Discovery and significance of deep-water gravity-flow deposits of the late Barremian of Early Cretaceous in Lower Congo Basin
Yu Ye1,2, Wang Li1,2, Yin Tai-Ju3, Zhang Xing-Qiang3, Huang Yan-Ran1,2, Cao Tao-Tao1,2
1 Hunan Provincial Key Laboratory of Shale Gas Resource Utilization,Hunan University of Science and Technology, Hunan Xiangtan 411201,China; 2 School of Resource Environment and Safety Engineering,Hunan University of Science and Technology, Hunan Xiangtan 411201,China; 3 School of Geosciences,Yangtze University,Wuhan 430100,China
Abstract:Taking the middle Pointe Indienne Formation of the Lower Cretaceous Barremian in the Lower Congo Basin as an example,based on the theory of deep-water sedimentology,combined with the latest research progress of gravity-flow,and with the help of the latest drilling core data and its analyzing test results in the study area,the lithology,sedimentary structure types and petrological characteristics were investigated. It is found that gravity-flow deposits were widely developed in the middle Pointe Indienne Formation of the study area. The deposition process and the conceptual model of sand-body development for the deep-water gravity-flow have also been summarized. The gravity-flow deposits are mainly composed of midium-fine grained sandstone where the flute cast,load cast,flame structure,ball and pillow structure are occurred at the bottom and the normal graded bedding,parallel bedding,climbing ripple bedding,convolute bedding,water escape structure and floating mud gravel are occurred in the internal part. The gravity flow sandstones whose transportation mechanism are dominated by suspension transport are mainly feldspathic detrital quartz sandstones which are poorly sorted,sub angular and sub rounded. Grainsize accumulation probability curve are characterized by both “one-segment” which suggests total suspension population and “two-segment” which suggests high suspension population. Five fluid types of gravity-flows including,slump,sandy debris flow,muddy debris flow and turbidity can be identified,and six styles of facies combination in vertical direction have been recognized. The gravity-flow sand-body in the study area can form large-scale oil and gas reservoir due to the better lateral continuity and the thicker vertical stack thickness.
Yu Ye,Wang Li,Yin Tai-Ju et al. Discovery and significance of deep-water gravity-flow deposits of the late Barremian of Early Cretaceous in Lower Congo Basin[J]. JOPC, 2020, 22(4): 620-634.
[1] 邓荣敬,邓运华,于水,侯读杰. 2008. 西非海岸盆地群油气勘探成果及勘探潜力分析. 海洋石油, 28(3): 11-19. [Deng R J,Deng Y H,Yu S,Hou D J.2008. Hydrocarbon exploration achievements and exploration potential of coastal basins in West Africa. Offshore Oil, 28(3): 11-19] [2] 范洪耀,陶维祥,于水,程涛. 2012. 下刚果盆地油气成藏条件及勘探潜力分析. 海洋石油, 32(2): 16-20. [Fan H Y,Tao W X,Yu S,Cheng T.2012. Analysis of hydrocarbon accumulation conditions and exploration potentials in Lower Congo Basin. Offshore Oil, 32(2): 16-20] [3] 郭成贤. 2000. 中国深水异地沉积研究三十年. 古地理学报, 2(1): 1-10. [Guo C X.2000. The thirty-year study of deep-water allogene deposits in China. Journal of Palaeogeography(Chinese Edition), 2(1): 1-10] [4] 黄兴,杨香华,朱红涛,康洪全,贾建忠,王波,季少聪. 2017. 下刚果盆地Madingo组海相烃源岩岩相特征和沉积模式. 