Fabric types of microbialites from the Stage 3 of Cambrian Series 2 in Sugaitebulake section, Tarim Basin
Li Ying1,2,3, Pan Wen-Qing4, Wu Ya-Sheng1,2,3, Yang Guo4, Sun Chong-Hao4, Jiang Hong-Xia5
1 Key Laboratory of Petroleum Resources Research,Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing 100029,China; 2 Innovation Academy for Earth Science,Chinese Academy of Sciences,Beijing 100029,China; 3 University of Chinese Academy of Sciences,Beijing 100049,China; 4 Research Institute of Petroleum Exploration and Development,Tarim Oilfield Company,PetroChina,Xinjiang Korla 841000,China; 5 Institute of Paleontology,Hebei GEO University,Shijiazhuang 050031,China
Abstract:The Xiaoerbulake Formation(Stage 3, Cambrian Series 2)in the Aksu area of the Tarim Basin is mainly composed of microbial dolostone with its reprehensive section at Sugaitebulake,90 km southwest of Aksu city. This formation can be ideal petroleum reservoirs for its good pores which has been extensively studied. Due to serious diagenesis alteration,however, their features have not been fully identified,which causes difficulty in understanding their formative processes and hampers the petroleum exploration. Here,based on detailed observation on outcrops and thin sections,we identified four types of microbialite fabrics,including thrombolitic fabric,laminated fabric,intraclastic fabric and framestone fabric,and established high-precision vertical evolutionary sequence of microbialites. The thrombolitic and the laminated fabrics can be further subdivided. The Members Ⅰ to Ⅲ are mainly composed of thrombolitic dolostone,thrombolitic-laminated dolostone and laminated dolostone. The Member IV consists of microbial thrombolite mounds,whereas the lower Member V is net-thrombolitic dolostone and the upper Member V intraclastic dolostone and Renalcis framestone. This study reveals that the original fabrics have been affected by dolomitization,recrystallization and dissolution,and the alteration degree of the microbialite fabric is more severe in the lower parts of this formation. The intraclastic fabric has the strongest resistance to diagenesis,followed by the laminated fabric,and then the thrombolitic fabric. The Members Ⅰ to Ⅲ represent tidal flat environments;the Member Ⅳ and the lower Member Ⅴ represent deep subtidal environments;the upper Member Ⅴ represents shallower subtidal environments.
Li Ying,Pan Wen-Qing,Wu Ya-Sheng et al. Fabric types of microbialites from the Stage 3 of Cambrian Series 2 in Sugaitebulake section, Tarim Basin[J]. JOPC, 2020, 22(4): 663-679.
