Detrital zircon records in bauxite deposits of China: Implication for the provenance model and ore deposits classification of bauxite
Yu Wen-Chao1,2, Du Yuan-Sheng1,2, Xiong Guo-Lin1,2, Zhou Jin-Tao1,2, Pang Da-Wei1,2, Deng Xu-Sheng2,3, Weng Shen-Fu2,4, Li Pei-Gang2,4
1 State Key Laboratory of Biogeology and Environmental Geology,School of Earth Sciences,China University of Geosciences(Wuhan),Wuhan 430074,China; 2 Innovation Center of Ore Resources Exploration Technology in the Region of Bedrock,Ministry of Natural Resources of People's Republic of China,Guiyang 550081,China; 3 Guizhou Geological Survey,Guiyang 550081,China; 4 Geological Brigade 106,Bureau of Geology and Mineral Exploration and Development of Guizhou Province,Guizhou Zunyi 563000,China
Abstract:Based on 3439 detrital zircon U-Pb datapoints collected from the bauxite deposits of China and 297 detrital zircon U-Pb datapoints from underlying clastic rocks,this study reviews the recent progress in the detrital zircon U-Pb geochronology of bauxite deposits in China. Stability assessment of zircon grains in modern tropical weathering profiles proves the chemical and physical stability during the and intense weathering and bauxitization,which makes zircon become a good provenance indicator. Sedimentary provenance study of bauxite deposits in China indicates that even the bauxite deposit developed on the carbonate rocks,there was still considerable input of the weathering aluminosilicate materials. Previous classifications of bauxite deposit are mainly based on the lithology of basement rock and features of ore body,applications of these classifications will cause ambiguities and uncertainties. For widespread parautochthonous and allochthonous detrital zircon grains within Chinese bauxite deposits,parautochthonous and allochthonous criterion is invalid in classification of Chinese bauxite deposits. Here we suggest that the bauxite study requires a new classification of ore deposit,which should consider the weathering process of bauxite deposits as well as the position of bauxite deposit in the sedimentological framework. Although detrital zircon study provides important constrains for the provenance of bauxite deposits,combination of regional geological background and the geochemical characteristics are still essential for the comprehensive cognition of source materials.
Yu Wen-Chao,Du Yuan-Sheng,Xiong Guo-Lin et al. Detrital zircon records in bauxite deposits of China: Implication for the provenance model and ore deposits classification of bauxite[J]. JOPC, 2020, 22(5): 947-964.
