Changes of oceanic environment before and after the Paleoproterozoic Great Oxidation Event(GOE): Evidence from petrography and geochemistry of banded iron formation(BIF)from the North China Craton
Zhang Lian-Chan1,2, Lan Cai-Yun3, Wang Chang-Le1,2, Peng Zi-Dong1,2, Tong Xiao-Xue1,2, Li Wen-Jun1,2, Dong Zhi-Guo1,2
1 Key Laboratory of Mineral Resources,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China; 2 University of Chinese Academy of Sciences,Beijing 100049,China; 3 Department of Geology,Key Laboratory of Continental Dynamics,Northwest University,Xi'an 710069,China
Abstract:Banded iron formation(BIF)belongs to sedimentary rocks formed in Precambrian marine,which can directly reflect the redox state of the ancient oceans. Mineral composition and geochemistry of BIF can reveal the relative changes of oxygen contents of ancient atmosphere-ocean. The Neoarchean and Paleoproterozoic BIFs widely distributed in the North China Craton(NCC),are the ideal research objects for understanding the changes of the ancient ocean redox environment before and after the Paleoproterozoic Great Oxidation Event(GOE). Our previous studies indicated that the sedimentary facies of the Neoarchean BIF in the NCC are mainly magnetite-type oxide and silicate,with minor carbonate. The sedimentary facies of the Paleoproterozoic BIF are hematite- and magnetite-type oxide,silicate and carbonate,of which the hematite-oxide facies is unique to the Paleoproterozoic BIF. The above mineralogical features suggest that the redox conditions of the Neoarchean and Paleoproterozoic seawater are different. The rare earth element composition of the Neoarchean BIF in the NCC lacks a strong negative Ce anomaly,reflecting that the oxygen content of contemporary seawater is very low and the marine is anoxic. However,a small amount of BIFs in the NCC also present the negative Ce anomalies and a wide range of Th/U ratios,indicating that the local water of the Neoarchean ocean had relatively high oxygen content and was at a weak oxidation state. Compared with the Neoarchean BIFs,the Paleoproterozoic BIFs present a wide range of Ce anomalies(i.e.,no Ce anomalies,positive Ce anomalies and negative Ce anomalies). The hematite-bearing BIF has an obvious negative Ce anomalies,implying that the oxygen content and redox state of Paleoproterozoic seawater changed significantly. Combined with the ratios of Ni/Co,V/(V+Ni)and Th/U of the BIFs in the NCC,the Paleoproterozoic oceans exhibited a suboxidation to oxidation environment. Besides,Neoarchean BIF is strongly enriched in heavy iron isotopes and the non-mass fractionation of S isotope is obvious,whereas the Paleoproterozoic BIF is relatively enriched in light iron isotopes and the non-mass fractionation of S isotope is not obvious. It is summarized that the Neoarchean marine is anoxic,but the oxygen‘oasis' may exist locally,implying that photosynthetic oxygen production already existed in the Late Neoarchean. The ancient ocean presented a layered characteristics during and after the GOE,indicating that the shallow water was generally oxidized and the deep water was reduced.
Zhang Lian-Chan,Lan Cai-Yun,Wang Chang-Le et al. Changes of oceanic environment before and after the Paleoproterozoic Great Oxidation Event(GOE): Evidence from petrography and geochemistry of banded iron formation(BIF)from the North China Craton[J]. JOPC, 2020, 22(5): 827-840.