[1] 白莹,罗平,刘伟,翟秀芬,周川闽. 2018. 微生物碳酸盐岩储层特征及主控因素: 以塔里木盆地阿克苏地区下寒武统肖尔布拉克组上段为例. 中国石油勘探, 23(4): 95-106. [Bai Y,Luo P,Liu W,Zhai X F,Zhou C M.2018. Characteristics and main controlling factors of microbial carbonate reservoir: A case study of upper member of Lower Cambrian Xiaoerbulake Formation in Akesu area,Tarim Basin. China Petroleum Exploration, 23(4): 95-106] [2] 戴永定,陈孟莪. 1996. 微生物岩研究的发展与展望. 地球科学进展, 11(2): 209-215. [Dai Y D,Chen M E.1996. Development and perspective of research for microbolites. Advance in Earth Sciences, 11(2): 209-215] [3] 邓世彪,关平,李保华,刘沛显,陈永权. 2018. 塔里木盆地下寒武统台缘带沉积结构特征及其形成过程. 沉积学报, 36(4): 706-721. [Deng S B,Guan P,Li B H,Liu P X,Chen Y Q.2018. Sedimentary texture and formation process of the Lower Cambrian platform marginal zone in the Tarim Basin,NW China. Acta Sedimentologica Sinica, 36(4): 706-721] [4] 杜汝霖. 1992. 前寒武纪古生物学及地史学. 北京: 地质出版社,1-193. [Du R L.1992. The Paleobiology and Historical Geology of the Precambrian. Beijing: Geological Publishing House,1-193] [5] 冯增昭,彭勇民,金振奎,鲍志东. 2002. 中国早寒武世岩相古地理. 古地理学报, 4(1): 1-12. [Feng Z Z,Peng Y M,Jin Z K,Bao Z D.2002. Lithofacies Palaeogeography of the Early Cambrian in China. Journal of Palaeogeography(Chinese Edition), 4(1): 1-12] [6] 冯增昭,鲍志东,吴茂炳,金振奎,时晓章,骆艾荣. 2006. 塔里木地区寒武纪岩相古地理. 古地理学报, 8(4): 427-439. [Feng Z Z,Bao Z D,Wu M B,Jin Z K,Shi X Z,Luo A R.2006. Lithofacies palaeogeography of the Cambrian in Tarim Area. Journal of Palaeogeography(Chinese Edition), 8(4): 427-439] [7] 胡明毅,孙春燕,高达. 2019. 塔里木盆地下寒武统肖尔布拉克组构造—岩相古地理特征. 石油与天然气地质, 40(1): 16-27. [Hu M Y,Sun C Y,Gao D.2019. Characteristics of tectonic-lithofacies paleogeography in the Lower Cambrian Xiaoerbulake Formation,Tarim Basin. Oil & Gas Geology, 40(1): 16-27] [8] 胡文瑄,朱井泉,王小林,由雪莲,何凯. 2014. 塔里木盆地柯坪地区寒武系微生物白云岩特征、成因及意义. 石油与天然气地质, 35(6): 860-869. [Hu W X,Zhu J Q,Wang X L,You X L,He K.2014. Characteristics,origin and geological implications of the Cambrian microbial dolomite in Keping Area,Tarim Basin. Oil & Gas Geology, 35(6): 860-869] [9] 黄擎宇,胡素云,潘文庆,刘伟,池英柳,王坤,石书缘,刘强. 2016. 台内微生物丘沉积特征及其对储层发育的控制: 以塔里木盆地柯坪—巴楚地区下寒武统肖尔布拉克组为例. 天然气工业, 36(6): 21-29. [Huang Q Y,Hu S Y,Pan W Q,Liu W,Chi Y L,Wang K,Shi S Y,Liu Q.2016. Sedimentary characteristics of intra-platform microbial mounds and their controlling effects on the development of reservoirs: A case study of the Lower Cambrian Xiaoerbulake Formation in the Keping-Bachu area,Tarim Basin. Natural Gas Industry, 36(6): 21-29] [10] 黄智斌,刘丽静,杨海军,吴亚生,杨芝林,赵锐,肖中尧,潘文庆. 2017. 塔里木地块寒武纪台地相区生物群落时空分布及其地层意义. 地层学杂志, 41(1): 3-18. [Huang Z B,Liu L J,Yang H J,Wu Y S,Yang Z L,Zhao R,Xiao Z Y,Pan W Q.2017. The spatial-temporal distribution of paleocommunities on the Cambrian Platform of the Tarim Block and its stratigraphic significances. Journal of Stratigraphy, 41(1): 3-18] [11] 李保华,邓世彪,陈永权,刘沛显,张艳秋,关平,严威,金亦秋. 2015. 塔里木盆地柯坪地区下寒武统台缘相白云岩储层建模. 天然气地球科学, 26(7): 1233-1244. [Li B H,Deng S B,Chen Y Q,Liu P X,Zhang Y Q,Guan P,Yan W,Jin Y Q.2015. The reservoir modeling of platform margin dolostone of Xiaoerblak Formation,Lower Cambrian,Kalpin Area,Tarim Basin. Natural Gas Geoscience, 26(7): 1233-1244] [12] 李朋威,罗平,宋金民,金廷福,王果谦. 2015. 微生物碳酸盐岩储层特征与主控因素: 以塔里木盆地西北缘上震旦统—下寒武统为例. 石油学报, 36(9): 1074-1089. [Li P W,Luo P,Song J M,Jin T F,Wang G Q.2015. Characteristics and main controlling factors of microbial carbonate reservoirs: A case study of Upper Sinian-Lower Cambrian in the northwestern margin of Tarim Basin. Acta Petrolei Sinica, 36(9): 1074-1089] [13] 罗平,王石,李朋威,宋金民,金廷福,王果谦,杨式升. 2013. 