Application of nanominerals in research on stacked bauxite deposits
Liu Rui1, Wang Guo-Qiang2, Du Yuan-Sheng3,4, Yu Wen-Chao3,4
1 School of Resources and Environmental Engineering,Shandong University of Technology,Shandong Zibo 255000,China; 2 Geography Science Institute,Shanxi Normal University,Shanxi Linfen 041000,China; 3 School of Earth Sciences,China University of Geosciences(Wuhan),Wuhan 430074, China; 4 Innovation Center of Ore Resources Exploration Technology in the Region of Bedrock, Ministry of Natural Resources of People's Republic of China,Guiyang 550081, China
Abstract:Nanomineral is the mineral that is less than 100nm at least one dimension. Aside from the man-made nanominerals,there is a large number of natural nanominerals. With the increasing application of transmission electron microscopy(TEM)in earth science,a large number of natural nanominerals have been discovered in the surface and interior of the Earth. Especially in ore deposit region,nanominerals related to ore bodies are found in various media,and these nanominerals play a unique role in the research of ore deposits. The stacked bauxite deposit is an important source of bauxite because of its large reserve. There are a large number of nanominerals distributed in stacked bauxite deposit,and these ore nanominerals distributed in the deposit in the form of nanocrystals. In addition,the ore minerals in stacked bauxite deposit display changes of the structure and composition in nanoscale. The nanominerals as well as the changes of structure and composition in nanoscale can record the physical and chemical information of bauxite mineralization process,providing a unique window to explore the genesis of the stacked bauxite deposit. This review summarizes the advantages of nanominerals in the research on the stacked bauxite deposit,providing a new method and a new perspective for the understanding of the genesis of bauxite deposit.
[1] 曹建劲. 2009. 地气微粒特征和元素含量结合探测隐伏矿床技术. 金属矿山, 39(2): 1-4. [Cao J J. 2009. A technique for detecting concealed deposits by combining geogas particle characteristics with element concentrations. Metal Mine, 39(2): 1-4] [2] 陈代演,王华. 1997. 贵州中北部铝土矿若干微量元素特征及其成因意义. 贵州工业大学学报(自然科学版), 26(2): 37-42. [Chen D Y,Wang H. 1997. Trace elements chracteristic and genetic singificant of bauxite deposits in central-northern Guizhou. Journal of Guizhou University of technology(Natural Science Edition), 26(2): 37-42] [3] 陈履安. 1996. 腐殖酸在铝土矿形成中的作用的实验研究. 沉积学报, 14(2): 117-123. [Chen L A. 1996. Experimental study of action of humic acids in the processes of bauxite mineralization. Acta Sedimentologica Sinica, 14(2): 117-123] [4] 陈廷臻,武耀诚. 1986. 河南省铝土矿的数理统计研究. 地质与勘探, 22(10): 34-41. [Chen T Z,Wu Y C. 1986. Mathematical statistics of bauxite in Henan Province. Geology and Prospecting. 22(10): 34-41] [5] 程东,沈芳,柴东浩. 2001. 山西铝土矿的成因属性及地质意义. 太原理工大学学报, 32(6): 576-579. [Cheng D,Shen F,Cai D H. 2001. Genetic attribute and geological significance of bauxite ores in Shanxi. Journal of Taiyuan University of Technology, 32(6): 576-579] [6] 杜远生,周琦,金中国,凌文黎,汪小妹,余文超,崔滔,雷志远,翁申富,吴波,覃永军,曹建州,彭先红,张震,邓虎. 2014. 