Enrichment mechanism of phosphorite deposits and significant breakthrough in “Triunity Model”for ore prospecting in the Sinian Doushantuo Formation of eastern Kaiyang region,Guizhou Province
Liu Jian-Zhong1,2, Wang Ze-Peng1,3, Du Yuan-Sheng1,4, Zhang Ya-Guan4,5, Wu Wen-Ming1,3, Chen Guo-Yong2, Fu Zhi-Kang3, Wan Da-Xue3, Wang Da-Fu3, Tan Dai-Wei3
1 Innovation Center of Ore Resources Exploration Technology in the Region of Bedrock,Ministry of Natural Resources of People's Republic of China,Guiyang 550081,China; 2 Bureau of Geology and Mineral Exploration and Development of Guizhou Province,Guiyang 550004,China; 3 Geological Brigade 105,Bureau of Geology and Mineral Exploration and Development of Guizhou Province,Guiyang 550018,China; 4 State Key Laboratory of Biogeology and Environmental Geology,School of Earth Sciences,China University of Geosciences(Wuhan),Wuhan 430074,China; 5 School of Earth Resources,China University of Geosciences(Wuhan),Wuhan 430074,China
Abstract:Package exploration area in the eastern Kaiyang region is located at the southeastern margin of the Yangtze block,which is the concentrated distribution area of high-grade phosphorite deposits in China. The comprehensive studies of sedimentology,petrology,stratigraphy and palaeogeography in Doushantuo phosphorite ore-bed of the Kaiyang region show that the phosphorite deposits were controlled by the open shallow coastal sedimentary environment formed by denudation and deplanation of the Central Guizhou Oldland. Phosphorite lithofacies associations,mineralogical features and sedimentary structures indicate that the phosphorites had experienced “three stages of mineralization process”in the Kaiyang region: The first pristine bio-chemical phosphogenesis stage,the second winnowing and reworking stage and the last exposure and leaching stage. The winnowing and reworking processes are the key mechanism to the formation of the thick and high-grade phosphorite. According to the “Triunity Model”metallogenic theory,the research team confirmed the bedded distribution along the open phosphatic shore in the north of the Qianzhong Oldland,constructed the metallogenic model and ore prospecting model,and determined that the shoreface is the major target area of high-grade phosphorite ore. The research team have achieved the innovation of phosphorite metallogenic theory and broke through the bottleneck of phosphorite deposits exploration by cooperating of industry-university-research,and the metallogenic range was expand from 250km2 to 1000km2 and quantity of predicted resources increased from 94.42megatons to 1.3 giga-tons. The prospection verification in the part of areas estimated the ore resources of phosphorite deposits(Inferred and predicted resources) of 548.92 megatons,especially the newly added high-grade phosphorites 357 megatons,achieving significant breakthrough of ore prediction of high-grade phosphorites in China.
Liu Jian-Zhong,Wang Ze-Peng,Du Yuan-Sheng et al. Enrichment mechanism of phosphorite deposits and significant breakthrough in “Triunity Model”for ore prospecting in the Sinian Doushantuo Formation of eastern Kaiyang region,Guizhou Province[J]. JOPC, 2020, 22(5): 913-928.