石油学报, 38(10): 1168-1172. [Huang X,Yang X H,Zhu H T,Kang H Q,Jia J Z,Wang B,Ji S C.2013. Lithofacies characteristics and sedimentary pattern of Madingo Formation marine hydrocarbon source rocks in Lower Congo Basin. Acta Petrolei Sinica, 38(10): 1168-1172] [5] 李相博,刘化清,张忠义,袁效奇,完颜容,牛海青,廖建波,王菁. 2014. 深水块状砂岩碎屑流成因的直接证据: “泥包砾”结构: 以鄂尔多斯盆地上三叠统延长组研究为例. 沉积学报, 32(4): 611-622. [Li X B,Liu H Q,Zhang Z Y,Yuan X Q,Wangyan R,Niu H Q,Liao Q B,Wang J.2014,“Argillaceous parcel”structure: A direct evidence of debris flow origin of deep-water massive sandstone of Yanchang Formation,Upper Triassic,the Ordos Basin. Acta Sedimentologica Sinica, 32(4): 611-622] [6] 李相博,刘化清,潘树新,王菁. 2019. 中国湖相沉积物重力流研究的过去、现在与未来. 沉积学报, 37(5): 904-921. [Li X B,Liu H Q,Pang S X,Wang J.2019. The past,present and future of research on deep-water sedimentary gravity flow in lake basins of China. Acta Sedimentologica Sinica, 37(5): 904-921] [7] 刘剑平,潘校华,马君,田作基,陈永进,万仑坤. 2008. 西部非洲地区油气地质特征及资源概述. 石油勘探与开发, 35(3): 378-384. [Liu J P,Pan X H,Ma J,Tian Z J,Chen Y J,Wan L K.2008. Petroleum geology and resources in West Africa: An overview. Petroleum Exploration and Development, 35(3): 378-384] [8] 刘亚雷. 2016. 下刚果盆地盐下构造特征及其对油气成藏的控制作用. 现代地质, 30(6): 1311-1317. [Liu Y L.2016. Pre-salt structure characteristics and its control on hydrocarbon accumulation in the Lower Congo Basin. Geoscience, 30(6): 1131-1317] [9] 吕福亮,贺训云,武金云,孙国忠,王根海. 2007. 安哥拉下刚果盆地吉拉索尔深水油田. 海相油气地质, 12(1): 37-42. [Lü F L,He X Y,Wu J Y,Sun G Z,Wang G H.2007. Girassol deepwater oil field in Lower Congo Basin,Angola. Marine Origin Petroleum Geology, 12(1): 37-42] [10] 逄林安. 2018. 西非下刚果盆地大型湖相浊积岩特征及勘探意义. 海洋地质前沿, 34(4): 41-48. [Pang L A.2018. Characteristics and exploration potential of lacustrine turbiditic sandstone in Lower Congo Basin of West Africa. Marine Geology Frontiers, 34(4): 41-48] [11] 乔秀夫,姜枚,李海兵,郭宪璞,苏德辰,许乐红. 2016. 龙门山中、新生界软沉积物变形及构造演化. 地学前缘, 23(6): 80-106. [Qiao X F,Jiang M,Li H B,Guo X P,Su D C,Xu L H.2016. Soft-sediment deformation structures and their implications for tectonic evolution from Mesozoic to Cenozoic in the Longmen Shan. Earth Science Frontiers, 23(6): 80-106] [12] 邵龙义,刘炳强,吉丛伟,伍意得,李志能,彭正奇,张超,黎光明. 2017. 湖南邵阳地区茅口期晚期重力流沉积的发现及意义. 古地理学报, 19(4): 583-594. [Shao L Y,Liu B Q,Ji C W,Wu D Y,Li Z N,Peng Z Q,Zhang C,Li G M.2017. Discovery and significance of gravity flow deposits of the late Maokouan in Shaoyang area of Hunan Province. Journal of Palaeogeography(Chinese Edition), 19(4): 583-594] [13] 孙宁亮,钟建华,王书宝,刘绍光,倪良田,曲俊利,郝兵,刘闯. 2017. 鄂尔多斯盆地南部三叠系延长组深水重力流沉积特征及其石油地质意义. 古地理学报, 19(2): 299-314. [Su N L,Zhong J H,Wang S B,Liu S G,Ni L T,Qu J L,Hao B,Liu C.2017. Sedimentary characteristics and petroleum geologic significance of deep-water gravity flow of the Triassic Yanchang Formation in southern Ordos Basin. Journal of Palaeogeography(Chinese Edition), 19(2): 299-314] [14] 鲜本忠,万锦峰,董艳蕾,马乾,张建国. 2013. 湖相深水块状砂岩特征、成因及发育模式: 以南堡凹陷东营组为例. 岩石学报, 29(9): 3287-3299. [Xian B Z,Wan J F,Dong Y L,Ma Q,Zhang J G.2013. Sedimentary characteristics,origin and model of lacustrine deepwater massive sandstone: An example from Dongying Formation in Nanpu depression. Acta Petrologica Sinica, 29(9): 3287-3299] [15] 鲜本忠,王璐,刘建平,路智勇,李宇志,牛栓文,朱永飞,洪方浩. 2016. 东营凹陷东部始新世三角洲供给型重力流沉积特征与模式. 