文,乔德武,解习农,潘雪梅,王建伟,田伟志. 2012. 松辽盆地徐家围子断陷深层区域成岩规律和成岩作用对致密储层含气性的控制. 地质学报, 86(2): 325-334. [Meng Y L,Hu A W,Qiao D W,Xie X N,Pan X M,Wang J W,Tian W Z.2012. Regional digenetic law and control of diagenesis over gas-bearing capacity of tight reservoirs in deep Xujiaweizi Fault Depression,Songliao Basin. Acta Geologica Sinica, 86(2): 325-334] [17] 盘晓东,贾若,康建红,刘冰冰. 2018.2013年10月31日吉林前郭M 5.8震群研究. 国际地震动态, (4): 80-89. [Pan X D,Jia R,Kang J H,Liu B B.2018. Research on Qianguo M5.8 earthquake swarm on October 31,2013. Recent Developments in World Seismology, (4): 80-89] [18] 邵博,沈军,李莹甄,于晓辉,戴训也,袁俊枫,尉洋. 2015. 综合石油地质、历史地震等资料评估吉林孤店隐伏断裂的地震危险性. 中国地震, 31(4): 668-678. [Shao B,Shen J,Li Y Z,Yu X H,Dai X Y,Yuan J F,Wei Y.2015. Quantitative seismic risk evaluation on blind Gudian Fault in Jilin Province on petroleum geological and historical seismic data. Earthquake Research in China, 31(4): 668-678] [19] 邵珠福,钟建华,范莉红,罗可,王韶杰. 2014a. 辽河西部凹陷南段沙三段震积岩特征及其石油地质意义. 石油学报, 35(3): 439-449. [Shao Z F,Zhong J H,Fan L H,Luo K,Wang S J.2014a. Characteristics and petroleum geologic significance of seismites in the Member 3 of Shahejie Formation in south section of western sag,Liaohe depression. Acta Petrolei Sinica, 35(3): 439-449] [20] 邵珠福,钟建华,李勇,毛毳,刘圣鑫,倪良田,田媛,刘云田,崔新颖,王晓楠,李伟华,林刚山. 2014b. 青岛灵山岛纹层控制的砂级颗粒支撑叠瓦构造的发现及其意义. 中国科学: 地球科学, 44(8): 1761-1776. [Shao Z F,Zhong J H,Li Y,Mao C,Liu S X,Ni L T,Tian Y,Cui X Y,Wang X N,Li W H,Lin G S.2014b. Characteristics and sedimentary processes of lamina-controlled sand-particle imbricate structure in deposits on Lingshan Island,Qingdao,China. Science China: Earth Sciences, 57(5): 1061-1076] [21] 邵珠福,钟建华,李勇,倪良田,刘圣鑫,范丽红,陈彬. 2014c. 灵山岛晚中生代重力流沉积特征及环境分析. 地质论评, 60(3): 555-566. [Shao Z F,Zhong J H,Li Y,Ni L T,Liu S X,Fan L H,Chen B.2014c. the sedimentary characteristics and environmental analysis of Late Mesozoic gravity flow in Lingshan Island. Geological Review, 60(3): 555-566] [22] 田洪水,王华林,祝介旺,杨传成,吕明英,张慎河. 2015. 山东安丘地区软土震陷及地震产生的土层构造新启示. 岩土工程学报, 37(4): 734-740. [Tian H S,Wang H L,Zhu J W,Yang C C,Lü M Y,Zhang S H.2015. New revelation from seismic subsidence of soft soils and earthquake-induced soil-layer deformation structures in Anqiu area,Shandong Province. Chinese Journal of Geotechnical Engineering, 37(4): 734-740] [23] 田洪水,Wagoner Loon A J,王华林,张慎河,祝介旺. 2016. 大盛群中的震积岩: 郯庐断裂带强构造与地震活动新证据. 中国科学: 地球科学, 46(1): 79-96. [Tian H S,Wagoner Loon A J,Wang H L,Zhang S H,Zhu J W.2016. Seismites in the Dasheng Group: New evidences of strong tectonic and earthquake activities of the Tanlu Fault zone. Science China: Earth Sciences, 46: 79-96]. [24] 田洪水,王金光,吕明英,王立法. 2005. 山东安丘古近纪冲积层中的地震记录. 沉积学报, 23(3): 75-81. [Tian H S,Wang J G,Lü M Y,Wang L F.2005. Seismic records in Paleogene alluvial layers in Anqiu,Shandong. Acta Sedimentologica Sinica, 23: 75-81]. [25] 田洪水,祝介旺,王华林,张增奇,张邦花,张慎河. 2017. 沂沭断裂带及其近区地震事件地层的时空分布及意义. 古地理学报, 19(3): 393-417. [Tian H S,ZhuJ W,Wang H L,Zhang Z Q,Zhang B H,Zhang S H.2017. Spatio-temporal distribution and significance of seismic event horizons in the Yishu Fault Zone and its adjacent area. Journal of Palaeogeography(Chinese Edition), 19(3): 393-417]. [26] 田辉,郭晓东,刘强,张文强. 2011. 