[1] 常苏娟,朱杰勇,刘益,贺瑾瑞. 2010. 西南滇黔风化磷块岩研究现状与趋势. 化工矿物与加工,(12): 41-44. [Chang S J,Zhu J Y,Liu Y,He J R. 2010. Research status and trend of weathered phosphorus block rocks in Guizhou,Southwest Yunnan. Chemical Minerals and Processing,(12): 41-44] [2] 陈国勇,杜远生,张亚冠,陈庆刚,范玉梅,王泽鹏,谭华. 2015. 黔中地区震旦纪含磷岩系时空变化及沉积模式. 地质科技情报, 34(6): 17-25. [Chen G y,Du Y S,Zhang Y G,Chen Q G,Fan Y M,Wang Z P,Tan H. 2015. Spatio-temporal variations and sedimentary models of the Sinian Phosphorus-bearing rocks in the central Guizhou Region. Geological Science and Technology Information, 34(6): 17-25] [3] 东野脉兴. 2001. 扬子地块陡山沱期与梅树村期磷矿区域成矿规律. 化工矿产地质,23(4): 193-209. [Dongye M X. 2001. Regional metallogenic regularities of the Doushantuo and Meishucun phosphate deposits in the Yangtze Block. Geology of Chemical Minerals,23(4): 193-209] [4] 东野脉兴,朱熙槐,王淑丽. 2019. 鄂西—黔中陆缘坻磷块岩迁移沉积及控矿(成矿)模型. 化工矿产地质, 41(1): 8-13. [Dongye M X,Zhu X H,Wang S L. 2019. Model of migration deposition and ore-controlling(ore-forming)at the continental margin of Western Hubei and central Guizhou. Geology of Chemical Minerals, 41(1): 8-13] [5] 冯增昭. 2004. 单因素分析多因素综合作图法: 定量岩相古地理重建. 古地理学报, 6(1): 3-19. [Feng Z Z. 2004. Quantitative lithofacies and palaeogeography reconstruction by single factor analysis and multi-factor comprehensive mapping. Journal of Palaeogeography(Chinese Edition), 6(1): 3-19] [6] 冯增昭. 2013. 定量岩相古地理. 见: 冯增昭. 中国沉积学(第二版). 北京: 石油工业出版社,1399-1449. [Feng Z Z. 2013. Quantitative Lithofacies Palaeogeography. In: Feng Z Z(ed). Sedimentology of China(Second Edition). Beijing: Petroleum Industry Press,1399-1449] [7] 黄毅,田升平. 1995. 云南滇池地区风化磷块岩的风化指标研究. 矿物学报, 15(1): 15-20. [Huang Y, Tian S P. 1995. Study on weathering index of weathered phosphorus block in Dianchi Lake,Yunnan. Acta Mineralogica Sinica, 15(1): 15-20] [8] 何进忠. 2016. 三位一体找矿预测模型的表达式. 地质论评,62(s1): 31-32. [He J Z. 2016. Expression of the srinity prospecting prediction model. Geological Review,62(s1): 31-32] [9] 刘静江,李伟,张宝民,周慧,袁晓红,单秀琴,张静,邓胜徽,谷志东,樊茹,王拥军,李鑫. 2015. 上扬子地区震旦纪沉积古地理. 古地理学报, 17(6): 735-753. [Liu J J,Li W,Zhang B M,Zhou H,Yuan X H,Shan X Q,Zhang J,Deng S H,Gu Z D,Fan R,Wang Y J,Li X. 2015. Sedimentary palaeogeography of the Sinian in Upper Yangtze Region. Journal of Palaeogeography(Chinese Edition), 17(6): 735-753] [10] 刘建中,王泽鹏,杜远生,陈国勇,张亚冠,吴文明,王大福,谭代卫,李松涛,唐嗣刚,付芝康,万大学,向群,杨妮娅,汪小勇,李磊,唐铸,宋威方,苏成鹏. 2019. 贵州开阳地区富磷矿成矿作用过程与找矿潜力. 贵州地质, 36(1): 10-17. [Liu J Z,Wang Z P,Du Y S,Chen G Y,Zhang Y G,Wu W M,Wang D F,Tan D W,Li S T,Tang S G,Fu Z K,Wan D X,Xiang Q,Yang N Y,Wang X Y,Li L,Tang Z,Song W F,Su C P. 2019. Guizhou mizar region rich phosphate rock mineralization process and prospecting potential. Guizhou Geology, 36(1): 10-17] [11] 密文天,林丽,马叶情,王新利,任才云,周玉华. 2010. 贵州瓮安陡山沱组含磷岩系沉积序列及磷块岩的形成. 