Digital characterization and connectivity analysis of microcosmic pore structures of the Ordovician bioturbated carbonate rock reservoirs in Tahe Oilfield
Niu Yong-Bin1, Xu Zi-Lu1, Liu Sheng-Xin2, Zhong Jian-Hua3, Zhao Jia-Ru1, Wang Pei-Jun4
1 College of Resource & Environment,Henan Polytechnic University,Henan Jiaozuo 454003,China; 2 Institute of Geomechanics,Chinese Academy of Geological Sciences,Beijing 100081,China; 3 School of Geoscience,China University of Petroleum(East China),Shandong Qingdao 266580,China; 4 Development Affairs of Tarim Oilfield,PetroChina,Xinjiang Korla 841000,China
Abstract:Large-scale bioturbated carbonate rock reservoirs are developed in Ordovician Yingshan and Yijianfang Formations in the Tahe Oilfield. On the basis of core observation and detailed description,through observing thin sections under polarizing microscope,cathodoluminescence microscope and scanning and analyzing the plugs by using X-ray microscope,we have conducted digital characterization of pore structures and connectivity analysis of microcosmic pore structures of the Ordovician bioturbated carbonate reservoir rocks in Tahe Oilfield of Tarim Basin. The results show that: (1)Because of the great difference in rock fabric between burrow fills and surrounding host rock matrix,these reservoirs are highly heterogeneous. (2)The burrow fills are mainly composed of euhedral or subhedral dolomite crystals. The pore volume sets are between 10~100 μm3,the throat radii are generally smaller than 10 μm,and the throat lengths are generally shorter than 40 μm. The dolomite intercrystalline pores are the main reservoir space for this type of reservoir,and various pores are not well developed in the host rock matrix. (3)The porosity of burrow fills is between 7% and 10%. Although the number of isolated pores is large,the volume of connected pores still accounts for a large proportion. Moreover,the topology structure of connected pores is complex,and the pore network connectivity is overall great. Through coarsening and upgrading of Representative Elementary Volume(REV)in the scale,it is found that the pores in the samples are locally connected,while the overall connectivity is relatively poor. This study accurately characterized the micro-pore structures of the bioturbated carbonate reservoirs,which can provide the required characteristic parameters for the subsequent micro-seepage simulation of the bioturbated carbonate reservoirs. In future,the digital characterization of pore structure and the microcosmic seepage simulation of this type of bioturbated carbonate reservoirs should be combined with the macroscopic distribution rules and applied to the actual reservoir evaluation,which can provide guidance for the estimation of oil-gas resources, optimization of development plans, prediction of productivity and enhancement of oil-gas recovery.
Niu Yong-Bin,Xu Zi-Lu,Liu Sheng-Xin et al. Digital characterization and connectivity analysis of microcosmic pore structures of the Ordovician bioturbated carbonate rock reservoirs in Tahe Oilfield[J]. JOPC, 2020, 22(4): 785-798.