浅析松原市地下水水位动态及环境问题. 地下水, 33(6): 45-46. [Tian H,Guo X D,Liu Q,Zhang W Q.2011. Matsubara City of groundwater dynamics and environmental issues. Groundwater, 33(6): 45-46] [27] 万桂梅,汤良杰,金文正,余一欣. 2009. 郯庐断裂带研究进展及存在问题探讨. 地质论评, 55(2): 251-259. [Wan G M,Tang L J,Jin W Z,Yu Y X.2009. Progresses and problems in the study of Tancheng—Lujiang Fault Zone. Geological Review, 55(2): 251-259] [28] 王亮,李君,顾强强,何荣淼. 2015. 吉林松原 5级震群的重新定位研究. 防灾减灾学报, 31(1): 30-34. [Wang L,Li J,Gu Q Q,He R M.2015. Accurate relocation of earthquake swarm in Songyuan,Jilin,China. Journal of Disaster Prevention and Reduction, 31(1): 30-34] [29] 王璞珺,赵然磊,蒙启安,瞿雪姣,朱德丰,高有峰. 2015. 垩纪松辽盆地: 从火山裂谷到陆内拗陷的动力学环境. 地学前缘, 22(3): 99-117. [Wang P J,Zhao R L,Meng Q A, Qu X J,Zhu D F,Gao Y F.2015. The cretaceous Songliao Basin: Dynamic background from volcanic rift to interior basin. Earth Science Frontiers, 22(3): 99-117] [30] 王小凤,李中坚,陈柏林. 2000. 郯庐断裂带. 北京: 地质出版社,1-362. [Wang X F,Li Z J,Chen B L. 2000. The Tanlu Fault. Beijing: Geological Publishing House,1-362] [31] 魏美璇,郝玺民,吕晗,周明鑫,于畅. 2016. 基于GIS的2013年吉林前郭M 5.8震群砂土液化灾害的研究. 防灾减灾学报, 32(3): 64-69. [Wei M X,Hao X M,Lü H, Zhou M X,Yu C.2016. Sand liquefaction disaster research of 2013 M5.8 Qianguo Earthquake swarm based on gis. Journal of Disaster Prevention and Reduction, 32(3): 64-69] [32] 吴戈. 1991. 东北大陆地震史料研究与分析. 东北地震研究, 7(1): 17-24. [Wu G.1991. The study and the analysis of historical earthquake material in North-East China. Northeastern Seismological Research, 7(1): 17-24] [33] 薛艳,曾宪伟,刘桂萍,蔡宏雷. 2015.2013年吉林前郭MS 5.8震群序列研究. 中国地震, 31(3): 481-491. [Xue Y,Zeng X W,Liu G P,Cai H L.2015. Study on MS 5.8 swam sequence of Qianguo,Jilin in 2013. Earthquake Research in China, 31(3): 481-491] [34] 杨承先. 1985. 沙脉、沙火山的特征及其地震意义. 西北地震学报, 7(2): 99-103. [Yang C X.1985. The characteristics of sand vein and sand volcano and their importance to earthquake. Northwestern Seismological Journal,7(2),99-103] [35] 杨清福,王佳蕾,刘志平,吴兆营,陈波. 2010. 第二松花江断裂带地质特征及第四纪活动性研究. 中国地震, 26(1): 34-45. [Yang Q F,Wang J L,Liu Z P,Wu Z Y,Chen B.2010. Geological features and Quaternary activity of the second Songhua river fault. Earthquake Research in China, 26(1): 34-45] [36] 易雪斐,张昌民,李少华,杜家元,李康,王浩宇,李向阳,周凤娟,袁才. 2015. 砂岩侵入体系模拟及形成机理分析. 古地理学报, 17(5): 669-676. [Yi X F,Zhang C M,Li S H,Du J Y,Li K,Wang H Y,Li X Y,Zhou F J,Yuan C.2015. Sand injectite simulation and formation mechanism analysis. Journal of Paleaeogeography(Chinese Edition), 17(5): 669-676] [37] 张邦花,田洪水,祝介旺. 2016. 山东郯城麦坡中更新世地震事件记录. 古地理学报, 18(5): 799-808. [Zhang B H,Tian H S,Zhu J W.2016. Records of the Pleistocene seismic events in Tancheng Maipo,Shandong Province. Journal of Palaeogeography(Chinese Edition), 18(5): 799-808] [38] 张功成,刘和甫,朱德丰. 1997. 松辽盆地晚中生代裂谷作用与伸展构造样式. 新疆石油地质, 18(1): 30-34. [Zhang G C,Liu H F,Zhu D F.1997. Late Mesozoic rifting and extensional structural pattern in Songliao Basin. Xinjiang Petroleum Geology, 18(1): 30-34] [39] 赵福岳. 2010. 