黔北务正道地区早二叠世铝土矿成矿模式. 古地理学报, 16(1): 1-8. [Du Y S,Zhou Q,Jin Z G,Ling W L,Wang X M,Yu W C,Gui T,Lei Z Y,Weng S F,Wu B,Qin Y J,Cao J Z,Peng X H,Zhang Z,Deng H. 2014. Mineralization model for the Early Permian bauxite deposits in Wuchuan-Zheng'an-Daozhen area,northern Guizhou Province. Journal of Palaeogeography(Chinese Edition), 16(1): 1-8] [7] 傅宇虹,覃宗华,于文彬,聂信,王济,琚宜文,万泉. 2018. 纳米矿物—水溶液界面过程. 地球科学, 43(5): 1408-1424. [Fu Y H,Tan Z H,Yu W B,Nie X,Wang J,Ju Y W,Wan Q. 2018. Nanomineral-aqueous solution interfacial processes. Earth Science, 43(5): 1408-1424] [8] 侯正洪,李启津. 1985. 山西孝义铝土矿矿石物质成分研究. 矿产与地质, (1): 26-34. [Hou Z H,Li Q J. 1985. Study on ore composition of bauxite in Xiaoyi,Shanxi Province. Mineral Resources and Geology(Chinese Edition), (1): 26-34] [9] 姜泽春,莫德明,陈大梅. 1999. 极性矿物对纳米金的吸附实验. 矿物学报, 19(3): 358-362. [Jiang Z C,Mo D M,Chen D M. 1999. Experiments on the adsorption of the adsorption of nanometer-sized gold on polar minerals. Acta Mineralogical Sinica, 19(3): 358-362] [10] 琚宜文,孙岩,万泉,卢双舫,何宏平,吴建光,张文静,王国昌,黄骋. 2016. 纳米地质学: 地学领域革命性挑战. 矿物岩石地球化学通报, 35(1): 1-20. [Ju Y W,Sun Y,Wan Q,Lu S F,He H P,Wu J G,Zhang W J,Wang G C,Huang C. 2016. Nanogeology: A revolutionary challenge in geosciences. Bulletin of Mineralogy,Petrology and Geochemistry, 35(1): 1-20] [11] 李普涛,张起钻. 2008. 广西靖西县三合铝土矿稀土元素地球化学研究. 矿产与地质, 22(6): 535-540. [Li P T,Zhang Q Z. 2008. Research on geochemistry of REE in the Sanhe Bauxite deposit in Jingxi County,Guangxi. Mineral Resources and Geology, 22(6): 535-540] [12] 李新. 2008. 豫西铝土矿矿床成因探讨. 华北国土资源, (1): 6-8. [Li X. 2008. Genesis of bauxite deposit in western Henan Province. Huabei Land and Resources, (1): 6-8] [13] 李.2017. 豫西石炭系本溪组铝土矿成矿物质来源研究. 中国地质大学(北京)硕士学位论文,1-58. [Li Y. 2017. Ore-forming Material Source Studies of the Carboniferous Benxi Formation Bauxite Deposit in Western Henan,China. Masteral dissertation of China University of Geosciences(Beijing): 1-58] [14] 廖士范,梁同荣. 1991. 中国铝土矿地质学. 贵阳: 贵州科技出版社,1-277. [Liao S F,Liang T R. 1991. Bauxite Geology of China. Guiyang: Guizhou Science and Technology Publishing House,1-277] [15] 林最近. 2007. 平果岩溶堆积铝土矿空间分布特征及成因探讨: 以教美矿区为例. 科技情报开发与经济, 17(23): 156-158. [Lin Z J. 2007. Probe into the spatial distribution features and genesis of the karst accumulation bauxite deposit in Pingguo: Taking Jiaomei mining area as the example. Sci-Tech Information Development & Economy, 17(23): 156-158] [16] 刘长龄,覃志安. 1990. 中国沉积铝土矿中豆鲕粒的特征与成因. 地质找矿论丛, 5(1): 72-82. [Liu C L,Qin Z A. 1990. Characteristics of origins of pisolites and oolites in sedimentary bauxite of China. Contributions to Geology and Mineral Resources Research,5(1): 72-82] [17] 刘平. 1999. 黔中—川南石炭纪铝土矿的地球化学特征. 中国区域地质, 18(2): 210-217. [Liu P. 1999. Geochemical characteristics of Carboniferous bauxite deposits in central Guizhou-southern Sichuan. Regional Geology of China, 18(2): 210-217] [18] 刘巽锋,王庆生,陈有能,秦典燮. 1990. 黔北铝土矿成矿地质特征及成矿规律. 贵阳: 贵州人民出版社,1-170. [Liu X F,Wang Q S,Chen Y N. Qin D X.1990. Bauxite ore of northern Guizhou. Guiyang: Guizhou People's Publishing House,1-170] [19] 刘幼平,夏云,王洁敏. 2010. 