[1] 陈明江,程亮,陆涛. 2019. Ahdeb油田Khasib油藏孔隙结构及其对注水开发的影响. 岩性油气藏, 32(2): 1-10. [Chen M J,Cheng L,Lu T.2019. Pore structure characterization and its impact on water-flood development in the Khasib reservoir in Ahdeb field,Iraq. Lithologic Reservoirs, 32(2): 1-10] [2] 陈曦,吕波,黄素,何施雨,杜亚曦,朱讯. 2011. 陕西韩城—旬邑地区中奥陶统马家沟组豹斑白云岩研究. 新疆地质, 29(2): 222-225. [Chen X,Lü B,Huang S,He S Y,Du Y X,Zhu X.2011. Study of leopard fur dolomite in Mid-Ordovician Majiagou Formation Hancheng-Xunyi distinct in Shanxi Province. Xinjiang Geology, 29(2): 222-225] [3] 邓虎成,周文,郭睿,伏美燕,谢润成,陈文玲,彭先锋,肖睿. 2014. 伊拉克艾哈代布油田中—下白垩统碳酸盐岩储层孔隙结构及控制因素. 岩石学报, 30(3): 801-812. [Deng H C,Zhou W,Guo R,Fu M Y,Xie R C,Chen W L,Peng X F,Xizo R.2014. Pore structure characteristics and control factors of carbonate reservoirs: The Middle-Lower Cretaceous Formation,AI Hardy cloth Oilfield,Iraq. Acta Petrologica Sinica, 30(3): 801-812] [4] 邓小江,梁波,莫耀汉,李国蓉,王鑫,于海波,乔占峰. 2007. 塔河地区奥陶系一间房组礁滩相储层特征及成因机制新认识. 地质科技情报, 26(4): 63-69. [Deng X J,Liang B,Mo Y H,Li G R,Wang X,Yu H B,Qiao Z F.2007. A new know of characteristics and genesis of reef and bank facies reservoris in Ordovician Yijianfang Formation in Tahe Oilfield. Geological Science and Technology Information, 26(4): 63-69] [5] 顾家裕,方辉,蒋凌志. 2001. 塔里木盆地奥陶系生物礁的发现及其意义. 石油勘探与开发, 28(4): 1-3. [Gu J Y,Fang H,Jang L Z.2001. The significance of Ordovician reef discovery in Tarim Basin. Petroleum Exploration and Development, 28(4): 1-3] [6] 郭建华,沈昭国,李建明. 1994. 塔北东段下奥陶统白云石化作用. 石油与天然气地质, 15(1): 51-59. [Guo J H,Shen Z G,Li J M.1994. Dolomitization of Lower Ordovician in eastern ector of north Tarim region. Oil & Gas Geology, 15(1): 51-59] [7] 韩革华,漆立新,李宗杰,樊政军. 2006. 塔河油田奥陶系碳酸盐岩缝洞型储层预测技术. 石油与天然气地质,27(6): 860-870,878. [Han G H,Qi L X,Li Z J,Fan Z J.2006. Prediction of the Ordovician fractured-vuggy carbonate reservoirs in Tahe oilfield. Oil & Gas Geology,27(6): 860-870,878] [8] 郝毅,林良彪,周进,高倪超,张建勇,陈薇. 2012. 川西北中二叠统栖霞组豹斑灰岩特征与成因. 成都理工大学学报(自然科学版), 39(6): 651-656. [Hao Y,Lin L B,Zhou J,Gao N C,Zhang J Y,Chen W.2012. Characteristics and genesis of leopard limestone in Middle Permian Qixia Formation,Northwest Sichuan,China. Journal of Chengdu University of Technology(Science and Technology Edition), 39(6): 651-656] [9] 纪友亮,赵澂林,刘孟慧. 1990. 生物扰动构造对碎屑岩储层储集性能的影响. 石油大学学报(自然科学版), 14(6): 1-8. [Ji Y L,Zhao C L,Liu M H.1990. The effect of bioturbate structure on the peyrophysical properties of sandstone reservoir. Journal of China University of Petroleum(Science and Technology Edition), 14(6): 1-8] [10] 贾振远,马淑媛. 1984. 山东莱芜地区下古生界豹斑灰岩的成因及其意义. 地质论评, 30(3): 224-229. [Jia Z Y,Ma S Y.1984. The origin and significance of Lower Paleozoic patchy limestone in Laiwu,Shandong Province. Geological Review, 30(3): 224-229] [11] 林世国,施振生,李君,王宗礼,高阳,李正文. 2012. 四川盆地上三叠统生物扰动环境分析及与储集性能的关系. 天然气地球科学, 23(1): 74-80. [Lin S G,Shi Z S,Li J,Wang Z L,Gao Y,Li Z W.2012. Environmental interpretation of Upper Triassic bioturbation structures and correlation with petrophysical properties of reservoirs in Sichuan Basin. Natural Gas Geoscience, 23(1): 74-80] [12] 鲁新便,何成江,邓光校,鲍典. 2014. 塔河油田奥陶系油藏喀斯特古河道发育特征描述. 