松辽平原第四纪地质历史演化规律研究. 国土资源遥感,22(S1): 152-158. [Zhao F Y.2010. A study of the regularity of Quaternary geological history evolution in Songliao Plain based on geological remote sensing survey. Remote Sensing for Land and Resources,22(S1): 152-158] [40] 赵栖远. 2012. 地下水和覆盖层对砂土液化的影响. 西部探矿工程, (1): 8-12. [Zhao Q Y.2012. Effect of groundwater and cover on sand liquefaction. West China Exploration Engineering, (1): 8-12] [41] 钟建华,曹梦春,倪良田,孙宁亮,刘闯,郝兵,杨冠群,宋冠先,葛毓柱. 2018. 砂脉的研究现状与进展. 古地理学报, 20(1): 119-132. [Zhong J H,Cao M C,Ni L T,Sun N L,Liu C,Hao B,Yang G Q,Song G X,Ge Y Z.2018. Situation of study and development tendency of sandy dykes. Journal of Palaeogeography(Chinese Edition), 20(1): 119-132] [42] 钟建华,梁刚. 2009. 沉积构造的研究现状及发展趋势. 地质论评, 55(6): 831-839. [Zhong J H,Liang G.2009. Situation of study and development tendency of sedimentary structure. Geological Review, 55(6): 831-839] [43] 钟建华,许世红,王志坤,王海侨,马锋,段宏亮,艾合买提江·阿不都热和曼,周娟,刘云田,李勇. 2008. 柴达木盆地西部七个泉地区第四纪冰川刨耕变形层理的研究. 地质论评, 54(2): 207-214,293. [Zhong J H,Xu S H,Wang Z K,Wang H Q,Ma F,Duan H L,Abdurahman A,Zhou J,Liu Y T,Li Y.2008. Study on the Quarternary glacial-ploughed deformation beddings in Seven Springs Area,western Qaidam Basin. Geological Review, 54(2): 207-214,293] [44] Alfaro P,Moretti M,Soria J M.1997. Soft-sediment deformation structures induced by earthquakes(seismites)in Pliocene lacustrine deposits(Guadix-Baza Basin,Central Betic Cordillera). Eclogae Geologic,90: 531-540. [45] Alfaro P,Gibert L,Moretti M,Garcia-Tortosa F J,De Galdeano C S,Galindo-Zaldivar J,Lopez-Garrido A C.2010. The significance of giant seismites in the Plio-Pleistocene Bazapalaeo-lake(S Spain). Terra Nova,22: 172-179. [46] Allen J R L,Banks N L.1972. An Interpretation and Analysis of Recumbent-Folded Deformed Cross-Bedding. Sedimentology,19: 257-283. [47] Allen J R L.1977. The possible mechanics of convolute lamination in graded sand beds. Journal of the Geological Society,134: 19-31. [48] Allen J R L.1982. Sedimentary Structures: Their Character and Physical Basis. Elsevier,Amsterdam,1-663. [49] Allen J R L.1986. Earthquake magnitude-frequency,epicentral distance,and soft-sediment deformation in sedimentary basins. Sedimentary Geology,46: 67-75. [50] Berra F,Felletti F.2011. Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures(continental Lower Permian sediments,Southern Alps,Northern Italy): Stratigraphic significance. Sedimentary Geology,235: 249-263. [51] Bhattacharya S,Hyodo M,Goda K,Tazoh T,Taylor C A.2011. Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku(Japan)earthquake. Soil Dynamics and Earthquake Engineering,31: 1618-1628. [52] Bonini M.2009. Mud volcano eruptions and earthquakes in the Northern Apennines and Sicily,Italy. Tectonophysics,474: 723-735. [53] Brogi A,Capezzuoli E,Morett M,Olvera-García E,Matera P F,Garduno-Monroy V,Mancini A.2018. Earthquake-triggered soft-sediment deformation structures(seismites)in travertine deposits. Tectonophysics,745: 349-365. [54] Burne R V.1970. The