Phosphogenesis of phosphorite from the Sinian Doushantuo Formation in Guizhou Province and its coupling relation with the Neoproterozoic Oxygenation Event
Zhang Ya-Guan1,2, Du Yuan-Sheng2,3, Liu Jian-Zhong2,4, Wang Ze-Peng2,5, Deng Chao6
1 School of Earth Resources,China University of Geosciences(Wuhan),Wuhan 430074,China; 2 Innovation Center of Ore Resources Exploration Technology in the Region of Bedrock,Ministry of Natural Resources of People's Republic of China,Guiyang 550081,China; 3 State Key Laboratory of Biogeology and Environmental Geology,School of Earth Sciences,China University of Geosciences(Wuhan),Wuhan 430074,China; 4 Bureau of Geology and Mineral Exploration and Development of Guizhou Province,Guiyang 550004,China; 5 Geological Brigade 105,Bureau of Geology and Mineral Exploration and Development of Guizhou Province,Guiyang 550018,China; 6 Geological Brigade 115,Bureau of Geology and Mineral Exploration and Development of Guizhou Province,Guizhou Qingzhen 551400,China
Abstract:Phosphate deposits of the Ediacaran Doushantuo Formation accumulated in the central Guizhou Province are the typical phosphate-rich sediments during the Neoproterozoic Phosphogenic Episodes,which occurred after the “Snowball Earth”period and Neoproterozoic Oxygenation Event. However,the mechanisms of phosphate enrichment in seawater have always been hotly debated,and the research for correlations between phosphogenesis and transition of Ediacaran palaeo-ocean environments is still unsubstantial. This study focused on the sedimentological,petrological,mineralogical and geochemical analyses on the Doushantuo pristine phosphorite in Weng'an,Zunyi and Danzhai area. Documented by spherulitic phosphorites in the Lower Phosphorite beds from Weng'an area that contain abundant autogenetic Fe-bearing minerals such as pyrite and glauconite and show weak Ce negative anomaly,Fe-redox pumping in low-oxygen environments are the important phosphogenesis mechanism but only limited in coastal waters in the Early Doushantuo Period. Phosphorite in the Upper Phosphorite beds deposited within organic-rich beds and contain massive biological fossils suggests that phosphogenesis might have been triggered by degradation of organic matter and biological action in the Late Doushantuo Period,and distribution of phosphatic sediments extended to the deeper shelf to slope setting. Obvious Ce negative anomaly implies the increase of oxygen content in seawater. The transition of phosphogenesis mechanisms and the expansion of phosphorite deposits are the sedimentary response of ocean oxygenation,and the associated evolution of metazoans also changed the redox conditions of the deep seawater. These sedimentary and geochemistry data reflect the closed coupling relation between Doushantuo phosphorite in Guizhou Province and the Neoproterozoic Oxygenation Event.
Zhang Ya-Guan,Du Yuan-Sheng,Liu Jian-Zhong et al. Phosphogenesis of phosphorite from the Sinian Doushantuo Formation in Guizhou Province and its coupling relation with the Neoproterozoic Oxygenation Event[J]. JOPC, 2020, 22(5): 893-912.