黔北地区铝土矿成矿特征与成矿因素研究. 矿物岩石地球化学通报, 29(4): 422-425. [Liu Y P,Xia Y,Wang J M. 2010. Metallogenic characteristics and metallogenic factors of bauxite deposits in northern Guizhou. Bulletin of Mineralogy,Petrology and Geochemistry, 29(4): 422-425] [20] 龙永珍. 2003. 桂西铝多金属矿矿床地质地球化学特征及综合利用研究. 中南大学博士学位论文: 1-145. [Long Y Z. 2003. Geologic geochemical feature and multipurpose utilization of Al-polemetal deposits in western Guangxi. Doctoral dissertation of Central South University: 1-145] [21] 鲁方康,黄智龙,金中国,周家喜,丁伟,谷静. 2009. 黔北务—正—道地区铝土矿镓含量特征与赋存状态初探. 矿物学报, 29(3): 373-379. [Lu F K,Huang Z L,Jin Z G,Zhou J X,Ding W,Gu J. 2019. A preliminary study on the content features and occurrence states of gallium in bauxite from the Wuchuan-Zhengan-Daozhen Area,Northern Guizhou Province,China. Acta Mineralogica Sinica, 29(3): 373-379] [22] 吕夏. 1988. 河南省中西部石炭系铝土矿中硬水铝石的矿物学特征研究. 地质论评, 34(4): 293-301, 389-390. [Lü X. 1998. The mineralogical characteristics of diaspore in carboniferous bauxite in western-central Henan Province. Geological Review, 34(4): 293-301, 389-390] [23] 莫江平. 1991. 古岩溶对黔中铝土矿的控制作用. 轻金属, (4): 1-5. [Mo J P. 1991. The controlling effect of ancient karst on bauxite deposit in Central Guizhou. Light Metals, (4): 1-5] [24] 施和生,王冠龙,关尹文. 1989. 豫西铝土矿沉积环境初探. 沉积学报, 7(2): 89-97. [Shi H S, Wang G L, Guan Y W. 1989. The preliminary study on the sedimentary environment of bauxite Deposits in Western Henan. Acta Sedimentological Sinica, 7(2): 89-97] [25] 苏煜. 1985. 广西平果铝土矿沉积环境和成因初探. 桂林冶金地质学院学报, 5(4): 32-38. [Su Y. 1985. Apreliminary study on the sedimentary environment and genesis of Pingguo bauxite deposit, Guangxi. Journal of Guilin College of Geology, 5(4):32-38] [26] 王庆飞,邓军,刘学飞,张起钻,李中明,康微,蔡书慧,李宁. 2012. 铝土矿地质与成因研究进展. 地质与勘探, 48(3): 430-448. [Wang Q F,Deng J,Liu X F,Zhang Q Z,Li Z M,Kang W,Cai S H,Li N. 2012. Review on research of bauxite geology and genesis in China. Geology and Exploration, 48(3): 430-448] [27] 王焰新,田熙科. 2016. 地学研究的新机遇: 纳米地质学. 矿物岩石地球化学通报, 35(1): 79-86. [Wang Y X,Tian X K. 2016. New opportunities for the study of geology: Nano geology. Bulletin of Mineralogy,Petrology and Geochemistry, 35(1): 79-86] [28] 王银喜,李惠民,顾连兴,吴昌志,柴东浩,陈平,王随生,张京俊. 2003. 山西铝土矿Rb-Sr同位素定年. 地球学报, 24(6): 589-592. [Wang Y X,Li H M,Gu L X,Wu C Z,Chai D H,Chen P,Wang S S,Zhang J J. 2003. Rb-Sr Isotope dating of bauxite deposits in Shanxi Province. Acta Geoscientica Sinica, 24(6): 589-592] [29] 王泽中. 1997. 山西兴县铝土岩的地球化学特征. 地质地球化学, (2): 41-44. [Wang Z Z. 1997. Geochemical characteristics of bauxite in Xingxian,Shanxi Province. Geology Geochemistry, (2): 41-44] [30] 韦胜永,朱永红,罗勇,张斌,丁恒,崔登伟,王建顺. 2009. 遵义川主庙漏斗状铝土矿床地质特征及形成机理. 贵州地质, 26(3): 193-198. [Wei S Y,Zhu Y H,Luo Y,Zhang B,Ding H,Cui D W,Wang J S. 2009. Geological character and formation mechanism of funnel bauxite deposit in Chuanzhumiao,Zunyi. Guizhou Geology, 26(3): 193-198] [31] 吴国炎. 1997. 华北铝土矿的物质来源及成矿模式探讨. 河南地质, 15(3): 2-7. [Wu G Y. 1997. A discussion on material source and metallogenic model of bauxite deposits in north China. Henan Geology, 15(3): 2-7] [32] 肖金凯,雷剑泉,夏祥. 1994. 