[1] 蔡书慧,刘学飞,孟健寅,孙思磊. 2012. 桂西田阳堆积型铝土矿矿物学及地球化学. 地质与勘探, 48(3): 460-470. [Cai S H,Liu X F,Meng J Y,Sun S L. 2012. Mineralogy and geochemistry of the Tianyang accumulation-type bauxite in western Guangxi Province. Geology and Exploration, 48(3): 460-470] [2] 邓军. 2006. 桂中三水铝土矿地质特征及控矿因素浅析. 南方国土资源, 14(3): 21-23. [Deng J. 2006. Geological characteristics and controllled factors analysis of gibbsite bauxite in central Guangxi. South Land and Resources, 14(3): 21-23] [3] 杜远生,余文超. 2020. 沉积型铝土矿的陆表淋滤成矿作用: 兼论铝土矿的成因分类. 古地理学报,22(5): 812-826. [Du Y S,Yu W C. 2020. Subaerial leaching process of sedimentary bauxite deposits and the discussion on classifications of bauxite deposits. Journal of Palaeogeography(Chinese Edition),22(5): 812-826] [4] 高兰,王登红,熊晓云,易承伟. 2014. 中国铝矿成矿规律概要. 地质学报, 88(12): 2284-2295. [Gao L,Wang D H,Xiong X Y,Yi C W. 2014. Summary on aluminum ore deposits minerogenetic regulation in China. Acta Geologica Sinica, 88(12): 2284-2295] [5] 高兰,王登红,熊晓云,齐帅军,易承伟,夹少辉. 2015. 中国铝土矿资源特征及潜力分析. 中国地质, 42(4): 853-863. [Gao L,Wang D H,Xiong X Y,Qi S J,Yi C W,Jia S H. 2015. Minerogenenic characteristics and resource potential analysis of bauxite in China. Geology in China, 42(4): 853-863] [6] 黄兴,张雄华,杜远生,覃永军,翁申富,雷志远,郄文昆,蒋涛. 2012. 黔北地区铝土矿形成的地质时代. 地质科技情报, 31(3): 49-54. [Huang X,Zhang X H,Du Y S,Qin Y J,Weng S F,Lei Z Y,Qie W K,Jiang T. 2012. Age of bauxite forming in northern Guizhou. Geological Science and Technology Information, 31(3): 49-54] [7] 金中国,周家喜,黄智龙,谷静,刘玲,代龙省. 2013. 贵州务川—正安—道真地区铝土矿碎屑锆石 U-Pb 年龄及其地质意义. 地学前缘, 20(6): 226-239. [Jin Z G,Zhou J X,Huang Z L,Gu J,Liu L,Dai L S. 2013. Detrital zircon U-Pb dating and its geological significant for the bauxite in Wuchuan-Zheng'an Al metallogenic province,Guizhou,SW China. Earth Science Front, 20(6): 226-239] [8] 廖士范,梁同荣. 1991. 中国铝土矿地质学. 贵阳: 贵州科技出版社. [Liao S F,Liang T R. 1991. Bauxite Geology in China. Guiyang: Science and Technology Publishing House of Guizhou] [9] 刘平,廖友常. 2012. 黔中—渝南铝土矿含矿岩系时代探讨. 中国地质, 39(3): 661-682. [Liu P,Liao Y C. 2012. A aentative discussion on the age of bauxite-bearing rock series in central Guizhou-southern Chongqing Area. Geology in China, 39(3): 661-682] [10] 刘平,廖友常,张雅静. 2015. 黔中—渝南石炭纪铝土矿含矿岩系中的海相沉积特征. 中国地质, 42(2): 641-654. [Liu P,Liao Y C,Zhang Y J. 2015. Characteristics of marine deposits of the bauxite-bearing rock series in central Guizhou-southern Chongqing Area. Geology in China, 42(2): 641-654] [11] 刘庆玲,徐绍辉,刘建立. 2007. 离子强度和pH对高岭石胶体运移影响的实验研究. 土壤学报,44(3): 425-429. [Liu Q L,Xu S H,Liu J L. 2007. Effects of ionic-strength and pH on kaolinite transport in saturated porous media. Acta Pedologica Sinica,44(3): 425-429] [12] 刘庆玲,徐绍辉,刘建立. 2008. 饱和多孔介质中高岭石胶体和SiO2胶体运移行为比较. 土壤学报,45(3): 445-451. [Liu Q L,Xu S H,Liu J L. 2008. Comparison between kaolinite and SiO2 colloid intransport behavior in saturated porous media. Acta Pedologica Sinica,45(3): 445-451] [13] 刘长龄. 1988. 次生岩溶坠积再生铝土矿床新类型的物质成分与成因. 矿床地质, 7(2): 83-91. [Liu C Y. 1988. Material composition and genesis of secondary karst colluvial palingenic type bauxite deposits. Mineral Deposits, 7(2): 83-91] [14] 刘长龄. 中国的铝土矿. 2013. 见: 冯增昭主编. 中国沉积学. 北京: 石油工业出版社,689-719. [Liu C L. 2013. Bauxite of China. In: Feng Z Z(ed). Sedimentology of China. Beijing: Petroleum Industry Press,689-719] [15] 刘学飞,王庆飞,马遥,李中明,赵利华,周智慧,刘百顺,马欣莉. 2020. 华北克拉通南缘石炭纪本溪组铁-铝黏土矿物质来源: 以河南三门峡大安铝黏土矿床为例. 