[1] 侯可军,李延河,万德芳. 2007. 鞍山—本溪地区条带状硅铁建造的硫同位素非质量分馏对太古代大气氧水平和硫循环的制约. 中国科学(D辑), 37(8): 997-1003. [Hou K J,Li Y H,Wan D F. 2007. Constraints on the Archean atmospheric oxygen and sulfur cycle from mass-independent sulfur records from Anshan-Benxi BIFs,Liaoning Province,China. Science in China(Series D), 37(8): 997-1003] [2] 李延河,侯可军,万德芳,张增杰,乐国良. 2010. 前寒武纪条带状硅铁建造的形成机制与地球早期的大气和海洋. 地质学报, 84(9): 1359-1373. [Li Y H,Hou K J,Wan D F,Zhang Z J,Yue G L. 2010. Formation mechanism of Precambrian banded iron formation and atmosphere and ocean during early stage of the Earth. Acta Geologica Sinica, 84(9): 1359-1373] [3] 李延河,侯可军,万德芳,张增杰. 2012. Algoma 型和 Superior 型硅铁建造地球化学对比研究. 岩石学报, 28(11): 3513-3519. [Li Y H,Hou K J,Wan D F,Zhang Z J. 2012. A compare geochemistry study for Algoma- and Superiortype banded iron formations. Acta Petrologica Sinica, 28(11): 3513-3519] [4] 李志红,朱祥坤,唐索寒. 2008. 鞍山—本溪地区条带状铁建造的铁同位素与稀土元素特征及其对成矿物质来源的指示. 岩石矿物学杂志, 27(4): 285-290. [Li Z H,Zhu X K,Tang S H. 2008. Characters of Fe isotopes and rare earth elements of banded iron formations from Anshan-Benxi area: Implications for Fe source. Acta Petrologica et Mineralogica, 27(4): 285-290] [5] 李志红,朱祥坤,唐索寒. 2012. 鞍山—本溪地区条带状铁矿的Fe同位素特征及其对成矿机理和地球早期海洋环境的制约. 岩石学报, 28(11): 3545-3558. [Li Z H,Zhu X K,Tang S H. 2012. Fe isotope compositions of banded iron formation from Anshan-Benxi area: Constraints on the formation mechanism and Archean ocean environment. Acta Petrologica Sinica, 28(11): 3545-3558] [6] 兰彩云,张连昌,赵太平,王长乐,李红中,周艳艳. 2013. 河南舞阳铁山庙式BIF铁矿的矿物学与地球化学特征及对矿床成因的指示. 岩石学报, 29(7): 2567-2582. [Lan C Y,Zhang L C,Zhao T P,Wang C L,Li H Z,Zhou Y Y. 2013. Mineral and geochemical characteristics of Tieshanmiao-type BIF-iron deposit in Wuyang region of Henan Province and indacate for genesis of deposit. Acta Petrologica Sinica, 29(7): 2567-2582] [7] 南景博,黄华,王长乐,彭自栋,佟小雪,张连昌. 2017. 内蒙古固阳绿岩带条带状铁建造地球化学特征与沉积环境讨论. 中国地质, 44(2): 331-345. [Nan J B,Huang H,Wang C L,Peng Z D,Tong X X,Zhang L C. 2017. Geochemistry and depositional setting of Banded Iron Formations in Guyang greenstone belt,Inner Mongolia. Geology in China, 44(2): 331-345] [8] 彭自栋,张连昌,王长乐,佟小雪,南景博. 2018. 新太古代清原绿岩带下甸子BIF铁矿地质特征及含黄铁矿条带BIF的成因探讨. 岩石学报, 34(2): 398-426. [Peng Z D,Zhang L C,Wang C L,Tong X X,Nan J B. 2018. Geological features and genesis of the Neoarchean pyrite-bearing Xiadianzi BIF,Qingyuan greenstone belt. Acta Petrologica Sinica, 34(2): 398-426] [9] 佟小雪,张连昌,王长乐,彭自栋,南景博. 2018. 鞍本地区大孤山条带状铁建造含铁矿物和相分带特征及形成环境分析. 岩石学报, 30(5): 1119-1138. [Tong X X,Zhang L C,Wang C L,Peng Z D,Nan J B. 2018. The characteristics of iron-bearing minerals and the depositional facies of BIF in Dagushan iron deposit,Anshan area: Indications of formation environment. Acta Petrologica Sinica 30(5): 1119-1138] [10] 万渝生,董春艳,颉颃强,王世进,宋明春,徐仲元,王世炎,周红英,马铭株,刘敦一. 2012. 华北克拉通早前寒武纪条带状铁建造形成时代. 地质学报, 86(9): 1447-1478. [Wan Y S,Dong C Y,Xie H Q,Wang S J,Song M C,Xu Z Y,Wang S Y,Zhou H Y,Ma M Z,Liu D Y. 2012. Formation ages of Early Precambrian BIFs in the North China Craton: SHRIMP zircon U-Pb dating. Acta Geologica Sinica, 86(9): 1447-1478] [11] 张连昌,翟明国,万渝生,郭敬辉,代堰锫,王长乐,刘利. 2012. 华北克拉通前寒武纪BIF铁矿研究: 进展与问题. 岩石学报, 28(11): 3431-3445. [Zhang L C,Zhai M G,Wan Y S,Guo J H,Dai Y P,Wang C L,Liu L. 2012. Study of the Precambrian BIF-iron deposits in the North China craton: Progresses and question. Acta Petrologica Sinica, 28(11): 3431-3445] [12] 张连昌,彭自栋,翟明国,佟小雪,朱明田,王长乐. 2020. 华北克拉通北缘新太古代清原绿岩带 BIF 与 VMS 共生矿床的构造背景及成因联系. 地球科学, 45(1): 1-16. [Zhang L C,Peng Z D,Zhai M G,Tong X X,Zhu M T,Wang C L. 2020. Tectonic setting and genetic relationship between BIF and VMS in the Qingyuan Neoarchean Greenstone Belt,northern North China Craton. Earth Science, 45(1): 1-16] [13] 赵振华. 2010. 条带状铁建造(BIF)与地球大氧化事件. 地学前缘, 17(2): 1-12. [Zhao Z H. 2010. Banded iron formation and related great oxidation event. Earth Science Frontiers, 17(2): 1-12] [14] 朱祥坤,王跃,闫斌,李津,董爱国,李志红,孙剑. 2013. 非传统稳定同位素地球化学的创建与发展. 