Fluvial sequence pattern and its response of geomorphy in depression phase of rift basin: A case study of the Lower Member of Neogene Minghuazhen Formation in Shaleitian Uplift area, Bohai Bay Basin
Tan Ming-Xuan1,2,3, Zhu Xiao-Min2,3, Zhang Zi-Li2,3, Liu Qiang-Hu4, Shi Wen-Long5
1 College of Oceanography,Hohai University,Nanjing 210098,China; 2 State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum(Beijing), Beijing 102249,China; 3 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 4 Faculty of Earth Resources,China University of Geosciences(Wuhan), Wuhan 430074,China; 5 Tianjin Branch of CNOOC Ltd., Tianjin 300452, China
Abstract:The sequence classification is a difficulty of sequence stratigraphic study on rivers that are distal to coast area during the depression phase of rift basin. Based on the integrated analysis of logging,cores and seismic data,the case study shows that the Lower Member of Neogene Minghuazhen Formation in the Shaleitian Uplift area in the western Bohai Sea region corresponds to one complete third-order sequence which can be divided into four fourth-order sequences(i.e. SQm1-SQm4). Sedimentary hiatus,wide and shallow incised valley and amalgamated channel sand bodies are the main recognition of sequence boundaries in fluvial sequence stratigraphy of the study area. Each fourth-order sequence comprises low and high accommodation systems tracts. According to seismic sedimentological and quantitative geomorphological analysis,low-sinuosity rivers including braided river and low-sinuosity meandering river are well developed in the low accommodation systems tract,whereas the medium- to high-sinuosity meandering rivers are well preserved in the high accommodation systems tract. The change in the new creation of accommodation and the sediment supply exert a significant control on the stacked pattern within different systems tracts.
Tan Ming-Xuan,Zhu Xiao-Min,Zhang Zi-Li et al. Fluvial sequence pattern and its response of geomorphy in depression phase of rift basin: A case study of the Lower Member of Neogene Minghuazhen Formation in Shaleitian Uplift area, Bohai Bay Basin[J]. JOPC, 2020, 22(3): 428-439.
[1] 曹珂,李祥辉,王成善. 2008. 四川盆地白垩系黏土矿物特征及古气候探讨. 地质学报, 82(1): 119-127. [Cao K,Li X H,Wang C S.2008. The Cretaceous clay minerals and paleoclimate in Sichuan Basin. Acta Geologica Sinica, 82(1): 119-127] [2] 陈飞,胡光义,范廷恩,孙立春,高云峰,王晖. 2015. 渤海海域W油田新近系明化镇组河流相砂体结构特征. 地学前缘, 22(2): 207-213. [Chen F,Hu G Y,Fan T E,Sun L C,Gao Y F,Wang H.2015. Sandbody architecture and sequence stratigraphy of fluvial facies,Neogene Minghuazhen Formation,W oilfield,Bohai Bay. Earth Science Frontiers, 22(2): 207-213] [3] 陈蓉,王峰,李勇. 2016. 渤海湾盆地黄骅坳陷缓坡带新近系河流相层序发育特征及沉积充填演化. 古地理学报, 18(6): 976-985. [Chen R,Wang F,Li Y.2016. Sequence stratigraphy and sedimentary filling evolution of fluvial facies of the Neogene of gentle slope belt in Huanghua Depression,Bohai Bay Basin. Journal of Palaeogeography(Chinese Edition), 18(6): 976-985] [4] 陈容涛,牛成民,王清斌,杨波,王飞龙,王军. 2018. 黄河口凹陷南部缓坡带馆陶组河流相层序特征. 新疆石油地质, 39(5): 46-52. [Chen R T,Niu C M,Wang Q B,Yang B,Wang F L,Wang J.2018. Characteristics of fluvial sedimentary sequences of Guantao Formation in the southern gentle slope belt,Huanghekou Sag. Xinjiang Petroleum Geology, 39(5): 46-52] [5] 邓宏文,吴海波,王宁,CrossT A.2007. 河流相层序地层划分方法: 以松辽盆地下白垩统扶余油层为例. 石油与天然气地质, 28(5): 621-627. [Deng H W,Wu H B,Wang N,Cross T A.2007. Division of fluvial sequence stratigraphy:An example from the lower Cretaceous Fuyu oil-bearing layer,the Songliao Basin. Oil & Gas Geology, 28(5): 621-627] [6] 丁晓琪,张哨楠. 2010. 层序地层学在河流相地层研究中的应用. 