古地理学报,22(5): 965-976. [Liu X F,Wang Q F,Ma Y,Li Z M,Zhao L H,Zhou Z H,Liu B S,Ma X L. 2020. Provenance of iron, bauxite and clay deposits of the Carboniferous Benxi Formation in southern margin of North China craton: An example from Da'an bauxite and clay deposit of Sanmenxia area, Henan Province. Journal of Palaeogeography(Chinese Edition),22(5): 965-976] [16] 史骁,喻建新,陈斌,黄程,顾松竹,李慧,迟鸿飞. 2014. 黔北务川—正安—道真地区下二叠统大竹园组和梁山组孢粉学研究. 古地理学报, 16(2): 217-226. [Shi X,Yu J X,Chen B,Huang C,Gu S Z,Li H, Chi H F. 2014. Palynology of the Lower Permian Dazhuyuan and Liangshan Formations in Wuchuan-Zheng'an-Daozhen area,northern Guizhou Province. Journal of Palaeogeography(Chinese Edition), 16(2): 217-226] [17] 孙慧敏,殷宪强,王益权. 2012. pH对黏土矿物胶体在饱和多孔介质中运移的影响. 环境科学学报, 32(2): 419-424. [Sun H M,Yin X Q,Wang Q Y. 2012. The effect of pH on the transport of clay mineral colloid in saturated porous media. Acta Scientiae Circumstantiae, 32(2): 419-424] [18] 王庆飞,邓军,刘学飞,张起钻,李中明,康微,蔡书慧,李宁. 2012. 铝土矿地质与成因研究进展. 地质与勘探, 48(3): 430-448. [Wang Q F,Deng J,Liu X F,Zhang Q Z,Li Z M,Kang W,Cai S H,Li N. 2012. Review on research of bauxite geology and genesis in China. Geology and Exploration, 48(3): 430-448] [19] 余文超. 2017. 华南黔桂地区铝土矿沉积—成矿作用. 中国地质大学(武汉)博士论文. [Yu W C. 2017. Sedimentological and metallogenic study of bauxite deposits in Guizhou and Guangxi Provinces,South China. Doctoral dissertation of China University of Geosciences(Wuhan): 1-173] [20] 余文超,杜远生,周琦,金中国,汪小妹,覃永军,崔滔. 2014a. 黔北务正道地区下二叠统铝土矿层物源研究: 来自碎屑锆石年代学的证据. 古地理学报, 16(1): 19-29. [Yu W C,Du Y S,Zhou Q,Jin Z G,Wang X M,Qin Y J, Cui T. 2014a. Provenance of bauxite beds of the Lower Permian in Wuchuan-Zheng'an-Daozhen area,northern Guizhou Province: Evidence from detrital zircon chronology. Journal of Palaeogeography(Chinese Edition), 16(1): 19-29] [21] 余文超,张启连,杜远生,陈粤,梁裕平. 2014b. 广西扶绥第四系萨伦托型铝土矿淋滤成矿过程. 大地构造与成矿学, 38(3): 621-634. [Yu W C,Zhang Q L,Du Y S,Chen Y,Liang Y P. 2014b. Leaching-metallogenic process of Quaternary Salento-type bauxite in Fusui Area,Guangxi. Geotectonica et Metallogenia, 38(3): 621-634] [22] 赵芝,王登红,李沛刚,雷志远. 2013. 黔北大竹园组碎屑锆石年代学及成矿指示意义. 岩矿测试, 32(1): 166-173. [Zhao Z,Wang D H,Li P G,Lei Z Y. 2013. Detrital zircon U-Pb geochronology of the Dazhuyuan Formation in northern Guizhou: Implications for bauxite mineralization. Rock and Mineral Analysis, 32(1): 166-173] [23] 祝瑞勤,李小罗,莫晓东. 2004. 广西岩溶堆积型铝土矿矿床特征. 地质与勘探, 40(4): 13-16. [Zhu R Q,Li X L,Mo X D. 2004. Characters of the karst cumulation type bauxite deposits in the Guangxi Procinve. Geology and Exploration, 40(4): 13-16] [24] Balan E,Neuville D R,Trocellier P,Fritsch E,Muller J-P,Calas G. 2001. Metamictization and chemical durability of detrital zircon. American Mineralogist, 86(9): 1025-1033. [25] Bárdossy G. 1982. Karst Bauxites: Bauxite Deposits on Carbonate Rocks. Amsterdam: Elsevier,1-210. [26] Bárdossy G. 1994. Carboniferous to Jurassic bauxite deposits as paleoclimatic and paleogeographic indicators. Pangea: Global Environments and Resources. In: Embry A F, Beauchamp B, Glass D J(eds). Canadian Society