[1] 柴华,武景龙,密文天,尚进. 2014. 贵州瓮安陡山沱组磷块岩岩石学特征及分类. 西部资源,(1): 158-161. [Chai H,Wu J L,Mi W T,Shang J. 2014. Characteristics and classification of phosphorite of Doushantuo Formation in Weng'an,Guizhou. Western Resources,(1): 158-161] [2] 陈国勇,杜远生,张亚冠,陈庆刚,范玉梅,王泽鹏,谭华. 2015. 黔中地区震旦纪含磷岩系时空变化及沉积模式. 地质科技情报, 34(6): 17-25. [Chen G Y,Du Y S,Zhang Y G,Chen Q G,Fan Y M,Wang Z P,Tan H. 2015. Spatial and temporal variation and mineralization model of the Sinian phosphorus-bearing sequences in central Guizhou Province. Geological Science and Technology Information, 34(6): 17-25] [3] 郭庆军,杨卫东,刘丛强,Strauss Harald,王兴理,赵元龙. 2003. 贵州瓮安生物群和磷矿形成的沉积地球化学研究. 矿物岩石地球化学通报, 22(3): 202-208. [Guo Q J,Yang W D,Liu C Q,Harald S,Wang X L,Zhao Y L. 2003. Sedimentary geochemistry research on the radiation of Weng'an Biota and the formation of the phosphorite ore deposit,Guizhou. Bulletin of Mineralogy,Petrology and Geochemistry, 22(3): 202-208] [4] 纪秋梅,吕苗,张俊明,胡春林,朱茂炎. 2019. 震旦纪全球成磷事件沉积地球化学模型探讨: 以扬子板块不同相区陡山沱组含磷岩层研究为实例. 高校地质学报, 25(1): 68-80. [Ji Q M,Lü M,Zhang J M,Hu C L,Zhu M Y. 2019. Explore the model of sedimentary geochemistry of the Ediacaran Phosphogenic Even: A case study of the Doushantuo Phosphorite from different facies of the Yangtze Platform. Geological Journal of China Universities, 25(1): 68-80] [5] 林丽,周玉华,付修根,朱利东,庞艳春,马叶情,任才云. 2010. 贵州瓮安地区早寒武世含磷岩系有机地球化学特征. 矿物岩石, 30(1): 93-98. [Lin L,Zhou Y H,Fu X G,Zhu L D,Pang Y C,Ma Y Q,Ren C Y. 2010. Organic geochemistry of rock series bearing phosphor in Early Cambrian in Weng'an,Guizhou Province. Journal of Mineralogy Petrology, 30(1): 93-98] [6] 刘静江,李伟,张宝民,周慧,袁晓红,单秀琴,张静,邓胜徽,谷志东,樊茹,王拥军,李鑫. 2015. 上扬子地区震旦纪沉积古地理. 古地理学报, 17(6): 735-753. [Liu J J,Li W,Zhang B M,Zhou H,Yuan X H,Shan X Q,Zhang J,Deng S H,Gu Z D,Fan R,Wang Y J,Li X. 2015. Sedimentary palaeogeography of the Sinian in Upper Yangtze Region. Journal of Palaeogeography(Chinese Edition), 17(6): 735-753] [7] 刘鹏举,尹崇玉,陈寿铭,唐烽,高林志. 2009. 震旦纪陡山沱期瓮安生物群中磷酸盐化球状化石新材料及其问题讨论. 地球学报, 30(4): 457-464. [Liu P J,Yin C Y,Chen S M,Tang F,Gao L Z. 2009. New data of phosphatized globular fossils from Weng'an biota in the Ediacaran Doushantuo Formation and the problem concerning their affinity. Acta Geoscientica Sinica, 30(4): 457-464] [8] 密文天,林丽,马叶情,王新利,任才云,周玉华. 2010. 贵州瓮安陡山沱组含磷岩系沉积序列及磷块岩的形成. 沉积与特提斯地质, 30(3): 46-52. [Mi W T,Lin L,Ma Y Q,Wang X L,Ren C Y,Zhou Y H. 2010. Depositional sequences of the phosphatic rock series and formation of the phosphorites in the Doushantuo Formation in Weng'an,Guizhou. Sedimentary Geology and Tethyan Geology, 30(3): 46-52] [9] 密文天,李德亮,冯志强,武新春,牛显. 2013. 贵州瓮安陡山沱组磷块岩的地球化学特征. 地质找矿论丛, 28(1): 101-105. [Mi W T,Li D L,Feng Z Q,Wu X C,Niu X. 2013. Research on the geochemical characteristics of phosphorites of Doushantuo Formation in Wong'an county,Guizhou. Contributions to Geology and Mineral Resources Research, 28(1): 101-105] [10] 牟南,吴朝东. 2005. 上扬子地区震旦-寒武纪磷块岩岩石学特征及成因分析. 北京大学学报(自然科学版), 41(4): 551-562. [Mou N,Wu C D. 2005. Characteristics and phosphogenesis of phosphorite of the Sinian_Cambrian,West Yangtze Area. Acta Scientiarum Naturalium Universitatis Pekinensis, 41(4): 551-562] [11] 聂文明,马东升,潘家永,周健,吴凯. 2006. 黔中新元古代—早寒武世含磷岩系δ13C变化及其古海洋意义. 