西安石油大学学报(自然科学版), 25(4): 1-5. [Ding X Q,Zhang S N.2010. Application of sequence stratigraphy in the research of fluvial strata. Journal of Xi'an Shiyou University(Natural Science Edition), 24(4): 1-5] [7] 侯贵廷,钱祥麟,蔡东升. 2000. 渤海中、新生代盆地构造活动与沉积作用的时空关系. 石油与天然气地质, 21(3): 201-206. [Hou G T,Qian X L,Cai D S.2000. Space-time relationship between tectonics and sedimentation of Meso-Cenozoic Bohai Basin. Oil & Gas Geology, 21(3): 201-206] [8] 胡光明,倪超,王军,赵文栋. 2011. 河流层序地层学研究现状与存在的问题. 地质科技情报, 30(6): 59-63. [Hu G M,Ni C,Wang J,Zhao W D.2011. Review and problems of fluvial sequence stratigraphy. Geological Science and Technology Information, 30(6): 59-63] [9] 胡光义,陈飞,范廷恩,孙立春,赵春明,高云峰,王晖,宋来明. 2014. 渤海海域S油田新近系明化镇组河流相复合砂体叠置样式分析. 沉积学报, 32(3): 586-592. [Hu G Y,Chen F,Fan T E,Sun L C,Zhao C M,Gao Y F,Wang H,Song L M.2014. Analysis of fluvial facies compound sandbody architecture of the Neogene Minghuazhen Formation of S Oilfield in the Bohai Bay. Acta Sedimentologica Sinica, 32(3): 586-592] [10] 黄雷. 2015. 走滑作用对渤海凸起区油气聚集的控制作用: 以沙垒田凸起为例. 地学前缘, 22(3): 68-76. [Huang L.2015. The control of hydrocarbon accumulation by strike-slip motion within the Bohai Sea Rise: A case study from Shaleitian Uplift. Earth Science Frontiers, 22(3): 68-76] [11] 李勇,廖前进,肖敦清. 2014. 河流相层序地层学: 以黄骅拗陷新近系为例. 北京: 科学出版社,109-117. [Li Y,Liao Q J,Xiao D Q. 2014. Fluvial Sequence Stratigraphy: A Case Study of the Neogene in the Huanghua Depression. Beijing: Science Press,109-117] [12] 刘强虎,朱筱敏,李顺利,李慧勇,石文龙. 2016. 沙垒田凸起前古近系基岩分布及源-汇过程. 地球科学, 41(11): 1935-1949. [Liu Q H,Zhu X M,Li S L,Li H Y,Shi W L.2016. Pre-Paleogene bedrock distribution and source-to-sink system analysis in the Shaleitian Uplift. Earth Science, 41(11): 1935-1949] [13] 梅冥相. 2014. 上扬子地区晚三叠世层序地层格架: 扬子地台消亡与上扬子前陆盆地形成的地层学效应. 地质学报, 88(10): 1944-1969. [Mei M X.2014. The sequence stratigraphy framework of the Late Triassic in the Upper Yangtze Region,South China: Stratigraphic forcing for the death of the Yangtze platform and the birth of the upper Yangtze foreland basin. Acta Gelogica Sinica, 88(10): 1944-1969] [14] 彭文绪,张志强,姜利群,石文龙,陈国童. 2012. 渤海西部沙垒田凸起区走滑断层演化及其对油气的控制作用. 石油学报, 33(2): 204-212. [Peng W X,Zhang Z Q,Jiang L Q,Shi W L,Chen G T.2012. Evolution of strike-slip faults in the Shaleitian bulge of the western Bohai offshore and their control on hydrocarbons. Acta Petrolei Sinica, 33(2): 204-212] [15] 芮志锋,邓宏文,杨小江,李潇,郭佳. 2019. 珠江口盆地陆丰地区恩平组层序地层控制的河道构成样式. 天然气地球科学, 30(5): 101-111. [Rui Z F,Deng H W,Yang X J,Li X,Guo J.2019. The channel stacking pattern under the control of sequence stratigraphic of Enping Formation in Lufeng area,Pearl River Mouth Basin. Natural Gas Geoscience,30(5):101-111] [16] 孙容艳. 2015. 石臼坨凸起中段明化镇组极浅水三角洲特征及构造耦合分析. 成都理工大学硕士论文: 17-18. [Sun R Y.2015. Characteristics and Structure Coupling Analysis for the Minghuazhen Group in the Raised Middle of Shijiutuo Island. Masteral dissertation of Chengdu University of Technology,17-18] [17] 谈明轩,朱筱敏,刘强虎,刘伟,李顺利,赵芳. 2019. 渤海沙垒田地区新近系明下段多河型地震地貌学特征. 石油实验地质, 41(3): 411-419. [Tan M X,Zhu X M,Liu Q H,Liu W,Li S L,Zhao F.2019. Seismic geomorphological characteristics of multiple fluvial patterns in the Neogene Lower Minghuazhen Member in the Shaleitian area,Bohai Sea. Petroleum Geology & Experiment, 41(3): 411-419] [18] 魏钦廉,伊海生,肖玲. 2006. 陆源碎屑岩中的古土壤在地层分析中的应用. 古地理学报, 8(2): 73-80. [Wei Q L,Yi H S,Xiao L.2006. Application of paleosols in terrigenous clastic rocks to stratigraphic analysis. Journal of Palaeogeography(Chinese Edition), 8(2): 73-80] [19] 吴因业,张天舒,张志杰,崔化娟. 2010. 沉积体系域类型、特征及石油地质意义. 古地理学报, 12(1): 69-81. [Wu Y Y,Zhang T S,Zhang Z J,Cui H J.2010. Types and characteristics of depositional systems tract and its petroleum geological significance. Journal of Palaeogeography(Chinese Edition), 12(1): 69-81] [20] 薛欢欢,李景哲,李恕军,王梦琪,孙中强,于涛. 2015. INPEFA在高分辨率层序地层研究中的应用: 以鄂尔多斯盆地油房庄地区长4+5油组为例. 