沉积与特提斯地质, 30(3): 46-52. [Mi W T,Lin L,Ma Y Q,Wang X L,Ren C Y,Zhou Y H. 2010. Depositional sequences of the phosphatic rock series and formation of the phosphorites in the Doushantuo Formation in Weng'an,Guizhou. Sedimentary Geology and Tethyan Geology, 30(3): 46-52] [12] 王剑,段太忠,谢渊,汪正江,郝明,刘伟. 2012. 扬子地块东南缘大地构造演化及其油气地质意义. 地质通报, 31(11): 1739-1749. [Wang J,Duan T Z,Xie Y,Wang Z J,Hao M,Liu W. 2012. Tectonic evolution and hydrocarbon geology of the southeastern margin of the Yangtze Block. Geological Bulletin, 31(11): 1739-1749] [13] 王泽鹏,张亚冠,杜远生,陈国勇,刘建中,徐园园,谭代卫,李磊,王大福,吴文明. 2016. 黔中开阳磷矿沉积区震旦纪陡山沱期定量岩相古地理重建. 古地理学报, 18(3): 399-409. [Wang Z P,Zhang Y G,Du Y S,Chen G Y,Liu J Z,Xu Y Y,Tan D W,Li L,Wang D F,Wu W M. 2016. Reconstruction of quantitative lithofacies palaeogeography of the Sinian Doushantuo age of phosphorite depositional zone in Kaiyang area,central Guizhou Province. Journal of Palaeogeography(Chinese Edition), 18(3): 399-409] [14] 杨爱华,朱茂炎,张俊明,赵方臣,吕苗. 2015. 扬子板块埃迪卡拉系(震旦系)陡山沱组层序地层划分与对比. 古地理学报, 17(1): 1-20. [Yang A H,Zhu M Y,Zhang J M,Zhao F C,Lü M. 2015. Sequence stratigraphy division and correlation of the Doushantuo Formation of the Ediacaran(Sinian)Formation in the Yangtze Plate. Journal of Palaeogeography(Chinese Edition), 17(1): 1-20] [15] 叶连俊,陈其英,赵东旭,陈志明,陈友明,刘魁梧. 1989. 中国磷块岩. 北京: 科学出版社, 22-35. [Ye L J,Chen Q Y,Zhao D X,Chen Z M,Chen Y M,Liu K W. 1989. Chinese Phosphorous Rock. Beijing: Science Press,22-35] [16] 张伟,杨瑞东,毛铁,任海利,高军波,陈吉艳. 2015. 瓮安埃迪卡拉系灯影组叠层石磷块岩形成环境及成矿机制. 高校地质学报,21(2): 186-195. [Zhang W,Yang R D,Mao T,Ren H L,Gao J B,Chen J Y. 2015. Formation environment and metallogenic mechanism of stromatolites and phosphorus blocks of Dengying Formation,Weng'an Ediacaran Formation. Geological Journal of China Universities,21(2): 186-195] [17] 张亚冠,杜远生,陈国勇,刘建中,王泽鹏,徐圆圆,谭代卫,李磊,王大福,吴文明. 2016. 黔中开阳地区震旦纪陡山沱期富磷矿沉积特征与成矿模式. 古地理学报, 18(4): 581-594. [Zhang Y G,Du Y S,Chen G Y,Liu J Z,Wang Z P,Xu Y Y,Tan D W,Li L,Wang D F,Wu W M. 2016. Sedimentary characteristics and mineralization model of high-grade phosphorite in the Sinian Doushantuo Age of Kaiyang area,central Guizhou Province. Journal of Palaeogeography(Chinese Edition), 18(4): 581-594] [18] 张亚冠,杜远生,陈国勇,刘建中,陈庆刚,赵征,王泽鹏,邓超. 2019. 富磷矿三阶段动态成矿模式: 黔中开阳式高品位磷矿成矿机制. 古地理学报, 21(2): 351-368. [Zhang Y G,Du Y S,Chen G Y,Liu J Z,Chen Q G,Zhao Z,Wang Z P,Deng C. 2019. Three-stage dynamic mineralization model of rich phosphate deposits: The kaiyang type high grade phosphate mineralization mechanism in central Guizhou. Journal of Palaeogeography(Chinese Edition), 21(2): 351-368] [19] 朱士兴,王砚耕. 1983. 关于开阳磷块岩矿床成因的探讨. 