Research progress of palaeogeography and palaeoenvironmental evolution of coal-bearing series in China
Shao Long-Yi1, Xu Xiao-Tao1, Wang Shuai1, Wang Dong-Dong2, Gao Di3, Wang Xue-Tian1, Lu Jing1
1 College of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China; 2 College of Earth Science and Engineering,Shandong University of Science and Technology, Shandong Qingdao 266590,China; 3 College of Resources and Environment,Henan Polytechnic University,Henan Jiaozuo 454003,China
Abstract:The sedimentology of coal-bearing series have experienced the development from the initial “cyclothem” theory to the sedimentary model,and to the present sequence stratigraphic theory. The Chinese scholars have made a great progress in coal sedimentology. (1)The accumulation model of thick coal seams in a sequence stratigraphic framework has been put forward which mainly considers the balance between the peat accumulation rate and the growth rate of accommodation space. The sequence stratigraphy provides the isochronous stratigraphic units,which is widely used to reconstruct high-resolution isochronous lithofacies palaeogeography of the six major coal-accumulating areas in China. It provides the guidance for predicting the coal accumulation center and coal rich zone during different coal-accumulating periods. With the further study of the sequence stratigraphy theory,new progresses have been made in the development characteristics,research methods and division of coal facies and sedimentary organic facies. (2)In recent years,the associated mineral resources in coal-bearing series have become one of the hot issues in the coal geology. Coalbed methane,shale gas,natural gas hydrate,uranium,“three rare mineral diposits including rare earth,rare metal and rare-scattered elements mineral resources”,graphite and other mineral resources that have very important economic values in coal basins have attracted more attention. The potential value of some of these mineral resources even exceeds that of the coal itself. Palaeogeography,as a prerequisite,is closely related to the associated mineral resources in coal-bearing series,which is of great help to the research and exploration of these mineral resources. (3)Coal,as a product of peatland and an important sedimentary information carrier,has been used in the study of “deep time”paleoclimates. The Milankovitch theory is used as the time measurement tools to estimate the carbon accumulation rate,the net primary productivity and the variation trend of the atmospheric CO2 based on analyzing the carbon accumulation rate of coal. With the deep understanding on the origin of inertinite in coals,more and more attention has been paid to the paleo-wildfire information contained in the coal. Based on the content of the inertinite in coal,the estimation of wildfire events in peatland and paleo-atmospheric oxygen level has become a new research direction of palaeo-environment. Future studies of coal accumulation models and palaeogeography in China will focus on the sequence stratigraphic model of coal-bearing basins in different tectonic settings,coal accumulation palaeogeography and laws during different coal accumulation periods,the palaeogeographic reconstruction of beneficial associated mineral resources in coal-bearing series,the “deep time”palaeoclimate information in coal-bearing series and quantitative study on palaeogeography of coal-bearing series by using the technology of big data.