中国海洋大学学报(自然科学版), 45(7): 101-106. [Xue H H,Li J Z,Li S J,Wang M Q,Sun Z Q,Yu T.2015. Application of INPEFA technique to research high resolution sequence stratigraphy: As an example of Youfangzhuang area Chang 4+5 in Ordos Basin. Periodical of Ocean University of China, 45(7): 101-106] [21] 张云,孙立新,张天福,程银行,李艳峰,马海林,鲁超,杨才,郭佳城,周晓光. 2016. 鄂尔多斯盆地东北缘煤铀岩系层序地层与煤铀赋存规律研究. 地质学报, 90(12): 3424-3440. [Zhang Y,Sun L X,Zhang T F,Cheng Y H,Li Y F,Ma H L,Lu C,Yang C,Guo J C,Zhou X G.2016. Sequence stratigraphy study of coal-uranium bearing rock series and occurrence regularity coal and uranium in the Northeastern Margin of Ordos Basin. Acta Geologica Sinica, 90(12): 3424-3440] [22] 郑荣才,柯光明,文华国,高红灿. 2004. 高分辨率层序分析在河流相砂体等时对比中的应用. 成都理工大学学报(自然科学版), 31(6): 641-647. [Zheng R C,Ke G M,Wen H G,Gao H C.2004. Isochoric correlation of fluvial sandbodies by high resolution sequence technique. Journal of Chengdu University of Technology(Science & Technology Edition), 31(6): 641-647] [23] 郑文波,邓宏文. 2012. 冲积平原古土壤类型的识别及其层序地层意义: 以大庆长垣扶余油层为例. 吉林大学学报(地球科学版),42(s1): 135-144. [Zhen W B,Deng H W.2012. Identification and stratigraphy of paleosol type in floodplain: An example from Fuyu Unit,Daqing Oilfield. Journal of Jilin University(Earth Science Edition),42(s1): 135-144] [24] 朱红涛,黄众,刘浩冉,Liu K Y,刘强虎. 2012. 利用测井资料识别层序地层单元技术与方法进展及趋势. 地质科技情报, 30(4): 29-36. [Zhu H T,Huang Z,Liu H R,Liu K Y,Liu Q H.2012. Process and developing tendency of technologies and methods used to recognise sequence stratigraphic units based on the well-log data. Geological Science and Technology Information, 30(4): 29-36] [25] Catuneanu O.2006. Principles of Sequence Stratigraphy. Amsterdam: Elsevier,246-253. [26] Catuneanu O.2019. Model-independent sequence stratigraphy. Earth-Science Reviews, 188: 312-388. [27] Chamley H.1989. Clay Sedimentology. Heidelberg: Springer-Verlag,365. [28] Colombera L,Mountney N P,McCaffrey W D.2015. A meta-study of relationships between fluvial channel-body stacking pattern and aggradation rate: Implications for sequence stratigraphy. Geology, 43(4): 283-286. [29] Holbrook J,Scott R W,Oboh-Ikuenobe F E.2006. Base-level buffers and buttresses: A model for upstream versus downstream control on fluvial geometry and architecture within sequences. Journal of Sedimentary Research, 76(1): 162-174. [30] Martinsen O,Ryseth A,Hansen W H,Fleshe H,Torkildsen G,Idil S.1999. Stratigraphic base level and fluvial architecture: ErcsonSandstone(Campanian),Rock Springs Uplift,SW Wyoming,USA. Sedimentology, 46: 235-259. [31] Olsen T,Steel R,Hogseth K,Skar T,Roe S L.1995. Sequential architecture in a fluvial succession;sequence stratigraphy in the Upper Cretaceous Mesaverde Group,Prince Canyon,Utah. Journal of Sedimentary Research,65(2b): 265-280. [32] Püspöki Z,Demeter G,Tóth-Makk Á,Kozák M,Dávid Á,Virág M.2013. Tectonically controlled Quaternary intracontinental fluvial sequence development in the Nyírség-Pannonian Basin,Hungary. Sedimentary Geology, 283: 34-56. [33] Scherer C M,Goldberg K,Bardola T.2015. Facies architecture and sequence stratigraphy of an early post-rift fluvial succession,Aptian Barbalha Formation,Araripe Basin,northeastern Brazil. Sedimentary Geology, 322: 43-62. [34] Shanley K W,McCabe P J.1994. Perspectives on the sequence stratigraphy of continental strata. AAPG Bulletin, 78(4): 544-568. [35] Van Wagoner J C.1998. Sequence stratigraphy and marine to nonmarine facies architecture of foreland basin strata,Book Cliffs,Utah,USA: Reply. AAPG Bulletin, 82(8): 1607-1681. [36] Wright V P,Marriott S B.1994. The sequence stratigraphy of fluvial depositional systems: The role of flood plain sediment storage. Sedimentary Geology,92(s3-4): 203-210.