石油实验地质, 36(3): 268-274. [Lu X B,He C J,Deng G X,Bao D.2014. Development features of karst ancient river system in Ordovician reservoirs,Tahe Oilfield. Petroleum Geology & Experiment, 36(3): 268-274] [13] 牛永斌,钟建华,王培俊,单婷婷,李润泽. 2010. 成岩作用对塔河油田二区奥陶系碳酸盐岩储集空间发育的影响. 中国石油大学学报(自然科学版), 34(6): 13-19. [Niu Y B,Zhong J H,Wang P J,Shan T T,Li R Z.2010. Effect of diagenesis on accumulate capability of Ordovician carbonate rock in block 2 of Tahe Oilfield. Journal of China University of Petroleum(Science and Technology Edition), 34(6): 13-19] [14] 牛永斌,崔胜利,胡亚洲,钟建华,王培俊. 2017. 塔里木盆地塔河油田奥陶系数字岩心图像中生物扰动的定量表征. 古地理学报, 19(2): 353-363. [Niu Y B,Cui S L,Hu Y Z,Zhong J H,Wang P J.2017. Quantitative characterization of bioturbation based on digital image analysis of the Ordovician core from Tahe Oilfield of Tarim Basin. Journal of Palaeogeography(Chinese Edition), 19(2): 353-363] [15] 牛永斌,崔胜利,胡亚洲,钟建华,潘结南. 2018. 塔河油田奥陶系生物扰动型储集层的三维重构及启示意义. 古地理学报, 20(4): 691-702. [Niu Y B,Cui S L,Hu Y Z,Zhong J H,Pan J N.2018. Three-dimensional reconstruction and their significance of bioturbation-type reservoirs of the Ordovician in Tahe Oilfield. Journal of Palaeogeography(Chinese Edition), 20(4): 691-702] [16] 牛永斌,齐永安,胡斌,宋慧波,邢智峰,代明月,李妲. 2019. 遗迹组构的精细分析功能及其应用: 第15届国际遗迹组构专题研讨会综述. 古地理学报, 21(5): 767-782. [Niu Y B,Qi Y A,Hu B,Song H B,Xing Z F,Dai M Y,Li D.2019. Fine analysis functions and their application of ichnofabric: Outline of the 15th international Ichnofabric Workshop. Journal of Palaeogeography(Chinese Edition), 21(5): 767-782] [17] 齐永安. 1999. 生物扰动和遗迹组构的描述与分析. 河南地质, 17(4): 273-277. [Qi Y A.1999. The description and analysis of bioturbation and ichnofabric. Henan Geology, 17(4): 273-277] [18] 沈瑛楚,宋新民,刘波,王根久,郭睿,罗清清,石开波,王欢,刘航宇. 2019. 伊拉克AD油田上白垩统Kh2段生物扰动与储层非均质性. 天然气地球科学, 30(12): 1755-1770. [Shen Y C,Song X M,Liu B,Wang G J,Guo R,Luo Q Q,Shi K B,Wang H,Liu H Y.2019. Bioturbation and reservoir heterogeneity study of Upper Cretaceous Kh2 member,AD Oilfield,Iraq. Natural Gas Geoscience, 30(12): 1755-1770] [19] 盛军,杨晓菁,李纲,徐立,李雅楠,王靖茹,张彩燕,崔海栋. 2019. 基于多尺度X-CT成像的数字岩心技术在碳酸盐岩储层微观孔隙结构研究中的应用. 现代地质, 33(3): 653-661,671. [Sheng J,Yang X J,Li G,Xu L,Li Y N,Wang J R,Zhang C Y,Cui H D.2019. Application of multiscale X-CT imaging digital core technique on observing micro-pore structure of carbonate reservoirs.Geoscience, 33(3): 653-661,671] [20] 孙亮,王晓琦,金旭,李建明,吴松涛. 2016. 微纳米孔隙空间三维表征与连通性定量分析. 石油勘探与开发, 43(3): 490-498. [Sun L,Wang X Q,Jin X,Li J M,Wu S T.2016. Three dimensional characterization and quantitative connectivity analysis of micro/nano pore space. Petroleum Exploration and Development, 43(3): 490-498] [21] 王晨晨,姚军,杨永飞,王鑫,汲广胜,高莹. 2013. 碳酸盐岩双孔隙数字岩心结构特征分析. 中国石油大学学报(自然科学版), 37(2): 71-74. [Wang C C,Yao J,Yang Y F,Wang X,Ji G S,Gao Y.2013. The construction of carbonate digital rock with hybrid superposition method. Journal of China University of Petroleum(Edition of Natural Science), 37(2): 71-74] [22] 尹燕义,王国娟,方少仙. 1996. 生物扰动对砂岩储集性和含油性的影响. 石油勘探与开发, 23(5): 29-32. [Yi Y Y,Wang G J,Fang S X.1996. The influence of the bioturbation on the quality of the reservoir and oil-bearing capability of the sandstone reservoirs. Petroleum Exploration and Development, 23(5): 29-32] [23] 翟晓先,俞仁连,何发岐,周家驹. 2002. 塔河地区奥陶系一间房组微裂隙颗粒灰岩储集体的发现与勘探意义. 