Roots of fossil and extant ferns: Morphological evolution and paleoenvironmental implications
Liu Lu1, Liu Le2, Wang De-Ming1, Xue Jin-Zhuang1
1 Key Laboratory of Orogenic Belts and Crustal Evolution,School of Earth and Space Sciences, Ministry of Education,Peking University,Beijing 100871,China; 2 College of Geoscience and Surveying Engineering,China University of Mining & Techology(Beijing),Beijing 100083,China;
Abstract:Roots are important vegetative organs of plants,and play essential roles in plant physiology as well as in the nutrient cycle and energy flow of an ecosystem. Fern roots are known to arise from the shoots in a predictable pattern,and thus are called shoot-borne roots,or more commenly adventitious roots. In contrast to the extensive studies of seed plant roots,relatively little information is available on fern roots. Based on a compilation of the available data and our own observations on both fossil and extant fern specimens,this study presents a review of root morphology of several fossil and extant ferns. In the early ferns that flourished during the Middle-Late Devonian,dense shoot-borne roots are attached on stems,or inferred rhizomes,or on expanded bases of trunks;such roots seldom branch,but when they do they display an isotomous branching pattern. In the crown groups of ferns,however,shoot-borne roots may be either densely or sparsely arranged,and show a monopodial branching pattern with two or more orders of lateral roots. The morphological evolution of fern roots may be interpreted by“the telome theory”: shoot-borne roots seem to be evolutionary conservative;primitive roots in early ferns can be considered as telome trusses that occasionally branch isotomously;and lateral rooting systems in crown groups of ferns evolved through overtopping of telome trusses. Information on fern root architecture,morphology,anatomical structure,and allocation ratios is documented in the fossil record,and is of significance in understanding the evolution of plant rooting systems and plant-soil interactions over geological time. As a case study,fossils of fern roots and root-soil systems from the Jurassic of Western Hills,Beijing,are briefly introduced.
Liu Lu,Liu Le,Wang De-Ming et al. Roots of fossil and extant ferns: Morphological evolution and paleoenvironmental implications[J]. JOPC, 2020, 22(4): 680-696.
[1] 程业明,刘凤香. 2017. 中国首次发现白垩纪桫椤科茎干化石. 地球学报, 38(2): 135-143. [Cheng Y M,Liu F X.2017. The first discovery of a Cretaceous Cyatheaceae trunk from China. Acta Geoscientica Sinica, 38(2): 135-143] [2] 邓胜徽. 1995. 内蒙古霍林河盆地早白垩世植物群. 北京: 地质出版社,1-125. [Deng S H.1995. Early Cretaceous Flora from Huolinhe Basin,Inner Mongolia. Beijing: Geological Publishing House,1-125] [3] 邓胜徽. 2007. 中生代主要植物化石的古气候指示意义. 古地理学报, 9(6): 559-574. [Deng S H.2007. Palaeoclimatic implications of main fossil plants of the Mesozoic. Journal of Palaeogeography(Chinese Edition), 9(6): 559-574] [4] 李春香,陆树刚,杨群. 2004. 蕨类植物起源与系统发生关系研究进展. 植物学通报, 21(4): 478-485. [Li C X,Lu S G,Yang Q.2004. Advances in the studies of the origin and systematics of Pteridophytes. Chinese Bulletin of Botany, 21(4): 478-485] [5] 李春香,王怿,孙晓燕. 2007. 蕨类植物的起源演化: 对“古老”类群的重新审视. 生命科学, 19(2): 245-249. [Li C X,Wang Y,Sun X Y.2007. Origin and evolution of Pteridophytes: New insights to“ancient”lineage. Chinese Bulletin of Life Sciences, 19(2): 245-249] [6] 刘红梅,王丽,张宪春,曾辉. 2008. 石松类和蕨类植物研究进展: 兼论国产类群的科级分类系统. 植物分类学报, 46(6): 808-829. [Liu H M,Wang L,Zhang X C,Zeng H.2008. Advances in the studies of Lycophytes and Monilophytes with reference to systematic arrangement of families distributed in China. Acta Phytotaxonomica Sinica, 46(6): 808-829] [7] 陆树刚. 2007. 蕨类植物学. 北京: 高等教育出版社,1-362. [Lu S G.2007. Pteridology. Beijing: High Education Press,1-362] [8] 陆树刚. 2017. 蕨类植物学概论. 