of Petroleum Geologists Memoir, 17: 283-293. [27] Boni M,Reddy S M,Mondillo N,Balassone G,Taylor R. 2012. A distant magmatic source for Cretaceous karst bauxites of Southern Apennines(Italy),revealed through SHRIMP zircon age dating. Terra Nova, 24(4): 326-332. [28] Cai S H,Wang Q F,Liu X F,Feng Y,Zhang Y. 2015. Petrography and detrital zircon study of late Carboniferous sequences in the southwestern North China Craton: Implications for the regional tectonic evolution and bauxite genesis. Journal of Asian Earth Sciences, 98: 421-435. [29] Cawood P A,Nemchin A A,Freeman M,Sircombe K. 2003. Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth and Planetary Science Letters, 210(1-2): 259-268. [30] Cawood P A,Hawkesworth C J. 2014. Earth's middle age. Geology, 42(6): 503-506. [31] Cawood P A,Wang W,Zhao T Y,Xu Y J,Mulder J A,Pisarevsky S,Zhang L,Gan C,He H,Liu H. 2020. Deconstructing South China and consequences for reconstructing Nuna and Rodinia. Earth-Science Reviews, 204: 103169. [32] Chen J,Wang Q,Zhang Q,Carranza E J M,Wang J. 2018. Mineralogical and geochemical investigations on the iron-rich gibbsitic bauxite in Yongjiang basin,SW China. Journal of Geochemical Exploration, 188: 413-426. [33] Colin F,Alarcon C,Vieillard P. 1993. Zircon: An immobile index in soils? Chemical Geology, 107: 273-276. [34] Comer J B,Naeser C W,McDowell F W. 1980. Fission-track ages of zircon from Jamaican bauxite and Terra Rossa. Economic Geology, 75(1): 117-121. [35] D'Argenio B,Mindszenty A. 1995. Bauxites and related paleokarst: Tectonic and climatic event markers at regional unconformities. Eclogae Geologicae Helvetiae, 88(3): 453-499. [36] Delattre S,Utsunomiya S,Ewing R C,Boeglin J-L,Braun J-J,Balan E,Calas G. 2007. Dissolution of radiation-damaged zircon in lateritic soils. American Mineralogist, 92(11-12): 1978-1989. [37] Deng J,Wang Q F,Yang S J,Liu X F,Zhang Q Z,Yang L,Yang Y. 2010. Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi,China: Constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores. Journal of Asian Earth Sciences, 37(5-6): 412-424. [38] Du X,Rate A W,Gee M A M. 2012. Redistribution and mobilization of titanium,zirconium and thorium in an intensely weathered lateritic profile in Western Australia. Chemical Geology, 330-331: 101-115. [39] Fedo C M,Sircombe K N,Rainbird R H. 2003. Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry, 53(1): 277-303. [40] Gatehouse R D,Williams I S,Pillans B J. 2001. Fingerprinting windblown dust in south-eastern Australian soils by uranium-lead dating of detrital zircon. Soil Research, 39(1): 7-12. [41] Grubb P L C. 1963. Critical factors in the genesis,extent,and grade of some residual bauxite deposits. Economic Geology, 58(8): 1267-1277. [42] Gu J,Huang Z L,Fan H,Jin Z G,Yan Z,Zhang J. 2013a. Mineralogy,geochemistry,and genesis of lateritic bauxite deposits in the Wuchuan-Zheng'an-Daozhen area,Northern Guizhou Province,China. Journal of Geochemical Exploration, 130: 44-59. [43] Gu