Origin and Significance of Sand Volcanoes in the Bude Formation(Cornwall). Sedimentology,15: 211-228. [55] Capaccioni B,Coltorti M,Todesco M,Cremonini S,Di Giuseppe D,Faccini B,Tessari U.2017. Sand volcano generated by a violent degassing from methane-saturated aquifers: The case study of Medolla(Modena,Italy). Engineering Geology,221: 91-103. [56] Chan M,Netoff D,Blakey R,Kocurek G,Alvarez W. 2007. Clastic-injection pipes and syndepositional deformation structures in Jurassic eolian deposits: Examples from the Colorado Plateau. In: Hurst A,Cartwright J(eds). Sand injectites: Implications for hydrocarbon exploration and production: AAPG Memoir,87: 233-244. [57] Chen J T,Lee H S.2013. Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits(Shandong Province,China): Differential liquefaction and fluidization triggered by storm-wave loading. Sedimentary Geology,288: 81-94. [58] Chen J T,Wagoner Loon A J,Han Z Z,Chough S K.2009. Funnel-shaped,breccia-filled clastic dykes in the Late Cambrian Chaomidian Formation(Shandong Province,China). Sedimentary Geology,221: 1-6. [59] Collinson J D,Mountney N,Thompson D B. 2006. Sedimentary Structures(3rd Edition). Harpenden: Terra Publishing,1-292. [60] Gibert L,Alfaro P,García-Tortosa F J,Scott G.2011. Superposed deformed beds produced by single earthquakes(Tecopa Basin,California): Insights into paleoseismology. Sedimentary Geology,235: 148-159. [61] Glennie K,Hurst A. 2007. Fluidization and associated soft-sediment deformation in eolian sandstones: Hopeman Sandstone(Permian),Scotland,and Rotliegend,North Sea. In: Hurst A,Cartwright J(eds). Sand injectites: Implications for hydrocarbon exploration and production: AAPG Memoir,87: 245-252. [62] Greb S F,Archer A W.2007. Soft-sediment deformation produced by tides in a meizoseismic area,Turnagain Arm,Alaska. Geology,35: 435-438. [63] Grippa A,Hurst A,Palladino G,Iacopini D,Lecomte I,Huuse M.2019. Seismic imaging of complex geometry: Forward modeling of sandstone intrusions. Earth and Planetary Science Letter,513: 51-63. [64] Harris C,Murton J,Davies M C R.2000. Soft-sediment deformation during thawing of ice-rich frozen soils: Results of scaled centrifuge modeling experiments. Sedimentology,47: 687-700. [65] Hilbert-Wolf H L,Roberts E M,Simpson E L.2016. New sedimentary structures in seismites from SW Tanzania: Evaluating gas-vs. water-escape mechanisms of soft-sediment deformation. Sedimentary Geology,344: 253-262. [66] Hurst A,Vigorito,M.2017. Saucer-shaped sandstone intrusions: An underplayed reservoir target. AAPG,101: 625-633. [67] Kanibir A,Ulusay R,Aydan O.2006. Assessment of liquefaction and lateral spreading on the shore of Lake Sapanca during the Kocaeli(Turkey)earthquake. Engineering Geology,83: 307-331. [68] Kholodov V N.2002. Mud Volcanoes,Their distribution regularities and genesis: Communication 1. mud volcanic provinces and morphology of mud volcanoes. Lithology and Mineral Resources,37: 197-209. [69] Ko K,Kim S W,Lee H J,Hwang I G,Kim B C,Kee W