黔中铝土矿及其赤泥中钪的某些特征. 矿物学报, 14(4): 388-393. [Xiao J K,Lei J Q,Xia X. 1994. Some characteristics of scandium in bauxite from central Guizhou as well as in red mud. Acta Mineralogica Sinica, 14(4): 388-393] [33] 杨冠群,廖士范. 1986. 中国几个主要铝土矿床矿物的扫描电镜研究. 矿物学报, 6(4): 354-361. [Yang G Q,Liao S F. 1986. Scanning electron microscope study of several major bauxite deposits in China. Acta Mineralogica Sinica, 6(4): 354-361] [34] 杨军臣,王凤玲,李德胜,费涌初,王玲. 2004. 铝土矿中伴生稀有稀土元素赋存状态及走向查定. 矿冶, 13(2): 89-92. [Yang J C,Wang F L,Li D S,Fei Y C,Wang L. 2004. Investigation on occurrence and trend of rare and rare-earth elements associated in bauxite. Mining and Metallurgy, 13(2): 89-92] [35] 杨俊波. 2005. 铝土矿的宏观及微观特征剖析. 轻金属, (9): 8-10. [Yang J B. 2005. Dissecting the macro and micro features of the bauxite. Light Metals, (9): 8-10] [36] 杨毅,周立,钭斐昀,孙笑丽,刘敏,Michael F H. 2018. 纳米颗粒物: 独具特性的地球化学组成. 地球科学, 43(5): 1489-1499. [Yang Y,Zhou L,Tou F Y,Sun X L,Liu M,Michael F H. 2018. Nanoparticles: A unique geochemical composition in environment. Earth Science, 43(5): 1489-1499] [37] 叶霖,潘自平,程曾涛. 2008. 贵州修文小山坝铝土矿中镓等伴生元素分布规律研究. 矿物学报, 28(2): 105-111. [Ye L,Pan Z P,Cheng Z T. 2008. The regularities of distribution of associated elements in Xiaoshanba. Acta Mineralogica Sinica, 28(2): 105-111] [38] 张亚男,张莹华,吴慧,丁晓英,凌文黎,雷志远,翁申富,马倩,杜远生. 2013. 黔北务正道地区铝土矿鲕状矿石中鲕粒的微区元素地球化学特征及其成矿意义. 地质科技情报, 32(1): 62-70. [Zhang Y N,Zhang Y H,Wu H,Ding X Y,Ling W L,Lei Z Y,Wen S F,Ma Q,Du Y S. 2013. Microscopic geochemical characteristics of oolite in oolitic bauxite ores from Wuchuan—Zheng'an—Daozhen Area in the northern Guizhou Province and their metallogenic significance. Geological Science and Technology, 32(1): 62-70] [39] 张玉学,何其光,邵树勋,张书英. 1999. 铝土矿钪的地球化学特征. 地质地球化学, 27(2): 55-62. [Zhang Y X,He Q Q,Shao S X,Zhang S Y. 1999. Geochemical characteristics of Sc in bauxite. Geology Geochemistry, 27(2): 55-62] [40] 赵社生,柴东浩,孛国良. 2001. 山西地块G层铝土矿同位素年龄及其地质意义. 轻金属, (8): 5-9. [Zhao S S,Chai D H,Bo G L. 2001. Isotopic age bed G bauxite of Shanxi massif and its geological significance. Light Metals, (8): 5-9] [41] 朱笑青,章振根. 1996. 矿物、岩石对纳米金吸附作用的实验研究. 矿产与地质, 10(2): 55-59. [Zhu X Q,Zhang Z G. 1996. Experimental study of Absorption of minerals and rocks to the nano gold in solution. Mineral Resources and Geology, 10(2): 55-59] [42] Bárdossy G,Aleva G J J. 1990. Lateritic bauxites: Developments in Economic Geology. Amsterdam: Elsevier Scientific Publication,1-624. [43] Bárdossy G. 1982. Karst bauxites,bauxite deposits on carbonate rocks. Developments in Economic Geology, 14: 1-441. [44] Calagari A A,Abedini A. 2007. Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh,east of Bukan,West-Azarbaidjan,Iran. Journal of Geochemical Exploration,94(1-3): 1-18. [45] Cao J J. 2009. TEM observation of geogas-carried particles from the Changkeng concealed gold deposit,Guangdong Province,South China. Journal of Geochemical Exploration, 101: 247-253. [46] Chen T H,Xie Q Q,Xu H F,Chen J,Ji J F,Lu H Y,Balsam, W.2010. Characteristics and formation mechanism of pedogenic hematite in Quaternary Chinese loess and paleosols. Catena, 81(3): 217-225. [47] Ciobanu C L, Cook N J, Utsunomiya S, Kogagwa M, Green L, Gilbert S,Wade B. 2012. Gold-telluride nanoparticles revealed in arsenic-free pyrite. American Mineralogist, 97(8-9): 1515-1518. [48] Ciobanu C L,Cook N J,Utsunomiya S,Pring A,Green L. 2011. Focussed ion beam-transmission electron microscopy applications in ore mineralogy: Bridging micro-and nanoscale observations. Ore Geology Reviews, 42(1): 6-31. [49] D'Argenio B,Mindszenty A. 1995. Bauxites and related paleokarst: Tectonic and climatic event markers at regional unconformities. Eclogaegeologica Helvetiae, 88(3): 453-499. [50] Dani N. 2011. Nordstrandite in bauxite derived from Phonolite,Lages,Santa Catarina,Brazil. Clays & Clay Minerals, 49(3): 216-226. [51] Deditius A P,Utsunomiya S,Reich M,Kesler S E,Ewing R. C,Hough R,Walshe J. 2011. Trace metal nanoparticles in pyrite. Ore Geology Reviews, 42(1): 32-46. [52] Deng J,Wang Q,Yang S. 2010. Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi,China: Constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores. Journal of Asian Earth Sciences, 37(5-6): 0-424. [53] Filimonova L G,Trubkin N V. 2008. Micro-and nanoparticles of zincite and native zinc from disseminated mineralization of metasomatic rocks in the Dukat ore field. Geology of Ore Deposits, 50(2): 135-144. [54] Fougerouse D,Reddy S M,Saxey D W,Rickard W D A, Wagoner Riessen A,Micklethwaite S. 2016. Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: Evidence from atom probe microscopy. American Mineralogist, 101(8): 1916-1919. [55] Gao W Y,Cristiana L C,Nigel J C,Ashley D S,Huang F. 2019. Nanoscale study of lamellar exsolutions in clinopyroxene from olivine gabbro: Recording crystallization sequences in iron-rich layered intrusions. American Mineralogist, 104(2): 244-261. [56] Gamaletsos P N,Godelitsas A,Kasama T,Church N S,Douvalis A P,Göttlicher J,Filippidis A. 2017. Nano-mineralogy and-geochemistry of high-grade diasporic karst-type bauxite from Parnassos-Ghiona mines,Greece. Ore Geology Reviews, 84(2): 228-244. [57] Griffin S,Masood M I,Nasim M J,Sarfraz M,Ebokaiwe A P,Schafer K H,Keck C M,Jacob C. 2018. Natural nanoparticles: A particular matter inspired by nature. Antioxidants, 7(3): 1-24. [58] Hochella M F Jr,Lower S K,Maurice P A,Penn R L,Sahai N,Sparks D L,Twining B S. 2008. Nanominerals,mineral nanoparticles,and earth systems. Science, 319(5870): 1631-1635 [59] Hough R M,Noble R R P,Reich M. 2011. Natural gold nanoparticles. Ore Geology Reviews, 42(1): 55-61. [60] Hu G,Cao J J. 2019. Metal-containing nanoparticles derived from concealed metal deposits: An important source of toxic nanoparticles in aquatic environments. Chemosphere, 224: 726-733. [61] Koneev R I,Khalmatov R A,Mun Y S. 2010. Nanomineralogy and nanogeochemistry of ores from gold deposits of Uzbekistan. Geology of Ore Deposits, 52(8): 755-766. [62] Laskou M,Economou-Eliopoulos M. 2007. The role of microorganisms on the mineralogical and geochemical characteristics of the Parnassos-Ghiona bauxite deposits,Greece. Journal of Geochemical Exploration, 93(2): 67-77. [63] Liu X F,Wang Q F,Deng J,Zhang Q Z,Sun S L,Meng J Y. 2010. Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits,western Guangxi,China. Journal of Geochemical Exploration, 105(3): 137-152. [64] Liu X,Liu R,Luo X E,Lu M Q. 2020. Natural HgS nanoparticles in sulfide minerals from the Hetai goldfield. Environmental Chemistry Letters,18: 941-947. [65] Mongelli G,Acquafredda P. 1999. Ferruginous concretions in a Late Cretaceous karst bauxite: Composition and conditions of formation. Chemical Geology, 158(3-4): 315-320. [66] Öztürk H,Hein J,Hanilci N. 2002. Genesis of the Dogankuzu and Mortas bauxite deposits,Taurides,Turkey: Separation of Al,Fe,and Mn and implications for Passive Margin Metallogeny. Economic Geology, 97(5): 1063-1077. [67] Pačevski A,Moritz R,Kouzmanov K,Marquardt K,Živković P,Cvetković L.2012. Texture and composition of Pb-bearing pyrite from the čokamarin polymetallic deposit,serbia,controlled by nanoscale inclusions. Canadian Mineralogist, 50(1): 1-20. [68] Reich M,Utsunomiya S,Kesler S E,Wang L,Ewing R C,Becker U. 2006. Thermal behavior of metal nanoparticles in geologic materials. Geology, 34(12): 1033-1036. [69] Reich M,Hough M R,Deditius A,Utsunomiya S,Ciobanu, C L,Cook N J. 2011. Nanogeoscience in ore systems research: Principles,methods,and applications introduction and preface to the special issue. Ore Geology Reviews, 42(1): 1-5. [70] Schindler M,Hochella M F. 2015. Soil memory in mineral surface coatings: Environmental processes recorded at the nanoscale. Geology, 43(5): 415-418. [71] Schindler M,Michel S,Batcheldor D,Hochella Jr M F. 2019. A nanoscale study of the formation of Fe-(hydr)oxides in a volcanic regolith: Implications for the understanding of soil forming processes on Earth and Mars. Geochimica et Cosmochimica Acta, 264: 43-66. [72] Sun Y G,Xia Y N. 2002. Shape Controlled Synthesis of Gold and Silver Nanoparticles. Science, 298(5601): 2176-2179 [73] Valeton I,Biermann M,Reche R,Rosenberg F. 1987. Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous,and their relation to ultrabasic parent rocks. Ore Geology Reviews, 2(4): 359-404. [74] Yang S J,Huang Y X,Wang Q F,Deng J,Liu X F,Wang J Q. 2019. Mineralogical and geochemical features of karst bauxites from Poci(western Henan,China),implications for parental affinity and bauxitization. Ore Geology Reviews, 105: 295-309. [75] Yi Z B,Cao J J,Jiang T,Wang Z Y. 2019. Characterization of metal-bearing particles in groundwater from the Weilasituo Zn-Cu-Ag deposit,Inner Mongolia,China: Implications for mineral exploration. Ore Geology Reviews, 117: 103270. [76] Yu W C,Wang R H,Zhang Q L,Du Y S,Chen Y,Liang Y P. 2014. Mineralogical and geochemical evolution of the Fusui bauxite deposit in Guangxi,South China: From the original Permian orebody to a Quarternary Salento-type deposit. Journal of Geochemical Exploration, 146: 75-88.