微生物碳酸盐岩油气储层研究现状与展望. 沉积学报, 31(5): 807-823. [Luo P,Wang S,Li P W,Song J M,Jin T F,Wang G Q,Yang S S.2013. Review and prospectives of microbial carbonate reservoirs. Acta Sedimentologica Sinica, 31(5): 807-823] [14] 梅冥相. 2007. 微生物碳酸盐岩分类体系的修订: 对灰岩成因结构分类体系的补充. 地学前缘, 14(5): 222-234. [Mei M X.2007. Revised Classification of Microbial Carbonates: Complementing the Classification of Limestones. Earth Science Frontiers, 14(5): 222-234] [15] 钱迈平. 1991. 苏、皖北部震旦纪叠层石及其沉积环境学意义. 古生物学报, 30(5): 616-629. [Qian M P.1991. Environmental significance of Sinian algal stromatolites in northern Jiangsu and Anhui,China. Acta Palaeontologica Sinica, 30(5): 616-629] [16] 乔占峰,沈安江,倪新锋,朱永进,严威,郑剑锋,黄理力,孙晓伟. 2019. 塔里木盆地下寒武统肖尔布拉克组丘滩体系类型及其勘探意义. 石油与天然气地质, 40(2): 182-192. [Qiao Z F,Shen A J,Ni X F,Zhu Y J,Yan W,Zheng J F,Huang L L,Sun X W.2019. Types of mound-shoal complex of the Lower Cambrian Xiaoerbulake Formation in Tarim Basin,northwest China,and its implications for exploration. Oil & Gas Geology, 40(2): 182-192] [17] 宋金民,罗平,杨式升,杨迪,周刚,李朋威,陈文玲. 2012. 塔里木盆地苏盖特布拉克地区下寒武统肖尔布拉克组碳酸盐岩微生物建造特征. 古地理学报, 14(3): 341-354. [Song J M,Luo P,Yang S S,Yang D,Zhou G,Li P W,Chen W L.2012. Carbonate rock microbial construction of the Lower Cambrian Xiaoerblak Formation in Sugaitblak area,Tarim Basin. Journal of Palaeogeography(Chinese Edition), 14(3): 341-354] [18] 宋金民,罗平,杨式升,杨迪,周川闽,李朋威,翟秀芬. 2014. 塔里木盆地下寒武统微生物碳酸盐岩储集层特征. 石油勘探与开发, 41(4): 404-413. [Song J M,Luo P,Yang S S,Yang D,Zhou C M,Li P W,Zhai X F.2014. Reservoirs of Lower Cambrian Microbial Carbonates,Tarim Basin,NW China. Petroleum Exploration and Development, 41(4): 404-413] [19] 沈安江,郑剑锋,陈永权,倪新锋,黄理力. 2016. 塔里木盆地中下寒武统白云岩储集层特征、成因及分布. 石油勘探与开发, 43(3): 340-349. [Shen A J,Zheng J F,Chen Y Q,Ni X F,Huang L L.2016. Characteristics,origin and distribution of dolomite reservoirs in Lower-Middle Cambrian,Tarim Basin,NW China. Petroleum Exploration and Development, 43(3): 340-349] [20] 王凯,关平,邓世彪,刘沛显,金亦秋. 2016. 塔里木盆地下寒武统微生物礁储集性研究及油气勘探意义. 沉积学报, 34(2): 386-396. [Wang K,Guan P,Deng S B,Liu P X,Jin Y Q.2016. Reservoirs of the Lower Cambrian microbial reefs and its significance on petroleum exploration,Tarim Basin,NW China. Acta Sedimentologica Sinica, 34(2): 386-396] [21] 王剑,庄汝礼,劳可通,龙国华. 1990. 湘西花垣地区下寒武统清虚洞组生物丘钙藻形态群与环境群带的划分及意义. 岩相古地理,(3): 14-24. [Wang J,Zhuang R L,Lao K T,Long G H.1990. Division and geologica limplications of calcareous algal morphological Groups and environmental zones in the Lower Cambrian Qingxudong Formation,Hua Yuan District,Western Hu Nan. Sedimentary Facies and Palaeogeography,(3): 14-24] [22] 王建波,李越,程龙,曾雄伟,王冠. 2014. 华南板块古生代生物礁及其古地理控制因素. 古生物学报, 53(1): 121-131. [Wang J B,Li Y,Cheng L,Zeng X W,Wang G.2014. Paleozoic reefs and their paleogeological controls in South China Block. Acta Palaeontologica Sinica, 53(1): 121-131] [23] 王招明,谢会文,陈永权,齐英敏,张科. 2014. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义. 中国石油勘探, 19(2): 1-13. [Wang Z M,Xie H W,Chen Y Q,Qi Y M,Zhang K.2014. Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 Well in Tarim Basin. China Petroleum Exploration, 19(2): 1-13] [24] 吴亚生,姜红霞,虞功亮,刘丽静. 2018. 微生物岩的概念和重庆老龙洞剖面P-T界线地层微生物岩成因. 古地理学报, 20(5): 737-775. [Wu Y S,Jiang H X,Yu G L,Liu L J.2018. Conceptions of microbialites and origin of the Permian-Triassic boundary microbialites from Laolongdong,Chongqing,China. Journal of Palaeogeography(Chinese Edition), 20(5): 737-775] [25] 熊益学,陈永权,关宝珠,邓力萍,倪新锋,熊冉. 2015. 塔里木盆地下寒武统肖尔布拉克组北部台缘带展布及其油气勘探意义. 沉积学报, 33(2): 408-415. [Xiong Y X,Chen Y Q,Guan B Z,Deng L P,Ni X F,Xiong R.2015. Distribution of Northern Platform margin and implications to favorable exploration regions on Lower Cambrian Xiaoerbulake Formation,Tarim Basin. Acta Sedimentologica Sinica, 33(2): 408-415] [26] 严威,邬光辉,张艳秋,杨果,娄洪,王孝明. 2018. 塔里木盆地震旦纪—寒武纪构造格局及其对寒武纪古地理的控制作用. 大地构造与成矿学, 42(3): 455-466. [Yan W,Wu G H,Zhang Y Q,Yang G,Lou H,Wang X M.2018. Sinian-Cambrian tectonic framework in the Tarim Basin and its influences on the Paleogeography of the Early Cambrian. Geotectonica et Metallogenia, 42(3): 455-466] [27] 余浩元,蔡春芳,郑剑锋,黄理力,袁文芳. 2018. 微生物结构对微生物白云岩孔隙特征的影响: 以塔里木盆地柯坪地区肖尔布拉克组为例. 石油实验地质, 40(2): 233-243. [Yu H Y,Cai C F,Zheng J F,Huang L L,Yuan W F.2018. Influence of microbial textures on pore characteristics of microbial dolomites: A case study of Lower Cambrian Xiaoerbulake Formation in Keping area,Tarim Basin. Petroleum Geology and Experiment, 40(2): 233-243] [28] 赵宗举,张运波,潘懋,吴兴宁,潘文庆. 2010. 塔里木盆地寒武系层序地层格架. 地质论评, 56(5): 3-14. [Zhao Z J,Zhang Y B,Pan M,Wu X N,Pan W Q.2010. Cambrian sequence stratigraphic framework in Tarim Basin. Geological Review, 56(5): 3-14] [29] 赵宗举,罗家洪,张运波,吴兴宁,潘文庆. 2011. 塔里木盆地寒武纪层序岩相古地理. 石油学报, 32(6): 937-948. [Zhao Z J,Luo J H,Zhang Y B,Wu X N,Pan W Q.2011. Lithofacies paleogeography of Cambrian sequences in the Tarim Basin. Acta Petrolei Sinica, 32(6): 937-948] [30] 郑剑锋,陈永权,黄理力,严威,倪新锋,李保华,郭晓燕. 2019. 苏盖特布拉克剖面肖尔布拉克组储层建模研究及其勘探意义. 沉积学报, 37(3): 601-609. [Zheng J F,Chen Y Q,Huang L L,Yan W,Ni X F,Li B H,Guo X Y.2019. Reservoir modeling of the Lower Cambrian Xiaoerblak Formation in the Sugaitblak Section and its significance for exploring regions in the Tarim Basin,NW China. Acta Sedimentologica Sinica, 37(3): 601-609] [31] Aitken J D.1967. Classification and environmental significance of cryptalgal limestones and dolomites,with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Research, 37(4): 1163-1178. [32] Braga J C,Martin J M,Riding R.1995. Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect,Miocene,SE Spain. Palaios,10:347-361. [33] Burne R V,Moore L S.1987. Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios, 2(3): 241-254. [34] Dupraz C,Strasser A.1999. Microbialites and micro-encrusters in Shallow coral bioherms(Middle to Late Oxfordian,Swiss Jura Mountains). Facies, 40(1): 101-129. [35] Ezaki Y,Liu J,Adachi N.2003. Earliest Triassic microbialite micro-to megastructures in the Huaying area of Sichuan Province,South China: Implications for the nature of oceanic conditions after the end-Permian extinction. Palaios, 18(4-5): 388-402. [36] Hofmann H J.1975. Stratiform Precambrian stromatolites,Belcher Islands,Canada;Rela-tions between silicified microfossils and microstructure. American Journal of Science, 275(10): 1121-1132. [37] Harwood T C,Sumner D Y.2016. Thrombolite fabrics and origins: Influences of diverse microbial and metazoan processes on Cambrian thrombolite variability in the Great Basin,California and Nevada. Sedimentology, 63(7): 2217-2252. [38] Jahnert R J,Collins L B.2012. Characteristics,distribution and morphogenesis of subtidal microbial systems in Shark Bay,Australia. Marine Geology, 303: 115-136. [39] Kennard J M,James N P.1986. Thrombolites and stromatolites: Two distinct types of microbial structures. Palaios, 1(5): 492-503. [40] Kiessling W.2009. Geologic and biologic controls on the evolution of reefs. Annual Review of Ecology,Evolution, and Systematics, 40: 173-192. [41] Lee J H,Chen J,Chough S K.2010. Paleoenvironmental implications of an extensive maceriate microbialite bed in the Furongian Chaomidian Formation,Shandong Province,China. Palaeogeography,Palaeoclimatology, Palaeoecology, 297(3-4): 621-632. [42] Lee J H,Chen J,Choh S J,Lee D J,Han Z Z,Chough S K.2014. Furongian(Late Cambrian)sponge-microbial maze-like reefs in the North China Platform. Palaios, 29(1): 27-37. [43] Mettraux M,Homewood P,Dos Anjos C,Erthal M,Lima R,Matsuda N,Souza A,Al Balushi S.2015. Microbial communities and their primary to early diagenetic mineral phases;the record from Neoproterozoic microbialites of Qarn Alam,Oman. Geological Society,London, Special Publications, 418(1): 123-154. [44] Pratt B R.1984. Epiphyton and Renalcis;diagenetic microfossils from calcification of coccoid blue-green algae. Journal of Sedimentary Research, 54(3): 948-971. [45] Riding R.1991. Calcareous Algae and Stromatolites. Berlin Heidelberg: Springer, 21-51. [46] Riding R.2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology,47(s1): 179-214. [47] Riding R.2011. Microbialites,stromatolites,and thrombolites. In: Reitner J, Thiel V (eds). Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Dordrecht: Springer, 635-654. [48] Riding R.2012. A hard life for cyanobacteria. Science, 336(6080): 427-428. [49] Stephens N P,Sumner D Y.2002. Renalcids as fossilized biofilm clusters. Palaios, 17(3): 225-236. [50] Shapiro R S,Awramik S M.2000. Microbialite morphostratigraphy as a tool for correlating Late Cambrian-Early Ordovician sequences. The Journal of Geology, 108(2): 171-180. [51] Turner E C,James N P,Narbonne G M.2000. Taphonomic control on microstructure in Early Neoproterozoic reefal stromatolites and thrombolites. Palaios, 15(2): 87-111. [52] Wood R.1998. The ecological evolution of reefs. Annual Review of Ecology and Systematics, 29(1): 179-206.