Shao Long-Yi,Xu Xiao-Tao,Wang Shuai et al. Research progress of palaeogeography and palaeoenvironmental evolution of coal-bearing series in China[J]. JOPC, 2021, 23(1): 19-20.
[1] 曹代勇,王崇敬,李靖,秦荣芳,杨光,周济. 2014. 煤系页岩气的基本特点与聚集规律. 煤田地质与勘探, 42(4): 25-30. [Cao D Y,Wang C J,Li J,Qin R F,Yang G,Zhou J.2014. Basic characteristics and accumulation rules of shale gas in coal measures. Coal Geology & Exploration, 42(4): 25-30] [2] 陈世悦,刘焕杰. 1999. 华北石炭—二叠纪层序地层格架及其特征. 沉积学报, 17(1): 63-70. [Chen S Y,Liu H J.1999. Sequence stratigraphic framework and its characteristics of the Carboniferous-Permian in North China. Acta Sedimentologica Sinica, 17(1): 63-70] [3] 冯增昭,张家强,金振奎,鲍志东,王国力. 2000. 中国西北地区奥陶纪岩相古地理. 古地理学报,2(3):1-14. [Feng Z Z,Zhang J Q,Jin Z K,Bao Z D,Wang G L.2000. Lithofacies palaeogeography of the Ordovician in Northwest China. Journal of Palaeogeography(Chinese Edition), 2(3): 1-14] [4] 冯增昭. 2004. 单因素分析多因素综合作图法: 定量岩相古地理重建. 古地理学报, 6(1): 3-19. [Feng Z Z.2004. Single factor analysis and multifactor comprehensive mapping method: reconstruction of quantitative lithofacies palaeogeography. Journal of Palaeogeography(Chinese Edition), 6(1): 3-19] [5] 郭英海,刘焕杰,权彪,汪泽成,钱凯. 1998. 鄂尔多斯地区晚古生代沉积体系及古地理演化. 沉积学报, 16(3): 44-51. [Guo Y H,Liu H J,Quan B,Wang Z C,Qian K.1998. Lithofacies palaeogeography of the Ordovician in northwest China. Acta Sedimentologica Sinica, 16(3): 44-51] [6] 韩德馨,杨起. 1980. 中国煤田地质学: 下册. 北京: 煤炭工业出版社,1-415. [Han D X,Yang Q.1980. Coalfield Geology in China: Volume Ⅱ. Beijing: China Coal Industry Publishing House,1-415] [7] 韩德馨,王延斌,权彪,程顶胜. 1993. 中国泥盆纪聚煤作用的演化. 煤田地质与勘探, 21(5): 1-6. [Han D X,Wang Y B,Quan B,Cheng D S.1993. The evolution of Devonian coal accumulation in China. Coal Geology & Exploration, 21(5): 1-6] [8] 郝芳,陈建渝. 1995. 层序和体系域的有机相构成及其研究意义. 地质科技情报, 14(3): 79-83. [Hao F,Chen J Y.1995. Organic facies compositions of sequences and systems tracts and its studying significances. Geological Science and Technology Information, 14(3): 79-83] [9] 郝黎明,邵龙义. 2000. 基于层序地层格架的有机相研究进展. 地质科技情报, 19(4): 60-64. [Hao L M,Shao L Y.2000. Study advance of organic facies and its distribution in sequence frame. Geological Science and Technology Information, 19(4): 60-64] [10] 胡斌,张璐,刘顺喜,宋慧波,史来亮,胡磊. 2012. 河南省中二叠世山西期古地理特征. 古地理学报, 14(4): 411-422. [Hu B,Zhang L,Liu S X,Song H B,Shi L L,Hu L.2012. Palaeogeographic characteristics of the Middle Permian Shanxi Age in Henan Province. Journal of Palaeogeography(Chinese Edition), 14(4): 411-422] [11] 李宝芳,温显端,李贵东. 1999. 华北石炭、二叠系高分辨层序地层分析. 地学前缘,6(S1): 81-94. [Li B F,Wen X D,Li G D.1999. High resolution sequence stratigraphy analysis on the Permo-Carboniferous in North China Platform. Earth Science Frontiers,6(S1): 81-94] [12] 李思田. 1988. 断陷盆地分析与煤聚集规律: 中国东北部晚中生代断陷盆地沉积、构造演化和能源预测研究的方法与成果. 北京: 地质出版社,1-367. [Li S T.1988. Fault Basin Analysis and Coal Accumulation: an Approach to Sedimentation,Tectonic Evolution,and Energy Resource Prediction in the Late Mesozoic Fault Basins of Northeastern China. Beijing: Geological Publishing House,1-367] [13] 李雅楠,邵龙义,闫志明,侯海海,唐跃,Large D J.2018. 中侏罗世泥炭地净初级生产力及控制因素: 以准噶尔盆地南缘煤田为例. 