J,Huang Z,Fan H,Ye L,Jin Z G. 2013b. Provenance of lateritic bauxite deposits in the Wuchuan-Zheng'an-Daozhen area,northern Guizhou Province,China: LA-ICP-MS and SIMS U-Pb dating of detrital zircons. Journal of Asian Earth Sciences, 70-71: 265-282. [44] Hartman J A. 1959. The titanium mineralogy of certain bauxites and their parent materials. Economic Geology, 54(8): 1380-1405. [45] Hou, Y L,Zhong Y L,Xu Y G,He B. 2017. The provenance of late Permian karstic bauxite deposits in SW China,constrained by the geochemistry of interbedded clastic rocks,and U-Pb-Hf-O isotopes of detrital zircons. Lithos, 278-281: 240-254. [46] Li P G,Yu W C,Du Y S,Lai X L,Weng S F,Pang D W,Xiong G L,Lei Z Y,Zhao S,Yang S Q. 2020. Influence of geomorphology and leaching on the formation of Permian bauxite in northern Guizhou Province,South China. Journal of Geochemical Exploration, 210: 106446. [47] Liu J,Zhao Y,Liu A,Zhang S,Yang Z,Zhuo S. 2014. Origin of Late Palaeozoic bauxites in the North China Craton: Constraints from zircon U-Pb geochronology and in situ Hf isotopes. Journal of the Geological Society, 171(5): 695-707. [48] Liu X F,Wang Q F,Feng Y,Li Z,Cai S H. 2013. Genesis of the Guangou karstic bauxite deposit in western Henan,China. Ore Geology Reviews, 55: 162-175. [49] Liu X F,Wang Q F,Zhang Q Z,Yang S J,Zhang Y,Liang Y,Chen Q. 2017. Transformation from Permian to Quaternary bauxite in southwestern South China Block driven by superimposed orogeny: A case study from Sanhe ore deposit. Ore Geology Reviews, 90: 998-1017. [50] McGechan M B. 2002. SW—soil and water: Transport of particulate and colloid-sorbed contaminants through soil,Part 2: Trapping processes and soil pore geometry. Biosystems Engineering, 83(4): 387-395. [51] McGechan M B,Lewis D R. 2002. SW—Soil and Water: Transport of particulate and colloid-sorbed contaminants through soil,Part 1: General principles. Biosystems Engineering, 83(3): 255-273. [52] Mongelli G,Buccione R,Gueguen E,Langone A,Sinisi R. 2016. Geochemistry of the apulian allochthonous karst bauxite,Southern Italy: Distribution of critical elements and constraints on Late Cretaceous Peri-Tethyan palaeogeography. Ore Geology Reviews, 77: 246-259. [53] Mordberg L E,Stanley C J, Germann K. 2001. Mineralogy and geochemistry of trace elements in bauxites: The Devonian Schugorsk deposit,Russia. Mineralogical Magazine, 65(1): 81-101. [54] Moses J H,Michell W D. 1963. Bauxite deposits of British Guiana and Surinam in relation to underlying unconsolidated sediments suggesting two-step origin. Economic Geology, 58(2): 250-262. [55] Price G D,Valdes P J,Sellwood B W. 1997. Prediction of modern bauxite occurrence: Implications for climate reconstruction. Palaeogeography,Palaeoclimatology,Palaeoecology, 131(1-2): 1-13. [56] Sharman G R,Malkowski M A. 2020. Needles in a haystack: Detrital zircon UPb ages and the maximum depositional age of modern global sediment. Earth-Science Reviews, 203: 103109. [57] Valeton I. 