S,KimY S,Gihm Y S.2017. Soft sediment deformation structures in a lacustrine sedimentary succession induced by volcano-tectonic activities: An example from the Cretaceous Beolgeumri Formation,WidoVolcanics,Korea. Sedimentary Geology,358: 197-209. [70] Koç-Taşgın C,Diniz-Akarca C.2018. Soft-sediment deformation structures related to tectonomagmatic activity: A case study from the borate-bearing lacustrine deposits of early Miocene Bigadic Basin,NW Turkey. Sedimentary Geology,373: 32-47. [71] Kundu A,Matin A,Mukui M,Eriksson P G.2011. Sedimentary facies and soft-sediment deformation structures in the Late Miocene-Pliocene Middle Siwalik Subgroup,eastern Himalaya,Darjiling District,India. Journal Geological Society of India,78: 321-336. [72] Kuribayashi E,Tatsuoka F.1975. Brief Review of liquefaction during earthquakes in Japan. Soils and Foundations,15: 81-92. [73] Li Y,Craven J,Schweig E S,Obermeier S S.1996. Sand boils induced by the 1993 Mississippi River flood: Could they one day be misinterpreted as earthquake-induced liquefaction. Geology,24: 171-174. [74] Li Y,Shao Z F,Mao C,Yang Y P,Liu S X.2013. The Seismic induced soft sediment deformation structures in the middle Jurassic of Western Qaidamu Basin. Acta Geologica Sinica,87: 979-988. [75] Lowe D R.1983. Restricted shallow-water sedimentation of Early Archean stromatolitic and evaporitic strata of the Strelley Pool Chert,Pilbara Block,Western Australia. Precambrian Research,19: 239-283. [76] Lowe R D,Robert D L.1974. The characteristics and origins of dish and pillar structures1. Journal of Sedimentary Petrology,44: 484-501. [77] Lowe R D.1975. Water escape structures in coarse-grained sediments. Sedimentology,22: 157-204. [78] Lowe R D.1976. Subaqueous liquefied and fluidized sediment flows and their deposits. Sedimentology,23: 285-308. [79] Lu H B,Zhang Y X,Zhang Q L,Xiao J F.2006. Earthquake-related tectonic deformation of soft sediment sand: Its constraints on basin tectonic evolution. Acta Geologica Sinica,80: 724-732. [80] Ma Y S,Long C Y,Tan C X,Wang T,Gong M Q,Liao C T,Wu M L,Shi W,Du J J,Pan F.2009. Co-seismic faults and geological hazards and incidence of active fault of Wenchuan Ms 8.0 Earthquake,Sichuan,China. Acta Geologica Sinica(English Edition),83: 713-723. [81] Mahaney W C,Milner M W,Netoff D I,Malloch D,Dohm J M,Baker V R,Miyamoto H,Hare TM,Komatsu G.2004. Ancient wet aeolian environmrnts on Earth: Clues to presence of fossil/live microorganisms on Mars. Icarus,171: 39-53. [82] Massari F,Ghibaudo G,Alessandro A D,Davaud E.2001. Water-upwelling pipes and soft-sediment-deformation structures in lower Pleistocene calcarenites(Salento,southern Italy). GSA,113: 545-560. [83] Mazumder R,Wagoner Loon A J,Arima M.2006. Soft-sediment deformation structures in the Earth,soldest seismites. Sedimentary Geology,186: 19-26. [84] Mazumder R,Wagoner Loon A J,Malviya V P,Arima M,Ogawa Y.2016. Soft-sediment deformation structures in the Mio-Pliocene Misaki Formation within alternating deep-sea