石油实验地质, 24(5): 387-392. [Zhai X X,Yu R L,He F Q,Zhou J J.2002. Discover and exploration significance of microfissure grain limestone reservoirs in the Ordovician Yijianfang of Tahe Area. Petroleum Geology and Experiment, 24(5): 387-392] [24] 赵新伟,许红. 2016. 基于微焦X-CT的碳酸盐岩孔隙结构精细表征. 特种油气藏, 23(1): 127-131,157. [Zhao X W,Xu H.2016. Microfocus X-CT based fine characterization of carbonate pore texture. Special Oil and Gas Reservoirs, 23(1): 127-131,157] [25] 郑和荣,刘春燕,吴茂炳,王毅. 2009. 塔里木盆地奥陶系颗粒石灰岩埋藏溶蚀作用. 石油学报, 30(1): 9-15. [Zheng H R,Liu C Y,Wu M B,Wang Y.2009. Burial dissolution of Ordovician granule limestone in Tarim Basin. Acta Petrolei Sinica, 30(1): 9-15] [26] 郑剑锋,陈永权,倪新锋,严威,黄理力,张艳. 2016. 基于CT成像技术的塔里木盆地寒武系白云岩储层微观表征. 天然气地球科学, 27(5): 780-789. [Zheng J F,Chen Y Q,Ni X F,Yan W,Huang L L,Zhang Y.2016. Microscopic characterization based on CT imaging technology of Cambrian dolomite reservoir in Tarim Basin. Natural Gas Geoscience, 27(5): 780-789] [27] 钟建华,孔凡亮,李阳,袁向春,高玉飞,梁刚,艾合买提江·阿不都热和曼,陈鑫,牛永斌,王培俊. 2010. 塔河油田四区奥陶系碳酸盐岩油藏中的缝合线研究. 地质论评, 56(6): 841-850. [Zhong J H,Kong F L,Li Y,Yuan X C,Gao Y F,Liang G,Ahmatjan A,Chen X,Niu Y B,Wang P J.2010. Research of stylolites in Ordovician carbonate reservoirs of the 4th Block,Tahe Oilfield,Tarim Basin. Geological Review, 56(6): 841-850] [28] Abdel-Fattah Z A,Gingras M K,Caldwell M W,Pemberton S G,MacEachern J A.2016. The glossifungites ichnofacies and sequence stratigraphic analysis: A case study from Middle to Upper Eocene successions in Fayum,Egypt. Ichnos, 23(3-4): 157-179. [29] Adam A,Swennen R,Abdulghani W,Abdlmutalib A,Hariri M,Abdulraheem A.2018. Reservoir heterogeneity and quality of Khuff carbonates in outcrops of central Saudi Arabia. Marine and Petroleum Geology, 89: 721-751. [30] Andrea B,De C C N,Roberto B,Federico B,Barbara C,Antonio C,Fabrizio F,Annalisa F,Peter S H,Antonio T,Claudia T.2017. Organism-substrate interactions and astrobiology. Earth-Science Reviews, 17: 141-180. [31] Baniak G M.2013. Characterization of Reservoir Quality Using Ichnological,Sedimentological,and Geochemical Methods. Doctoral Dissertation of University of Albert: 1-238. [32] Baniak G M,Gingras M K,Pemberton S G.2013. Reservoir characterization of burrow-associated dolomites in the Upper Devonian Wabamun Group,Pine Creek gas field,central Alberta,Canada. Marine and Petroleum Geology, 48: 275-292. [33] Baniak G M,Amskold L,Konhauser K O,Muehlenbachs K,Pemberton S G,Gingras M K.2014. Sabkha and burrow-mediated dolomitization in the mississippian Debolt Formation,northwestern Alberta,Canada. Ichnos, 21(3): 158-174. [34] Bayet-Goll A,Samani P N,Neto de Carvalho C,Monaco P,Khodaie N,Pour M M,Kazemeini H,Zareiyan M H.2017. Sequence stratigraphy and ichnology of Early Cretaceous reservoirs,Gadvan Formation in southwestern Iran. Marine and Petroleum Geology, 81: 294-319. [35] Bednarz M,McIlroy D.2012. Effect of phycosiphoniform burrows on shale hydrocarbon reservoir quality. AAPG Bulletin, 96(10): 1957-1980. [36] Bednarz M,McIlroy D.2015. Organism-sediment interactions in shale-hydrocarbon reservoir facies: Three-dimensional reconstruction of complex ichnofabric geometries and pore-networks. International