科学通报,(19): 1191-1194. [Zhu S X,Wang Y G. 1983. Discussion on the genesis of the phosphate rock deposit in Kaiyang. Chinese Science Bulletin,(19): 1191-1194] [20] Abed A M,Arouri K R,Boreham C J. 2005. Source rock potential of the phosphorite-bituminous chalk-marl sequence in Jordan. Marine and Petroleum Geology, 22(3): 413-425. [21] Arning E T,Lückge A,Breuer C,Gussone N,Birgel D,Peckmann J. 2009. Genesis of phosphorite crusts off Peru. Marine Geology, 262(1-4): 68-81. [22] Banerjee D M,Khan M W Y,Srivastava N,Saigal G C. 1982. Precambrian phosphorites in the Bijawar rocks of Hirapur-Bassia areas,sagar district,madhya pradesh,India.Mineralium Deposita, 17(3): 349-362. [23] Gao Y,Zhang X,Zhang G,Chen K,Shen Y. 2018. Ediacaran negative C-isotopic excursions associated with phosphogenic events: Evidence from South China. Precambrian Research, 307: 218-228. [24] Garrison R E,Kastner M. 1990. Phosphatic sediments and rocks recovered from the Peru margin during ODP Leg 112. Proceedings of the Ocean Drilling Program. Scientific Results, 112: 111-134. [25] Jiang G Q,Shi X Y,Zhang S H,Wang Y,Xiao S H. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation(ca. 635-551Ma)in South China. Gondwana Research, 19(4): 831-849. [26] Krajewski K P,Le Niak P M,Cka B,Zawidzki P. 2000. Origin of phosphatic stromatolites in the Upper Cretaceous condensed sequence of the Polish Jura Chain. Sedimentary Geology, 136(1): 89-112. [27] Li Z X,Li X H,Kinny P D,Wang J,Zhang S,Zhou H. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton,South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1): 85-109. [28] Lucas J,Flicoteaux R,Nathan Y,Prévôt L,Shahar Y. 1980. Different aspects of phosphorite weathering. In: Bentor Y K(ed).Marine Phosphorites. Tulsa: SEPM Special Publication,Society for Sedimentary Geology,41-51. [29] Papineau D. 2010. Global biogeochemical changes at both ends of the Proterozoic: Insights from phosphorites. Astrobiology, 10(2): 165-181. [30] Planavsky N J,Rouxel O J,Bekker A,Lalonde S V,Konhauser K O,Reinhard C T,Lyons T W. 2010. The evolution of the marine phosphate reservoir. Nature, 467: 1088-1090. [31] Pufahl P K,Groat L A. 2017. Sedimentary and igneous phosphate deposits: Formation and exploration: An invited paper. Economic Geology, 112(3): 483-516. [32] Pufahl P K, Hiatt E E. 2012. Oxygenation of the Earth's atmosphere ocean system: A veriew of physical and chemical sedimentologic responses. Marine and Petroleum Geology, 32(1):1-20. [33] Sánchez-Navas A,Martín-Algarra A. 2001. Genesis of apatite in phosphate stromatolites. European Journal of Mineralogy, 13(2): 361-376. [34] Soudry D. 1992. Primary bedded phosphorites in the Campanian Mishash Formation,Negev,southern Israel. Sedimentary Geology, 80(1-2): 77-88. [35] Zhang Y G,Peir K, Pufahl,Du Y S,Chen G Y,Liu J Z,Chen Q G,Wang Z P,Yu W C. 2019. Economic phosphorite from the Ediacaran Doushantuo Formation,South China,and the Neoproterozoic-Cambrian Phosphogenic Event. Sedimentary Geology, 388: 1-19.