南京大学学报(自然科学版), 42(3): 257-268. [Nie W M,Ma D S,Pan J Y,Zhou J,Wu K. 2006. δ13C Excursions of phosphorite-bearing rocks in Neoproterozoic-Early Cambrian interval in Guizhou,South China: Implications for palaeoceanic evolutions. Journal of Nanjing University(Natural Sciences), 42(3): 257-268] [12] 王砚耕,朱士兴. 1984. 黔中陡山沱时期含磷地层及磷块岩研究的新进展. 中国区域地质,(1): 135. [Wang Y G,Zhu S X. 1984. New study of phosphatic succession and phosphrotie of Doushantuo Formation in central Guizhou Province. Regional Geology of China,(1): 135] [13] 吴文明,杨瑞东,徐世林,任海利,刘建中,王泽鹏,王大福,谭代卫,李磊. 2017. 贵州开阳陡山沱组超大型磷矿的富磷因素分析. 化工矿物与加工,(7): 36-40. [Wu W M,Yang R D,Xu S L,Ren H L,Liu J Z,Wang Z P,Wang D F,Tan D W,Li L. 2017. Analysis of enrichment factors for super-large phosphate deposit in Doushantuo Formation in Kaiyang,Guizhou. Industrial Minerals and Processing,(7): 33-37] [14] 吴祥和,韩至钧,蔡继峰,肖永连. 2000. 贵州磷块岩. 北京: 地质出版社,27-43. [Wu X H,Han Z J,Cai J F,Xiao Y L. 2000. Phosphorites in Guizhou. Beijing: Geological Publishing House,27-43] [15] 肖朝益,张正伟,何承真,温汉捷,樊海峰. 2018. 华南震旦纪磷矿的沉积环境. 矿物岩石地球化学通报, 37(1): 121-138. [Xiao C Y,Zhang Z W,He C Z,Wen H J,Fan H F. 2018. The depositional environment of Ediacaran phosphorite deposits,South China. Bulletin of Mineralogy,Petrology and Geochemistry, 37(1): 121-138] [16] 解启来,陈多福,漆亮,陈先沛. 2003. 贵州瓮安陡山沱组磷块岩稀土元素地球化学特征与沉积期后变化. 沉积学报, 21(4): 627-633. [Xie Q L,Chen D F,Qi L,Chen X P. 2003. REEs Geochemistry of Doushantuo Phosphorites and modification during post sedimentary stages in Weng'an Area,South China. Acta Sedimentologica Sinica, 21(4): 627-633] [17] 杨爱华,朱茂炎,张俊明,赵方臣,吕苗. 2015. 扬子板块震旦系(震旦系)陡山沱组层序地层划分与对比. 古地理学报, 17(1): 1-20. [Yang A H,Zhu M Y,Zhang J M,Zhao F C,Lü M. 2015. Sequence stratigraphic subdivision and correlation of the Ediacaran(Sinian)Doushantuo Formation of Yangtze Plate,South China. Journal of Palaeogeography(Chinese Edtion), 17(1): 1-20] [18] 杨瑞东. 1999. 晚震旦世陡山沱期后生生物群的古生态环境探讨. 岩相古地理, 19(5): 53-59. [Yang R D. 1999. Palaeoecology and fossil preservation of the early metazoan biotas during the Doushantuoan(Late Sinian). Sedimentary Facies and Palaeogeography, 19(5): 53-59] [19] 杨晓光,韩健. 2017. 寒武纪早期微体化石上的异质体拖曳迹与微型钻孔结构. 科学通报, 62(35): 4179-4188. [Yang X G,Han J. 2017. Ambient inclusion trails and microboring structures on Early Cambrian microfossils. Chinese Science Bulletin, 62(35): 4179-4188] [20] 叶连俊,陈其英,赵东旭,陈志明,陈有明,刘魁梧. 1989. 中国磷块岩. 北京: 科学出版社,223-237. [Ye L J,Chen Q Y,Zhao D X,Chen Z M,Chen Y M,Liu K W. 1989. China Phosphate Rock. Beijing: Science Press,223-237] [21] 袁训来. 2009. 新元古代陡山沱期的动物. 古生物学报, 48(3): 375-389. [Yuan X L. 2009. Animals in the Neoproterozoic Doushantuo epoch. Acta Palaeontologica Sinica, 48(3): 375-389] [22] 张伟,杨瑞东,毛铁,任海利,高军波,陈吉艳. 2015. 瓮安埃迪卡拉系灯影组叠层石磷块岩形成环境及成矿机制. 高校地质学报, 21(2): 186-195. [Zhang W,Yang R D,Mao T,Ren H L,Gao J B,Chen J Y. 2015. Sedimentary environment and mineralization mechanism of the stromatolitic phosphorite in the Ediacaran Dengying Formation,Weng'an County of Guizhou Province,China. Geological Journal of China Universities, 21(2): 186-195] [23] 张亚冠. 2019. 黔中地区震旦纪陡山沱组磷矿沉积地质与大规模成矿作用. 中国地质大学(武汉)博士论文: 131-140. [Zhang Y G. 2019. Sedimentary geology of the phosphorite deposits and phosphogenic event from Ediacaran Doushantuo Formation in central Guizhou Provinve. Docteral desseration of China University of Geosciences(Wuhan): 131-140] [24] 张亚冠,杜远生,陈国勇,刘建中,王泽鹏,徐圆圆,谭代卫,李磊,王大福,吴文明. 2016. 