Journal of Coal Geology, 150-151: 238-251. [37] Ben-Awuah J,Eswaran P.2015. Effect of bioturbation on reservoir rock quality of sandstones: A case from the Baram Delta,offshore Sarawak,Malaysia. Petroleum Exploration and Development, 42(2): 223-231. [38] Corlett H J,Jones B.2012. Petrographic and geochemical contrasts between calcite- and dolomite-filled burrows in the Middle Devonian Lonely Bay Formation,Northwest Territories,Canada: Implications for dolomite formation in Paleozoic burrows. Journal of Sedimentary Research, 82(9): 648-663. [39] Cunningham K J,Sukop M C,Huang H,Alvarez P F,Curran H A,Renken R A,Dixon J F.2009. Prominence of ichnologically influenced macroporosity in the karst Biscayne aquifer: Stratiform “super-K” zones. Geological Society of America Bulletin,121(1/2): 164-180. [40] Dey J,Souvik S.2017. Impact of bioturbation on reservoir quality and production: A review. Journal Geological Society of India, 89: 460-470. [41] Friesen O J,Dashtgard S E,Miller J,Schmitt L,Baldwin C.2017. Permeability heterogeneity in bioturbated sediments and implications for waterflooding of tight-oil reservoirs,Cardium Formation,Pembina Field,Alberta,Canada. Marine and Petroleum Geology, 82: 371-387. [42] Gingras M K,Mendoza C A,Pemberton S G.2004a. Fossilized worm burrows influence the resource quality of porous media. AAPG Bulletin, 88(7): 875-883. [43] Gingras M K,Pemberton S G,Muehlenbachs K,Hans M.2004b. Conceptual models for burrow-related,selective dolomitization with textural and isotopic evidence from the Tyndall Stone,Canada. Geobiology, 2(1): 21-30. [44] Gingras M K,Pemberton S G,Floyd H,MacEachern J A,Mendoza C,Ben R,Riley H,Michele S,Konhauser K O.2005. Application of ichnology to fluid and gas production in hydrocarbon reservoirs. SEPM Society of Sedimentary Geology, 52: 129-143. [45] Gingras M K,Pemberton S G,Michael S.2014. Bioturbation-reworking sediments for better or worse. Oilfield Review Winter, 26(4): 46-58. [46] Golab J A,Smith J J,Clark A K,Blome C D.2017a. Effects of Thalassinoides ichnofabrics on the petrophysical properties of the Lower Cretaceous Lower Glen Rose Limestone,Middle Trinity Aquifer,Northern Bexar County,Texas. Sedimentary Geology, 351: 1-10. [47] Golab J A,Smith J J,Clark A K,Morris R R.2017b. Bioturbation-influenced fluid pathways within a carbonate platform system: The Lower Cretaceous(Aptian-Albian)Glen Rose Limestone. Palaeogeography,Palaeoclimatology, Palaeoecology, 465: 138-155. [48] Gordon J B,Pemberton S G,Gingras M K,Konhauser K O.2010. Biogenically enhanced permeability: A petrographic analysis of Macaronichnus segregatus in the Lower Cretaceous Bluesky Formation,Alberta,Canada. AAPG Bulletin, 94(11): 1779-1795. [49] Greene T J,Gingras M K,Gordon G S,McKeel D R.2012. The significance of deep-water cryptic bioturbation in slope-channel massive sand deposits of the lower Rio Dell Formation,Eel River basin,California. Marine and Petroleum Geology, 29(1): 152-174. [50] Hollis C,Vahrenkamp V,Tull S,Mookerjee A,Taberner C,Huang Y.2010. Pore system characterisation in heterogeneous carbonates: An alternative approach to