1972. Bauxites. Elsevier,1-105. [58] Valeton I. 1974. Resilicification at the top of the foreland bauxite in Surinam and Guyana. Mineralium Deposita, 9(2): 169-173. [59] Wang Q F,Liu X F,Yan C,Cai S H,Li Z,Wang Y,Zhao J,Li G. 2012. Mineralogical and geochemical studies of boron-rich bauxite ore deposits in the Songqi region,SW Henan,China. Ore Geology Reviews, 48: 258-270. [60] Wang Q F,Deng J,Liu X,Zhao R,Cai S. 2016. Provenance of Late Carboniferous bauxite deposits in the North China Craton: New constraints on marginal arc construction and accretion processes. Gondwana Research, 38: 86-98. [61] Wang R X,Wang Q F,Huang Y,Yang S H,Liu X F,Zhou Q. 2018. Combined tectonic and paleogeographic controls on the genesis of bauxite in the Early Carboniferous to Permian Central Yangtze island. Ore Geology Reviews, 101: 468-480. [62] Wang X M,Jiao Y Q,Du Y S,Ling W L,Wu L Q,Cui T,Zhou Q,Jin Z G,Lei Z Y,Weng S F. 2013. Rare earth element(REE)mobility and Ce anomaly in bauxite deposit of Wuchuan-Zheng'an-Daozhen Area,Northern Guizhou,China. Journal of Geochemical Exploration, 133: 103-117. [63] Wang Y,Zhou L,Zhao L,Ji M,Gao H. 2010. Palaeozoic uplands and unconformity in the North China Block: Constraints from zircon LA-ICP-MS dating and geochemical analysis of Bauxite. Terra Nova, 22(4): 264-273. [64] Weng S F,Yu W C,Algeo T J,Du Y S,Li P G,Lei Z Y,Zhao S. 2019. Giant bauxite deposits of South China: Multistage formation linked to Late Paleozoic Ice Age(LPIA)eustatic fluctuations. Ore Geology Reviews, 104: 1-13. [65] Yang S J,Wang Q F,Zhang Q Z,Chen J,Huang Y. 2018. Terrestrial deposition processes of Quaternary gibbsite nodules in the Yongjiang Basin,southeastern margin of Tibet,and implication for the genesis of ancient karst bauxite. Sedimentary Geology, 373: 292-306. [66] Xiong G L,Yu W C,Du Y S,Weng S F,Pang D W,Deng X S,Zhou J T. 2020. Provenance of lower Carboniferous bauxite deposits in northern Guizhou,China: Constraints from geochemistry and detrital-zircon U-Pb ages. Journal of Earth Sciences,in press. [67] Yu W C,Wang R H,Zhang Q L,Du Y S,Chen Y,Liang Y P. 2014. Mineralogical and geochemical evolution of the Fusui bauxite deposit in Guangxi,South China: From the original Permian orebody to a Quarternary Salento-type deposit. Journal of Geochemical Exploration, 146: 75-88. [68] Yu W C,Algeo T J,Du Y S,Zhang Q L,Liang Y P. 2016. Mixed volcanogenic-lithogenic sources for Permian bauxite deposits in southwestern Youjiang Basin,South China,and their metallogenic significance. Sedimentary Geology, 341: 276-288. [69] Yu W C,Algeo T J,Yan J X,Yang J X,Du Y S,Huang X, Weng S F. 2019. Climatic and hydrologic controls on upper Paleozoic bauxite deposits in South China. Earth-Science Reviews, 189: 159-176. [70] Zhao L,Liu X F. 2019. Metallogenic and tectonic implications of detrital zircon U-Pb,Hf isotopes,and detrital rutile geochemistry of late carboniferous karstic bauxite on the southern margin of the North China Craton. Lithos, 350-351: 105222.