中国石油大学学报(自然科学版), 40(5): 10-25. [Xian B Z,Wang L,Liu J P,Lu Z Y,Li Y Z,Niu S W,Zhu Y F,Hong F H.2016,Sedimentary characteristics and model of delta-fed turbidites in Eocene eastern Dongying Depression. Journal of China University of Petroleum(Edition of Natural Science), 40(5): 10-25] [16] 杨田,操应长,王艳忠,张少敏. 2015. 深水重力流类型、沉积特征及成因机制: 以济阳坳陷沙河街组三段中亚段为例. 石油学报, 36(9): 1048-1059. [Yang T,Cao Y C,Wang Y Z,Zhang S M.2015. Types,sedimentary characteristics and genetic mechanisms of deep-water gravity flows: A case study of the middle submember in member 3 of Shahejie Formation in Jiyang Depression. Acta Petrolei Sinica, 36(9): 1048-1059] [17] 杨晓娟,李军,于炳松. 2012. 下刚果盆地构造特征及油气勘探潜力. 地球物理学进展, 27(6): 2585-2593. [Yang X J,Li J,Yu B S.2012. Structural feature and exploratory potential of the Lower Congo Basin. Progress In Geophysics, 27(6): 2585-2593] [18] 赵澄林,朱筱敏. 2001. 沉积岩石学. 北京: 石油工业出版社,57-71. [Zhao C L,Zhu X M.2001. Sedimentary Petrology. Beijing: Petroleum Industry Press,57-71] [19] 赵红岩,陶维祥,于水,郝立华. 2013. 下刚果盆地深水区油气成藏要素特征及成藏模式研究. 中国石油勘探, 17(1): 75-79. [Zhao H Y,Tao W X,Yu S,Hao L H.2013. Hydrocarbon accumulation characteristics and model of deepwater zone of Lower Congo Basin. China Petroleum Exploration, 17(1): 75-79] [20] Bouma A H.1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Amsterdam: Elsevier,1-168. [21] Dott R H.1963. Dynamics of subaqueous gravity depositional processes. AAPG Bulletin, 47(1): 104-128. [22] Harris N B,Freeman K H,Pancost R D,White T,Mitchell G D.2004. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section,Congo Basin,west Africa. AAPG Bulletin, 88(8): 1163-1184. [23] Kuenen P H,Migliorini C Ⅰ.1950. Turbidity currents as a cause of graded bedding. The Journal of Geology, 58(2): 41-127. [24] Li Q,Wu W,Liang J S,Kang H Q,Liu W Q,Wang G X,Cai L L.2020. Deep-water channels in the lower Congo Basin: Evolution of the geomorphology and depositional environment during the Miocene. Marine and Petroleum Geology, 115: 1-19. [25] Lowe D R.1982. Sediment gravity flows: Ⅱ Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology, 52(1): 279-297. [26] Middleton G V,Hampton M A.1973. Sediment gravity flows: Mechanics of flow and deposition. In: Middleton G V,Bouma A H(eds). Turbidites and Deep-water Sedimentation. SEMP,Anaheim,CA,SEPM Pacific section Short Course: 1-38. [27] Mulder T,Alexander J.2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48(2): 269-299. [28] Mutti E,Bernoulli D,Lucchi F R,Tinterri R.2009. Turbidites and turbidity currents from alpine “flysch”to the exploration of continental margins. Sedimentology, 56: 267-318. [29] Shanmugam G.1996. High-density turbidity currents: Are they sandy debris flows? Journal of Sedimentary Research, 66(1): 2-10. [30] Shanmugam G.2000.50 years of the turbidite paradigm(1950s-1990s): Deep-water processes and facies models-a critical perspective. Marine and Petroleum Geololgy, 17: 285-342. [31] Shanmugam G.2012. New perspectives on deep-water sandstones: Origin,recognition,initiation and reservoir quality. Amsterdam: Elsevier,45-86. [32] Talling P J,Masson D G,Sumner E J,Malgesini G.2012. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59(7): 1937-2003. [33] Walker R G.1978. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps. AAPG Bulletin, 62: 932-966.