clays and volcanic ashes(Miura Peninsula,Japan). Sedimentary Geology,344: 323-335. [85] Miyakawa K,Tokiwa T,Murakami H.2013. The origin of muddy sand sediments associated with mud volcanism in the Horonobe area of northern Hokkaido,Japan. Geochemistry,Geophysics,Geosystems,14: 4980-4988. [86] Moretti M,Alfaro P,Caselles O,Canas J A.1999. Modeling seismites with a digital shaking table. Tectonophysics,304: 369-383. [87] Moretti M,Soria J M,Alfaro P,Alicante Walsh,N.2001. Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits(Late Miocene,Guadix Basin,Southern Spain). Facies,44: 283-294. [88] Moretti M,Sabato L.2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant,Arcangelo Basin(Southern Italy): Seismic shock vs. overloading. Sedimentary Geology,196: 31-45. [89] Moretti M,Ronchi A.2011. Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Neuquén Basin(Northern Patagonia). Sedimentary Geology,235: 200-209. [90] Moretti M.2016. The environmental significance of soft-sediment deformation structures: Key signatures for sedimentary and tectonic processes. Sedimentary Geology,344: 1-4. [91] Murton J B,Worsley P,Gozdzik J.2000. Sand veins and wedges in cold aeolian environments. Quaternary Science Reviews,19: 899-922. [92] Nichols R J,Sparks R S J,Wilson C J N.1994. Experimental studies of the fluidization of layered sediments and the formation of fluid escape structures. Sedimentology,41: 233-253. [93] Obermeier S F,Jacobson R B,Smoot J P,Weems R E,Gohn G S.1990. Earthquake-induced liquefaction features in the coastal setting of South Carolina and in the fluvial setting of the New Madrid Seismic Zone. U. S. Geological Survey Professional Paper,1504: 1-44. [94] Obermeier S F,Bleuer N R,Munson C A,Munson P J,Martin W S,McWilliams K M,Tabaczynski D A,Odum J K,Rubin M,Eggert D L.1991. Evidence of strong earthquake shaking in the Lower Wabash Valley from prehistoric liquefaction features. Natural Science Collection,251: 1061-1063. [95] Obermeier S F,Munson P J,Munson C A,Martin J R,Frankel A D,Youd T L,Pond E C.1992. Liquefaction evidence for strong Holocene earthquake(S)in the Wabash Valley of Indiana-Illinois. Seismological Research Letter,63: 321-335. [96] Obermeier S F.1996. Use of liquefaction-induced features for paleoseismic analysis: An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology,44: 1-76. [97] Obermeier S F,Pond E C.1999. Issues in using liquefaction features for paleoseismic analysis. Seismological Research Letters,70: 34-58. [98] Obermeier S F,Dickenson S E.2000. Liquefaction evidence for the strength of ground motions resulting from Late Holocene Cascadia subduction earthquakes,with emphasis on the event of 1700 A. D. Seismological Society of America,90(4): 876-896. [99] Oppo D,Capozzi R.2016. Spatial association of mud volcano and sandstone intrusions,Boyadag anticline,western Turkmenistan. Basin Research,28: 827-839. [100] Owen G.1987. Deformation processes in unconsolidated sands. Geological Society Special Publication,29: 