黔中开阳地区震旦纪陡山沱期富磷矿沉积特征与成矿模式. 古地理学报, 18(4): 581-594. [Zhang Y G,Du Y S,Chen G Y,Liu J Z,Wang Z P,Xu Y Y,Tan D W,Li L,Wang D F,Wu W M. 2016. Sedimentary characteristics and mineralization model of high-grade phosphorite in the Sinian Doushantuo Age of Kaiyang area,central Guizhou Province. Journal of Palaeogeography(Chinese Edition), 18(4): 581-594] [25] 张亚冠,杜远生,陈国勇,刘建中,陈庆刚,赵征,王泽鹏,邓超. 2019. 富磷矿三阶段动态成矿模式: 黔中开阳式高品位磷矿成矿机制. 古地理学报, 21(2): 351-368. [Zhang Y G,Du Y S,Chen G Y,Liu J Z Chen Q G,Zhao Z,Wang Z P,Deng C. 2019. Three stages dynamic mineralization model of the phosphate-rich deposits: Mineralization mechanism of the Kaiyang-type high-grade phosphorite in central Guizhou Province. Journal of Palaeogeography(Chinese Edition), 21(2): 351-368] [26] Algabri M,She Z,Jiao L,Papineau D,Wang G,Zhang C,Tang D,Ouyang G,Zhang Y,Chen G,Li C. 2020. Apatite-glaucony association in the Ediacaran Doushantuo Formation,South China and implications for marine redox conditions. Precambrian Research, 347: 105842. [27] Arning E T,Lückge A,Breuer C,Gussone N,Birgel D,Peckmann J. 2009. Genesis of phosphorite crusts off Peru. Marine Geology, 262(1-4): 68-81. [28] Bailey J V,Corsetti F A,Greene S E,Crosby C H,Liu P,Orphan V J. 2013. Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: Implications for the role of oxygen and bacteria in phosphogenesis. Geobiology, 11(5): 397-405. [29] Boyle R A,Dahl T W,Dale A W,Shields-Zhou G A,Zhu M,Brasier M D,Canfield D E,Lenton T M. 2014. Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation. Nature Geoscience, 7(9): 671-676. [30] Brasier M D,Callow R H T. 2007. Changes in the patterns of phosphatic preservation across the Proterozoic-Cambrian transition. Memoirs of the Association of Australasian Palaeontologists,(34): 377-389. [31] Caird R A,Pufahl P K,Hiatt E E,Abram M B,Rocha A J D,Kyser T K. 2017. Ediacaran stromatolites and intertidal phosphorite of the Salitre Formation,Brazil: Phosphogenesis during the Neoproterozoic Oxygenation Event. Sedimentary Geology, 350: 55-71. [32] Canfield D E,Poulton S W,Knoll A H,Narbonne G M,Ross G,Guy MGoldberg T,Strauss H. 2008. Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry. Science, 321: 949-952. [33] Chen D F,Dong W Q,Qi L,Chen G Q,Chen X P. 2003. Possible REE constraints on the depositional and diagenetic environment of Doushantuo Formation phosphorites containing the earliest metazoan fauna. Chemical Geology, 201(1-2): 103-118. [34] Chen L,Xiao S H,Pang K,Zhou C M,Yuan X L. 2014. Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils. Nature, 516: 238-241. [35] Compton J,Mallinson D,Glenn C R,Fillippelli G,Föllmi K,Shields G,Zanin Y. 2000. Variations in the global phosphorus cycle. Society for Sedimentary Geology: 21-33. [36] Condon D,Zhu M Y,Bowring S,Wang W,Yang A H,Jin Y G. 