矿物岩石地球化学通报, 32(6): 651-688. [Zhu X K,Wang Y,Yan B,Li J,Dong A G,Li Z H,Sun J. 2013. Establish and develop of non-tradition stable isotope geochemistry. Bulletin of Mineralogy,Petrology and Geochemistry, 32(6): 651-688] [15] Algeo T J. 2004. Can marine anoxic events draw down the trace element inventory of seawater?Geology, 32: 1057-1060. [16] Algeo T J,Maynard J B. 2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206: 289-318. [17] Bau M,Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron formations,Transvaal Supergroup,South Africa. Precambrian Research, 79: 37-55. [18] Bau M,Dulski P. 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behavior during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, 155: 77-90. [19] Bekker A,Holland H D,Wang P L,Rumble Ⅲ D,Stein H J,Hannah J L,Coetzee L L,Beukes N J. 2004. Dating the rise of atmospheric oxygen. Nature, 427: 117-120. [20] Bekker A,Slack J F,Planavsky N,Krapez B,Hofmann A,Konhauser K O,Rouxel O J. 2010. Iron formation: The sedimentary product of a complex interplay among mantle,tectonic,oceanic,and biospheric processes. Economic Geology, 105(3): 467-508 [21] Bolhar R,Kamber B S,Moorbath S,Fedo C M,Whitehouse M J. 2004. Characterisation of early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters, 222: 43-60. [22] Byrne R,Sholkovitz E. 1996. Marine chemistry and geochemistry of the lanthanides. In: Gschneider K A,Eyring L(eds). Handbook on the Physics and Chemistry of the Rare Earths. Amsterdam: Elsevier,497-593. [23] Campbell I H,Allen C M. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 1: 554. [24] Condie K C,Puetz S J,Davaile A. 2018. Episodic crustal production before 2.7Ga. Precambrian Research, 312: 16-22. [25] Farquhar J,Bao H,Thiemens M. 2000. Atmospheric influence of Earth's earliest sulfur cycle. Science, 289: 756-758. [26] Frei R,Dahl P S,Duke E F,Frei K M,Hansen T R,Frandsson M M,Jensen L A. 2008. Trace element and isotopic characterization of Neoarchaean and Paleoproterozoic iron formations in the Black Hills(South Dakota,USA): Assessment of chemical change during 2.9-1.9Ga deposition bracketing the 2.4-2.2Ga first rise of atmospheric oxygen. Precambrian Research, 162: 441-474. [27] German C R,Elderfield H. 1990. Application of the Ce anomaly as a paleoredox indicator: The ground rules. Paleoceanography, 5: 823-833. [28] Han C M,Xiao W J,Su B X,Chen Z L,Zhang X H,Ao S J,Zhang J E,Zhang Z Y,Wan B,Song D F,Wang Z M. 2014. Neoarchean Algoma-type banded iron formation from eastern Hebei,north China: SHRIMP U-Pb age,origin and tectonic setting. Precambrian Research, 251: 212-231. [29] Holland H D. 2009. Why the atmosphere became oxygenated: A proposal. Geochimica et Cosmochimica Acta, 73: 5241-5255. [30] Isley A E,Abbot D H. 1999. Plume related mafic volcanism and the deposition of banded iron formation. Journal of Geophysical Research,104(B7): 15461-15477. [31] Jones B,Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology,111(1/4): 111-129. [32] Jiang S,Ding T,Wan D,Li Y. 1993. Silicon isotopic compositions of Archean Banded Si-Fe Formation(BIF)in the Gongchangling ore deposit,Liaoning Province,China. Science in China(Series B), 36(4): 482-489. [33] Konhauser K O,Pecoits E,Lalonde S V,Papineau D. 2009. Oceanic nickel depletion and a methanogenfamine before the Great Oxidation Event. Nature, 458: 750-753. [34] Konhauser K O,Planavsky N J,Hardisty D S,Robbins L J,Warchola T J,Haugaard R,Lalonde S V,Partin C A,Oonk P B H,Lyons T W,Bekker A,Johnson C M. 2017. Iron fomations: A globalrecord of Neoarchean to Palaeoproterozoic environmental history. Earth-Science Reviews, 172: 140-177. [35] Lan C Y,Zhou Y Y,Wang C L,Zhao T P. 2017. Depositional age and protoliths of the Paleoproterozoic upper Taihua Group in the Wuyang area in the southern margin of the North China Craton: New insights into stratigraphic subdivision and tectonic setting. Precambrian Research, 297: 77-100. [36] Lan C Y,Long X P,Zhao T P,Zhai M G. 2019a. In-site mineral