widely-used rock-typing methodologies. Marine and Petroleum Geology, 27(4): 772-793. [51] Hsieh A I,Allen D M,MacEachern J A.2015. Statistical modeling of biogenically enhanced permeability in tight reservoir rock. Marine and Petroleum Geology, 65: 114-125. [52] Hsieh A I,Allen D M,MacEachern J A.2017. Upscaling permeability for reservoir-scale modeling in bioturbated,heterogeneous tight siliciclastic reservoirs: Lower Cretaceous Viking Formation,Provost Field,Alberta,Canada. Marine and Petroleum Geology, 88: 1032-1046. [53] Jin J,Harper D A T,Rasmussen J A,Sheehan P M.2012. Late Ordovician massive-bedded Thalassinoides ichnofacies along the palaeoequator of Laurentia. Palaeogeography,Palaeoclimatology,Palaeoecology, 367-368: 73-88. [54] Knaust D.2009. Ichnology as a tool in carbonate reservoir characterization: A case study from the Permian-Triassic Khuff Formation in the Middle East. Geoarbia, 14(3): 17-38. [55] Knaust D.2014. Classification of bioturbation-related reservoir quality in the Khuff Formation(Middle East): Towards a genetic approach. In: Pöppelreiter M C(ed). Perom-Triassic Sequence of the Arabian Plate. Netherlands: EAGE, 247-267. [56] Knaust D,Dorador J,Rodríguez-Tovar F J.2020. Burrowed matrix powering dual porosity systems: A case study from the Maastrichtian chalk of the Gullfaks Field,Norwegian North Sea. Marine and Petroleum Geology, 113:104158. [57] La Croix A D,Gingras M K,Dashtgard S E,Pemberton S G.2012. Computer modeling bioturbation: The creation of porous and permeable fluid-flow pathways. AAPG Bulletin, 96(3): 545-556. [58] La Croix A D,Gingras M K,Pemberton S G,Mendoza C A,MacEachern J A,Lemiski R T.2013. Biogenically enhanced reservoir properties in the Medicine Hat gas field,Alberta,Canada. Marine and Petroleum Geology, 43: 464-477. [59] La Croix A D,MacEachern J A,Ayranci K,Hsieh A,Dashtgard S E.2017. An ichnological-assemblage approach to reservoir heterogeneity assessment in bioturbated strata: Insights from the Lower Cretaceous Viking Formation,Alberta,Canada. Marine and Petroleum Geology, 86: 636-654. [60] Li Y,Hou J,Li Y.2016. Features and classified hierarchical modeling of carbonate fracture-cavity reservoirs. Petroleum Exploration and Development, 43(4): 655-662. [61] Lilian O.2016. Bioturbation: It’s effect on reservoir qualigy. International Journal of Science Inventions Today, 5(3): 248-260. [62] Liu H,Shi K,Liu B,Song X,Guo R,Li Y,Wang G,Wang H,Shen Y.2019. Characterization and identification of bioturbation-associated high permeability zones in carbonate reservoirs of Upper Cretaceous Khasib Formation,AD oilfield,central Mesopotamian Basin,Iraq. Marine and Petroleum Geology, 110: 747-767. [63] Mao C,Zhong J,Li Y,Wang Y,Niu Y,Ni L,Shao Z.2014. Ordovician carbonate rock matrix fractured-porous reservoirs in Tahe Oilfield,Tarim Basin,NW China. Petroleum Exploration and Development, 41(6): 745-753. [64] Martinius A W,Fustic M,Garner D L,Jablonski B V J,Strobl R S,MacEachern J A,Dashtgard S E.2017. Reservoir characterization and multiscale heterogeneity modeling of inclined heterolithic strata for bitumen-production forecasting,McMurray