北京: 科学出版社,1-240. [Lu S G.2007. An Introduction to Pteridology. Beijing: Science Press,1-240] [9] 马炜梁,王幼芳,李宏庆. 2009. 植物学. 北京: 高等教育出版社,1-411. [Ma W L,Wang Y F,Li H Q.2009. Botany. Beijing: High Education Press,1-411] [10] 毛齐正,杨喜田,苗蕾. 2008. 植物根系构型的生态功能及其影响因素. 河南科学, 26(2): 172-176. [Mao Q Z,Yang X T,Miao L.2008. The ecological roles and influencing factors of plant root architecture. Henan Science, 26(2): 172-176] [11] 秦仁昌. 1978a. 中国蕨类植物系统排列和历史来源. 植物分类学报,(3): 1-19. [Qin R C.1978a. Fern families and genera in China: Their system of arrangement and historical origin. Acta Phytotaxonomica Sinica,(3): 1-19] [12] 秦仁昌. 1978b. 中国蕨类植物系统排列和历史来源. 植物分类学报,(4): 16-37. [Qin R C.1978b. Fern families and genera in China: Their system of arrangement and historical origin. Acta Phytotaxonomica Sinica,(4): 16-37] [13] 田宁,王永栋,张武,蒋子堃. 2014. 辽西侏罗纪紫萁根茎化石新材料(Ashicaulis wangii sp. nov.)及古生物地理学和演化意义. 中国科学: 地球科学, 44(10): 2262-2273. [Tian N,Wang Y D,Zhang W,Jiang Z K.2014. A new structurally preserved fern rhizome of Osmundaceae(Filicales)Ashicaulis wangii sp. nov. from the Jurassic of western Liaoning and its significances for palaeobiogeography and evolution. Science China: Earth Science, 44(10): 2262-2273] [14] 薛进庄,郝守刚. 2014. 志留纪—早泥盆世维管植物的谱系关系、幕式演化和地理分布: 植物大化石证据. 古地理学报, 16(6): 861-877. [Xue J Z,Hao S G.2014. Phylogeny,episodic evolution and geographic distribution of Silurian-Early Devonian vascular plants: Evidence from plant megafossils. Journal of Palaeogeography(Chinese Edition), 16(6): 861-877] [15] 薛进庄,张华侨. 2010. 古生物学术语冠群和干群的释义问题. 中国科技术语, 12(4): 57-58. [Xue J Z,Zhang H Q.2010. Definition of two paleontological terms: Crown group and stem group. China Terminology, 12(4): 57-58] [16] 薛进庄,黄璞,王祺. 2014. Monilophytes(广义真蕨类)的概念溯源及中文定名. 植物学研究,(3): 23-26. [Xue J Z,Huang P,Wang Q.2014. Notes on the history of the term Monilophytes and its Chinese name. Botanical Research,(3): 23-26] [17] 张宪春,卫然,刘红梅,何丽娟,王丽,张钢民. 2013. 中国现代石松类和蕨类的系统发育与分类系统. 植物学报, 48(2): 119-137. [Zhang X C,Wei R,Liu H M,He L J,Wang L,Zhang G M.2013. Phylogeny and classification of the extant lycophytes and ferns from China. Chinese Bulletin of Botany, 48(2): 119-137] [18] 中国科学院南京地质古生物研究所,中国科学院植物研究所. 1974. 中国植物化石. 第一卷: 中国古生代植物. 北京: 科学出版社,1-414. [Nanjing Institute of Geology and Palaeontology,the Chinese Academy of Sciences;Institute of Botany,the Chinese Academy of Sciences. 1974. Fossil Plants of China(Vol. 1): Palaeozoic Plants from China. Beijing: Science Press,1-414] [19] 朱家柟. 1963. 内蒙古侏罗纪桫椤科的一新种: 鄂尔多斯桫椤Cyathea ordosica C. N. Chu,sp. nov. 植物学报, 11(3): 272-278. [Zhu J N.1963. Cyathea ordosica C. N. Chu,a new Cyatheoid fern from the Jurassic of Dongsheng,the Inner Mongolia Autonomous Region. Acta Botanica Sinica, 11(3): 272-278] [20] Bell A D,Tomlinson P B.1980. Adaptive architecture in rhizomatous plants. Botanical Journal of the Linnean Society, 80: 125-160. [21] Bellini C,Pacurar D I,Perrone I.2014. Adventitious roots and lateral roots: Similarities and differences. Annual Review of Plant Biology, 65: 639-666. [22] Beerling D J,Fleming A J.2007. Zimmermann’s telome theory of megaphyll leaf evolution: A molecular and cellular critique. Current Opinion in Plant Biology, 10: 4-12. [23] Bierhorst D W.1971. Morphology of Vascular Plants. New York: Macmillan Co.,1-560. [24] Bomfleur B,McLoughlin S,Vajda V.2014. Fossilized nuclei and chromosomes reveal 180 Million years of genomic stasis in royal ferns. Science, 343: 1376-1377. [25] Bomfleur B,Grimm G W,McLoughlin S.2015. Osmunda pulchella sp. nov. from the Jurassic of Sweden-reconciling molecular and fossil evidence in the phylogeny of modern royal ferns(Osmunfaceae). BMC Evolutionary Biology, 15: 126-151. [26] Borha D R,Sharma B D.1979. Jurassic petrified filician plants from the Rajmahal hills,India. Annals of Botany, 44: 749-756. [27] Cannon W A.1949. A tentative classification of root systems. Ecology, 30: 542-548. [28] Cornet B,Phillips T L,Andrews H N.1976. The morphology and variation in Rhacophyton certangium from the Upper Devonian and its bearing on frond evolution. Palaeontographica Abteilung B Paläophytologie, 158: 105-129. [29] Deng S H.1997. Eogonocormus-A new early Cretaceous fern of Hymenophyllaceae from China. Australian Systematic Botany, 10(1): 59-67. [30] Edward D.2004. Embryophytic sporophytes in the Rhynie and Windyfield cherts. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 397-410. [31] Gandolfo M A,Nixon K C,Crepet W L,Ratcliffe G E.1997. A new fossil fern assignable to Gleicheniaceae from Late Cretaceous sediments of New Jersey. American Journal of Botany, 84: 483-493. [32] Groff P A,Kaplan D R.1988. The relation of root systems to shoot systems in vascular plants. Botanical Review, 54: 387-422. [33] Hao S G,Xue J Z,Guo D L,Wang D M.2010. Earliest rooting system and root: Shoot ratio from a new Zosterophyllum plant. New Phytologist, 185(1): 217-225. [34] Hao S G,Xue J Z.2013. The Early Devonian Posongchong Flora of Yunnan: A Contribution to an Understanding of the Evolution and Early Diversification of Vascular Plants. Beijing: Science Press,1-366. [35] Hermsen E J,Jud N A,Benedetti F D,Gandolfo M A.2019. Azolla sporophytes and spores from the Late Cretaceous and Paleocene of Patagonia,Argentina. International Journal of Plant Sciences, 180(7): 737-754. [36] Hetherington A J,Dolan L.2018. Stepwise and independent origins of roots among land plants. Nature, 561: 235-246. [37] Hou G C,Blancaflor E B.2009. Fern root development(Chapter 8).Annual Plant Reviews, 37: 192-208. [38] Jones V A,Dolan L.2012. The evolution of root hairs and rhizoids. Annals of botany, 110(2): 205-212. [39] Kenrick P,Crane P R.1997. The origin and early evolution of plants on land. Nature, 389: 33-39. [40] Kenrick P,Strullu-Derrien C.2014. The origin and early evolution of roots. Plant Physiology, 166: 570-580. [41] Li C X,Miao X Y,Zhang L B,Ma J Y,Hao J S.2020. Re-evaluation of the systematic position of the Jurassic-Early Cretaceous fern genus Coniopteris. Cretaceous Research, 105: 104-136. [42] Liu L,Qin M,Tian N,Zhou C F,Wang D M,Basinger J F,Xue J Z.2018. Belowground rhizomes and roots in waterlogged paleosols: Examples from the Middle Jurassic of Beijing,China. Geobios, 51(5): 419-433. [43] Lynch J.1995. Root architecture and plant productivity. Plant Physiology, 109: 70-13. [44] Ma Z Q,Guo D L,Xu X L,Lu M Z,Bardgett R D,Eissenstat D M,McCormack M L,Hedin L O.2018. Evolutionary history resolves global organization of root functional traits. Nature, 555: 94-97. [45] McCormack M L,Guo D L,Iversen C M,Chen W L,Eissenstat D M,Fernandez C W,Li L,Ma C G,Ma Z Q,Poorter H,Reich P B,Zadworny M,Zanne A.2017. Building a better foundation: Improving root-trait measurements to understand and model plant and ecosystem processes. New Phytologist, 215: 27-37. [46] Mindell R A,Stockey R A,Rothwell G W,Beard G.2006. Gleichenia appianensis sp. nov.(Gleicheniaceae): A permineralized rhizome and associated vegetative remains from the Eocene of Wagonercouver island,British Columbia. International Journal of Plant Sciences, 167(3): 639-647. [47] Morris J L,Leake J R,Stein W E,Berry C M,Marshall J E A,Wellman C H,Milton J A,Hillier S,Mannolini F,Quirk J,Beerling D J.2015. Investigating Devonian trees as geo-engineers of past climates: Linking palaeosols to palaeobotany and experimental geobiology. Palaeontology, 58: 787-801. [48] Osmont K S,Sibout R,Hardtke C S.2007. Hidden branches: Developments in root system architecture. Annual Review of Plant Biology, 58: 93-113. [49] Pawlik Ł,Phillips J D,Šamonil P.2016. Roots,rock,and regolith: biomechanical and biochemical weathering by trees and its impact on hillslopes: A critical literature review. Earth-Science Reviews, 159: 142-159. [50] PPG Ⅰ(The Pteridophyte Phylogeny Group). 