11-24. [101] Owen G.1995. Soft-sediment deformation in Upper Proterozoic Torridonian Sandstones(Applecross Formation)At Torridon,Northwest Scotland. Journal of Sedimentary Research,65: 495-504. [102] Owen G,1996. Anatomy of a water-escape cusp in Upper Proterozoic Torridon Group sandstones,Scotland. Sedimentary Geology,103: 117-128. [103] Owen G.2003. Load structures: Gravity-driven sediment mobilization in the shallow subsurface. Geological Society,216: 21-34. [104] Owen G,Moretti M.2008. Determining the origin of soft-sediment deformation structures: A case study from Upper Carboniferous delta deposits in south-west Wales,UK. Terra Nova,20: 237-245. [105] Owen G,Moretti M.2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology,235: 141-147. [106] Owen G,Moretti M,Alfaro P.2011. Recognising triggers for soft-sediment deformation: Current understanding and future directions. Sedimentary Geology,235: 133-140. [107] Owen G,Santos M G M.2014. Soft-sediment deformation in a pre-vegetation river system: The Neoproterozoic Torridonian of NW Scotland. Proceedings of the Geologists’ Association,125: 511-523. [108] Perucca L P,Bracco A I,Moreiras S M.2009. Determination of seismogenic structures and earthquake magnitudes from seismites in the Acequion river,Precordillera Range,central-western Argentina. Journal of Iberian Geology,35: 5-18. [109] Phillips E,Everest J,Rrrves H.2013. Micromorphological evidence for subglacial multiphase sedimentation and deformation during overpressurizedfluid flow associated with hydrofracturing. Boreas,42: 395-427. [110] Pisarska-Jamro$\dot{Z}$y M,Wagoner Loon A J,Mleczak M,Roman M.2019. Enigmatic gravity-flow deposits at Uj$\acute{s}$cie(western Poland),triggered by earthquakes(as evidenced by seismites)caused by Saalianglacioisostatic crustal rebound. Geomorphology,326: 239-251. [111] Ravier E,Buoncristiani J,Menzies J,Guiraud M,Portier E.2015. Clastic injection dynamics during ice front oscillations: A case example from Sólheimajökull(Iceland). Sedimentary Geology,323: 92-109. [112] Rodríguez-PascuaM A,Calvo J P,Vicente G D,Gomez-Gras D.2000. Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone,SE Spain,and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology,135: 117-135. [113] Rodríguez-Pascua M A,Silva P G,Perez-Lopez R,Giner-RoblesJ L,Martín-Gonzalez F,Moral BD.2015. Polygenetic sand volcanoes: On the features of liquefaction processes generated by a single event(2012 Emilia Romagna 5.9 MW earthquake,Italy). Quaternary International,357: 329-335. [114] Ross J A,Peakall J,Keevil G M.2011. An integrated model of extrusive sand injectites in cohesionless sediments. Sedimentology,58: 1693-1715. [115] Rowe C.2013. Shaking Loose: Sand volcanoes and Jurassic earthquakes. Geology,41(10): 1135-1136. [116] Satur N,Hurst A.2007. Sand-injection Structures in Deep-water Sandstones from the Ty Formation(Paleocene),SleipnerØst Field,Norwegian North Sea. AAPG Memoir,87: 113-117. [117] Shanmugam G.2017. The seismite problem. Journal