geochemistry and whole-rock Fe isotopes of the quartz-magnetite-pyroxene rocks in the Wuyang area,North China Cratons: Constraints on the genesis of the pyroxene-rich BIF. Precambrian Research, 333: 105445. [37] Lan C Y,Zhao T P,Chen W T,Long X P. 2019b. Trace elemental modification in magnetite from high-grade metamorphosed BIFs in the southern North China Craton. Ore Geology Reviews, 112: 103019. [38] Li H M,Zhang Z J,Li L L,Zhang Z C,Chen J,Yao T. 2014. Types and general characteristics of the BIF-related iron deposits in China. Ore Geology Reviews, 57: 264-287. [39] Li Y H,Ding T P,Wan D F. 1995. Experimental study of silicon isotope dynamic fractionation and its application in geology. Chinese Journal of Geochemistry, 14(3): 212-219. [40] McLennan S M. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21: 169-200. [41] Planavsky N,Bekker A,Rouxel O J,Kamber B,Hofmann A,Knudsen A,Lyons T W. 2010. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochimica et Cosmochimica Acta, 74: 6387-6405. [42] Planavsky N J,Dan A,Hofmann A,Reinhard C T,Lalonde S V,Knudsen A,Wang X L,Ossa F O,Pecoits E,Smith A J B,Beukes N J,Bekker A,Johnson T M,Konhauser K O,Lyons T W,Rouxel O J. 2014. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nature Geoscience, 7(4): 283-286. [43] Rimmer S M. 2004. Geochemical paleoredox indicators in Devonian-Mississippian black shales,Central Appalachian Basin(USA). Chemical Geology, 206: 373-391. [44] Rouxel O,Bekker A,Edwards K. 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 307: 1087-1091. [45] Tribovillard N,Algeo T J,Lyons T,Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1-2): 12-32. [46] Wang C L,Zhang L C,Dai Y P,Li W J. 2014a. Source characteristics of the~2.5Ga Wangjiazhuang banded iron formation from the Wutai greenstone belt in the North China Craton: Evidence from neodymium isotopes. Journal of Asian Earth Science, 93: 288-300. [47] Wang C L,Zhang L C,Lan C Y,Dai Y P. 2014b. Rare earth element and yttrium compositions of the Paleoproterozoic Yuanjiacun BIF in the Lüliang area and their implications for the Great Oxidation Event(GOE). Science China: Earth Science, 57: 2469-2485. [48] Wang C L,Konhauser K O,Zhang L C. 2015. Depositional environment of the Paleoproterozoic Yuanjiacun Banded Iron Formation in Shanxi Province,China. Economic Geology, 110: 1515-1539. [49] Wang C L,Wu H Y,LI W J,Peng Z D,Zhang L C,Zhu M T,Zhai M G. 2017. Changes of Ge/Si,REE+Y and Sm-Nd isotopes in alternating Fe- and Si-rich mesobands reveal source heterogeneity of the ~2.54Ga Sijiaying banded iron formation in eastern Hebei,China. Ore Geology Reviews, 80: 363-376. [50] Wignall P B,Twitchett R J. 1996. Oceanic anoxia and the end Permian mass extinction. Science, 272: 1155-1158. [51] Yang X Y,Liu L,Lee I,Wang B H,Du Z B,Wang Q C,Wang Y X,Su W D. 2014. A review on the Huoqiu banded iron formation(BIF),southeast margin of the North China Craton: Genesis of iron deposits and implications for exploration. Ore Geology Reviews, 63(1): 418-443. [52] Zhai M G,Windley B F. 1990. The Archaean and Early Proterozoic banded iron formations of North China: Their characteristics geotectonic relations,chemistry and implications for crustal growth. Precambrian Research, 48: 267-286. [53] Zhang L C,Zhai M G,Zhang X J,Xiang P,Dai Y P,Wang C L,Pirajno F. 2012. Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon U-Pb dating. Precambrian Research, 222-223: 325-338. [54] Zhang X J,Zhang L C,Xiang P,Wan B,Pirajno F. 2011. Zircon U-Pb age,Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation,North China Craton: Constraints on the ore-forming age and tectonic setting. Gondwana Research, 20: 137-148. [55] Zhu M T,Dai Y P,Zhang L C,Wang C L,Liu L. 2015. Geochronology and geochemistry of the Nanfen iron deposit in the Anshan-Benxi area,North China Craton: Implications for~2.55Ga crustal growth and the genesis of high-grade iron ores. Precambrian Research, 260: 23-38.