2016. A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution, 54: 563-603. [51] Pryer K M,Schneider H,Smith A R,Cranfill R,Wolf P G,Hunt J S,Sipes S D.2001. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature, 409: 618-622. [52] Raven J A,Edwards D.2001. Roots: Evolutionary origins and biogeochemical significance. Journal of Experimental Botany, 52: 381-401. [53] Scheckler S E.1986. Geology,floristics and paleoecology of Late Devonian coal swamps from Appalachian Laurentia(U.S.A.). Annales de al Société Géologique de Belgique, 109: 209-222. [54] Schneider H.2000. Morphology and anatomy of roots in the filmy fern tribe Trichomaneae H. Schneider(Hymenophyllaceae,Filicatae)and the evolution of rootless taxa. Botanical Journal of the Linnean Society, 132: 29-46. [55] Shekhar V,Stöckle D,Thellmann M,Vermeer J E M.2019. The role of plant root systems in evolutionary adaptation. Current Topics in Developmental Biology, 131: 55-80. [56] Stein W E,Berry C M,Morris J L,Hernick L V A,Mannolini F,Straeten C V,Landing E,Marshall J E A,Wellman C H,Beerling D J,Leake J R.2020. Mid-Devonian Archaeopteris roots signal revolutionary change in earliest fossil forests. Current Biology, 30: 1-11. [57] Taylor T N,Taylor E L,Krings M.2009. Paleobotany: The Biology and Evolution of Fossil Plants(Second edition). Amsterdam: Academic Press,1-1230. [58] Tian N,Wang Y D,Jiang Z K.2008. Permineralized rhizomes of the Osmundaceae(Filicales): Diversity and tempo-spatial distribution pattern. Palaeoworld, 17: 183-200. [59] Tian N,Wang Y D,Zhang W,Jiang Z K,Dilcher D L.2013. Ashicaulis beipiaoensis sp. nov.,a new osmundaceous fern species from the Middle Jurassic of Liaoning Province,Northeastern China. International Journal of Plant Sciences, 174: 328-339. [60] Vera E I.2015. Further evidence supporting high diversity of cyathealean tree ferns in the Early Cretaceous of Antarctica. Cretaceous Research, 56: 141-154. [61] Wang D M,Xu H H,Xue J Z,Wang Q,Liu L.2015. Leaf evolution in early-diverging ferns: Insights from a new fern-like plant from the Late Devonian of China. Annals of Botany, 115: 1133-1148. [62] Wang Z,Geng B Y.1997. A new species of Metacladophyton from the Late Devonian of China. International Journal of Plant Sciences, 168: 1067-1084. [63] Xia M X,Guo D L,Pregitzer K S.2010. Ephemeral root modules in Fraxinus mandshurica. New Phytologist, 188: 1065-1074. [64] Xue J Z,Basinger J F.2016. Melvillipteris quadriseriata gen. et sp. nov.,a new plant assigned to Rhacophytales from the Upper Devonian(Famennian)of Arctic Canada. Geological Magazine, 153: 601-617. [65] Xue J Z,Deng Z Z,Huang P,Huang K J,Benton M J,Cui Y,Wang D M,Liu J B,Shen B,Basinger J F,Hao S G.2016. Belowgroud rhizomes in paleosols: The hidden half of an Early Devonian vascular plant. Proceedings of the National Academy of Sciences of the United States of America, 113: 9451-9456. [66] Xue J Z,Hao S G.2008. Denglongia hubeiensis gen. et sp. nov.,a new plant attributed to Cladoxylopsida from the Upper Devonian(Frasnian)of South China. International Journal of Plant Sciences, 169(9): 1314-1331. [67] Xue J Z,Hao S G,Basinger J F.2010. Anatomy of the Late Devonian Denglongia hubeiensis,with a discussion of the phylogeny of the Cladoxylopsida. International Journal of Plant Sciences, 171(1): 107-120. [68] Yamada T,Kato M.2002. Regnellites nagashimae gen. et sp. nov.,the oldest macrofossil of Marsileaceae,from the Upper Jurassic to Lower Cretaceous of western Japan. International Journal of Plant Sciences, 163: 715-723. [69] Yang X,Liu F,Cheng Y.2018. A new tree fern stem,Tempskya zhangii sp. nov.(Tempskyaceae)from the Cretaceous of Northeast China. Cretaceous Research, 84: 188-199.