Formation,Corner,Alberta,Canada. Marine and Petroleum Geology, 82: 336-361. [65] Njiekak G,Schmitt D R,Kofman R S.2018. Pore systems in carbonate formations,Weyburn field,Saskatchewan,Canada: Micro-tomography,helium porosimetry and mercury intrusion porosimetry characterization. Journal of Petroleum Science and Engineering, 171: 1496-1513. [66] Pemberton S G,Gingras M K.2005. Classification and characterizations of biogenically enhanced permeability. AAPG Bulletin, 89(11): 1493-1517. [67] Qi Y,Wang M,Zheng W,Li D.2012. Calcite cements in burrows and their influence on reservoir property of the Donghe sandstone,Tarim Basin,China. Journal of Earth Science, 23(2): 129-141. [68] Quaye J A,Jiang Z,Zhou X.2019. Bioturbation influence on reservoir rock quality: A case study of Well Bian-5 from the second member Paleocene Funing Formation in the Jinhu sag,Subei basin,China. Journal of Petroleum Science and Engineering, 172: 1165-1173. [69] Raeini A Q,Yang J,Bondino I,Bultreys T,Blunt M J,Bijeljic B.2019. Validating the generalized pore network model using micro-CT images of two-phase flow. Transport in Porous Media, 130(2): 405-424. [70] Rameil N.2008. Early diagenetic dolomitization and dedolomitization of Late Jurassic and earliest Cretaceous platform carbonates: A case study from the Jura Mountains(NW Switzerland,E France). Sedimentary Geology, 212(1-4): 70-85. [71] Rashid F,Glover P W J,Lorinczi P,Collier R,Lawrence J.2015. Porosity and permeability of tight carbonate reservoir rocks in the north of Iraq. Journal of Petroleum Science and Engineering, 133: 147-161. [72] Rodríguez-Tovar F J,Dorador J,Mayoral E,Santos A.2017. Outcrop and core integrative ichnofabric analysis of Miocene sediments from Lepe,Huelva(SW Spain): Improving depositional and paleoenvironmental interpretations. Sedimentary Geology, 349: 62-78. [73] Tian F,Jin Q,Lu X,Lei Y,Zhang L,Zheng S,Zhang H,Rong Y,Liu N.2016. Multi-layered Ordovician paleokarst reservoir detection and spatial delineation: A Case study in the Tahe Oilfield,Tarim Basin,Western China. Marine and Petroleum Geology, 69: 53-73. [74] Tonkin N S,Mcllory D,Meyer R,Moore-Turpin A.2010. Bioturbation influence on reservoir quality: A case study from the Cretaceous Ben Nevis Formation,Jeanned’Arc Basin,offshore Newfoundland,Canada. AAPG Bulletin, 94(7): 1059-1078. [75] Wei D,Gao Z,Zhang C,Fan T,Karubandika G M,Meng M.2019. Pore characteristics of the carbonate shoal from fractal perspective. Journal of Petroleum Science and Engineering, 174: 1249-1260. [76] Zenger D H.1992. Burrowing and dolomitization patterns in the Steamboat Point Member,Bighorn Dolomite(Upper Ordovician),northwest Wyoming. Geology, 29(2): 133-142. [77] Zenger D H.1996. Dolomitization patterns in widespread Bighorn Facies upper Ordovician Western Craton USA. Carbonates & Evaporites, 11(2): 219-225. [78] Zheng C Y C,Mángano M G,Buatois L A.2018. Ichnology and depositional environments of the Upper Ordovician Stony Mountain Formation in the Williston Basin,Canada: Refining ichnofacies and ichnofabric models for Epeiric Sea carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 501: 13-29.