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation,China. Science, 308: 95-98. [37] Cook P J. 1992. Phosphogenesis around the Proterozoic-Phanerozoic transition. Journal of the Geological Society, 149(4): 615-620. [38] Cook P J,Shergold J H. 1984. Phosphorus,phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. Nature, 308: 231-236. [39] Cui H,Xiao S,Zhou C,Peng Y,Kaufman A J,Plummer R E. 2016. Phosphogenesis associated with the ShuramExcursion: Petrographic and geochemical observations from the Ediacaran Doushantuo Formation of South China. Sedimentary Geology, 341: 134-146. [40] Drummond J B R,Pufahl P K,Porto C G,Carvalho M. 2015. Neoproterozoic peritidal phosphorite from the Sete Lagoas Formation(Brazil)and the Precambrian phosphorus cycle. Sedimentology, 62(7): 1978-2008. [41] Filippelli G M. 2008. The global phosphorus cycle: Past,present,and future. Elements, 4(2): 89-95. [42] Filippelli G M. 2011. Phosphate rock formation and marine phosphorus geochemistry: The deep time perspective. Chemosphere, 84(6): 759-766. [43] Föllmi K B. 1996. The phosphorus cycle,phosphogenesis and marine phosphate-rich deposits. Earth Science Reviews, 40(1): 55-124. [44] Garrison R E,Kastner M. 1990. Phosphatic sediments and rocks recovered from the Peru margin during ODP Leg 112. Proceedings of the Ocean Drilling Program,Scientific Results, 112: 111-134. [45] Goldhammer T,Brüchert V,Ferdelman T G,Zabel M. 2010. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nature Geoscience, 3(8): 557-561. [46] Haley B A,Klinkhammer G A,McManus J. 2004. Rare earth elements in pore waters of marine sediments. Geochimica et Cosmochimica Acta, 68(6): 1265-1279. [47] Hiatt E E,Pufahl P K,Edwards C T. 2015. Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85Ga Michigamme Formation,Michigan,USA. Sedimentary Geology, 319: 24-39. [48] Jarvis I,Burnett I,Nathan Y,Almbaydin F,Attia I,Castro L,Flicoteaux R,M H,Husain V,Qutawnah A,Serjani.1994. Phosphorite geochemistry-state-of-the-art and environmental concerns. Eclogae Geologicae Helvetiae, 87(3): 643-700. [49] Jiang G Q,Shi X Y,Zhang S H,Wang Y,Xiao S H. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation(ca. 635-551Ma)in South China. Gondwana Research, 19(4): 831-849. [50] Joosu L,Lepland A,Kirsimäe K,Romashkin A E,Roberts N M W,Martin A P,Črne A E. 2015. The REE-composition and petrography of apatite in 2Ga Zaonega Formation,Russia: The environmental setting for phosphogenesis. Chemical Geology, 395: 88-107. [51] Joosu L,Lepland A,Kreitsmann T,Üpraus K,Roberts N M W,Paiste P,Martin A P,Kirsimäe K. 2016. Petrography and the REE-composition of apatite in the Paleoproterozoic Pilgujärvi Sedimentary Formation,Pechenga Greenstone Belt,Russia. Geochimica et Cosmochimica Acta, 186: 135-153. [52] Kidder D L,Eddy-Dilek C A. 1994. Rare-earth element variation in phosphate nodules from midcontinent Pennsylvanian cyclothems. Journal of Sedimentary Research, 68(3): 584-592. [53] Lawrence M G,Greig A,Collerson K D,Kamber B S. 2006. Rare earth element and yttrium variability in South East Queensland Waterways. Aquatic Geochemistry, 12(1): 39-72. [54] Lenton T M,Boyle R A,Poulton S W,Shields-Zhou G A,Butterfield N J. 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience, 7(4): 257-265. [55] Li C,Love G D,Lyons T W,Fike D A,Sessions A L,Chu X. 2010. A stratified redox model for the Ediacaran Ocean. Science, 328: 80-83. [56] Lyons T W,Reinhard C T,Planavsky N J. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature, 506: 307-315. [57] Morad S,Felitsyn S. 2001. Identification of primary Ce-anomaly signatures in fossil biogenic apatite: Implication for the Cambrian oceanic anoxia and phosphogenesis. Sedimentary Geology, 143(3-4): 259-264. [58] Nelson G J,Pufahl P K,Hiatt E E. 2010. Paleoceanographic constraints on Precambrian phosphorite accumulation,Baraga Group,Michigan,USA. Sedimentary Geology, 226(1-4): 9-21. [59] Papineau D. 2010. Global biogeochemical changes at both ends of the Proterozoic: Insights from phosphorites. Astrobiology, 10(2): 165-181. [60] Poulton S W,Canfield D E. 2006. Co-diagenesis of iron and phosphorus in hydrothermal sediments from the southern East Pacific Rise: Implications for the evaluation of paleoseawater phosphate concentrations. Geochimica et Cosmochimica Acta, 70(23): 5883-5898. [61] Pufahl P K,Hiatt E E. 2012. Oxygenation of the Earth's atmosphere-ocean system: A review of physical and chemical sedimentologic responses. Marine and Petroleum Geology, 32(1): 1-20. [62] Pufahl P K,Groat L A. 2017. Sedimentary and igneous phosphate deposits: Formation and exploration: An invited paper. Economic Geology, 112(3): 483-516. [63] Reynard B,Lécuyer C,Grandjean P. 1999. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chemical Geology, 155(3-4): 233-241. [64] Schulz H N,Schulz H D. 2005. Large sulfur bacteria and the formation of phosphorite. Science, 307: 416-418. [65] She Z B,Strother P,McMahon G,Nittler L R,Wang J H,Zhang J H,Sang L K,Ma C Q,Papineau D. 2013. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites Ⅰ: In situ micro-analysis of textures and composition. Precambrian Research, 235: 20-35. [66] She Z B,Strother P,Papineau D. 2014. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites Ⅱ: Microbial diversity and C isotopes. Precambrian Research, 251: 62-79. [67] She Z,Zhang Y,Liu W,Song J,Zhang Y,Li C,Strother P,Papineau D. 2016. New observations of Ambient Inclusion Trails(AITs)and pyrite framboids in the Ediacaran Doushantuo Formation,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 461: 374-388. [68] Shields G,Stille P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175(1-2): 29-48. [69] Soudry D. 1992. Primary bedded phosphorites in the Campanian Mishash Formation,Negev,southern Israel. Sedimentary Geology, 80(1-2): 77-88. [70] Sun S,Chan L S,Li Y L. 2014. Flower-like apatite recording microbial processes through deep geological time and its implication to the search for mineral records of life on Mars. American Mineralogist, 99: 2116-2125. [71] Vernhet E. 2007. Paleobathymetric influence on the development of the late Ediacaran Yangtze platform(Hubei,Hunan,and Guizhou Provinces,China). Sedimentary Geology, 197(1-2): 29-46. [72] Vernhet E,Reijmer J J G. 2010. Sedimentary evolution of the Ediacaran Yangtze platform shelf(Hubei and Hunan Provinces,Central China). Sedimentary Geology, 225(3-4): 99-115. [73] Xiao S H,Knoll A H. 1999. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstatte,South China. Lethaia, 32(3): 219-240. [74] Zhang Y G,Pufahl P K,Du Y S,Chen G Y,Liu J Z,Chen Q G,Wang Z P,Yu W C. 2019. Economic phosphorite from the Ediacaran Doushantuo Formation,South China,and the Neoproterozoic-Cambrian Phosphogenic Event. Sedimentary Geology, 388: 1-19. [75] Zhu M Y,Zhang J M,Yang A H. 2007. Integrated Ediacaran(Sinian)chronostratigraphy of South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 254(1-2): 7-61.