of Palaeogeography,19: 19-64. [118] Shi G R,Du Y S,Gong Y M.2007. Soft-sediment deformation structures interpreted as seismite from the Middle Permian of the southern Sydney Basin,southeastern Australia. Australian Journal of Earth Sciences,54: 861-874. [119] Su D C,Qiao X F,Sun A P,Li H B,Somerville I D.2014. Large earthquake-triggered liquefaction mounds and a carbonate sand volcano in the Mesoproterozoic Wumishan Formation,Beijing,North China. Geological Journal,49: 69-89. [120] Takahama N,Otsuk T,Brahmantyo B.2000. A new phenomenon in ancient liquefaction—the draw-in process,its final stage. Sedimentary Geology,135: 157-165. [121] Tian H S,Zhang B H,Zhang S H,Lü M Y.2013. Neogene seismites and seismic volcanic rocks in the Linqu area,Shandong Province,E China. Geologos,20: 125-137. [122] Tian H S,Wagoner Loon A J,Zhang Z Q,Zhang S H,Zhang B H.2015. Neogene Paleoseismic events and the Shanwang Biota’s burial in the Linqu area,Shandong Province,China. Acta Geologica Sinica(English edition),89: 1103-1119. [123] Tian H S,Wagoner Loon A J,Wang H L,Zhang S H,Zhu J W.2016. Seismites in the Dasheng Group: New evidence of strong tectonic and earthquake activities of the Tanlu Fault Zone. Sci China Earth Sci,59: 601-618. [124] Topal S,Özkul M.2014. Soft-Sediment Deformation Structures interpreted as seismites in the Kolankaya Formation,Denizli Basin(SW Turkey). The Scientific World Journal,1-13. [125] Tuttle M P.2001. The use of liquefaction features in paleoseismology: Lessons learned in the New Madrid seismic zone,central United States. Journal of Seismology,5: 361-380. [126] Ulvrova M,Paris R,Nomikou P,Kelfoun K,Leibrandt S,TappinD R,McCoy F W.2016. Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano(Aegean Sea,Greece). Journal of Volcanology and Geothermal Research,321: 125-139. [127] Valente A, $\acute{s}$laczka A,Cavuoto G.2014. Soft-sediment deformation structures in seismically affected deep-sea Miocene turbidites(Cilento Basin,southern Italy). Geologos,20(2): 67-78. [128] Wagoner Loon A J.2009. Soft-sediment deformation structures in siliciclastic sediments: An overview. Geologos,15: 3-55. [129] Wagoner Loon A J,Maulik P.2011. Abraded sand volcanoes as a tool for recognizing paleo-earthquakes,with examples from the CisuralianTalchir Formation near Angul(Orissa,eastern India). Sedimentary Geology,238: 145-155. [130] Wang C Y,Manga M,WongA.2005. Floods on Mars released from groundwater by impact. Icarus,115: 551-555. [131] Wheatley,D F,Chan M A,Sprinkel D A.2016. Clastic pipe characteristics and distributions throughout the Colorado Plateau: Implications for paleoenvironment and paleoseismic controls. Sedimentary Geology,344: 20-33. [132] Yamaguchi A,Mori T,Kazama M,Yoshida N.2012. Liquefaction in Tohoku district during the 2011 off the Pacific Coast of Tohoku Earthquake. Soils and Foundations,52(5): 811-829. [133] Zhong J H,Wang H Q,Li Y,Wang Y,Wen Z F.2006. Ice-water pits upon the Yellow River delta plain. Sedimentary Geology,187: 1-10.