中国科学(D辑: 地球科学), 48(10): 1324-1334. [Li Y N,Shao L Y,Yan Z M,Hou H H,Tang Y,Large D J.2018. Net primary productivity and its control of the Middle Jurassic peatlands: an example from the southern Junggar coalfield. Science China: Earth Sciences, 48(10): 1324-1334] [14] 李永洲,文桂华,李星涛,常益行,喻岳钰,赵龙梅,时小松,李翔,赵跃. 2018. 沉积微相控制下的煤系地层致密砂岩气储层预测方法: 以鄂尔多斯盆地大宁—吉县区块下二叠统山西组为例. 天然气工业,38(S1): 11-17. [Li Y Z,Wen G H,Li X T,Chang Y X,Yu Y Y,Zhao L M,Shi X S,Li X,Zhao Y.2018. Prediction method of tight sandstone gas reservoir in coal measures under the control of sedimentary microfacies: a case study of Lower Permian Shanxi Formation in Daning-Jixian block of Ordos Basin. Natural Gas Industry,38(S1): 11-17] [15] 李增学,魏久传,韩美莲. 2001. 海侵事件成煤作用: 一种新的聚煤模式. 地球科学进展,16(1): 120-124. [Li Z X,Wei J C,Han M L.2001. Coal formation in transgressive events: a new pattern of coal accumulation. Advance in Earth Sciences,16(1): 120-124] [16] 刘贝,黄文辉,敖卫华,闫德宇,许启鲁,滕娟. 2015. 沁水盆地晚古生代煤中稀土元素地球化学特征. 煤炭学报, 40(12): 2916-2926. [Liu B,Huang W H,Ao W H,Yan D Y,Xu Q L,Teng J.2015. Geochemistry characteristics of rare earth elements in the late Paleozoic coal from Qinshui Basin. Journal of China Coal Society, 40(12): 2916-2926] [17] 刘池洋,毛光周,邱欣卫,吴柏林,赵红格,王建强. 2013. 有机—无机能源矿产相互作用及其共存成藏(矿). 自然杂志, 35(1): 47-55. [Liu C Y,Mao G Z,Qiu X W,Wu B L,Zhao H G,Wang J Q.2013. Organic-inorganic energy minerals interactions and the accumulation and mineralization in the same sedimentary basins. Chinese Journal of Nature, 35(1): 47-55] [18] 刘东娜,曾凡桂,赵峰华,王红冬,解锡超,邹雨. 2018. 山西省煤系伴生三稀矿产资源研究现状及找矿前景. 煤田地质与勘探, 46(4): 1-7. [Liu D N,Zeng F G,Zhao F H,Wang H D,Xie X C,Zou Y.2018. Status and prospect of research for three type coal-associated rare earth resources in coal measures in Shanxi Province. Coal Geology & Exploration, 46(4): 1-7] [19] 刘焕杰. 1982. 潮坪成煤环境初论: 三汇坝地区晚二叠世龙潭组含煤建造沉积环境模式. 中国矿业学院学报,(2): 61-71. [Liu H J.1982. A preliminary study of coal-forming environment of tidal flats-models of sedimentary environment of Upper Permian coal-bearing Longtan Formation in Sanhuiba. Journal of China Institute of Mining Technology,(2): 61-71] [20] 刘焕杰,贾玉如,龙耀珍,王宏伟. 1987. 华北石炭纪含煤建造的陆表海堡岛体系特点及其事件沉积. 沉积学报, 5(3): 73-80. [Liu H J,Jia Y R,Long Y Z,Wang H W.1987. The features of the barrier island systems of the epeiric sea and their event deposits of coal-bearing formations in Carboniferous of North China. Acta Sedimentologica Sinica, 5(3): 73-80] [21] 刘焕杰,张瑜瑾,王宏伟,贾玉茹,龙耀珍. 1991. 准格尔煤田含煤建造岩相古地理学研究. 北京: 地质出版社,1-128. [Liu H J,Zhang Y J,Wang H W,Jia Y R,Long Y Z.1991. Study on Lithofacies Paleogeography of Coal-Bearing Fomations of Junggar Coal Field. Beijing: Geological Publishing House,1-128] [22] 刘钦甫,杨晓杰,张鹏飞,卞建玲. 2002. 中国煤系高岭岩(土)资源成矿机理与开发利用. 矿物学报, 22(4): 359-364. [Liu Q F,Yang X J,Zhang P F,Bian J L.2002. Mineralization mechanism of kaolinitic rocks in China's coal measures,and their development and utilization. Acta Mineralogica Sinica, 22(4): 359-364] [23] 刘天绩,邵龙义,曹代勇,鞠崎,郭晋宁,鲁静. 2013. 柴达木盆地北缘侏罗系煤炭资源形成条件及资源评价. 北京: 地质出版社,1-276. [Liu T J,Shao L Y,Cao D Y,Ju Q,Guo J N,Lu J.2013. Forming-conditions and Resource Assessment of Jurrasic Coal in Northen Qaidam Basin. Beijing: Geological Publishing House,1-276] [24] 刘招君,孙平昌,柳蓉,孟庆涛,胡菲. 2016. 中国陆相盆地油页岩成因类型及矿床特征. 古地理学报, 18(4): 525-534. [Liu Z J,Sun P C,Liu R,Meng Q T,Hu F.2016. Genetic types and deposit features of oil shale in continental basin in China. Journal of Palaeogeograhpy(Chinese Edition), 18(4): 525-534] [25] 鲁静,邵龙义,杨敏芳,李永红,张正飞,王帅,云启成. 2014. 陆相盆地沼泽体系煤相演化、层序地层与古环境. 煤炭学报, 39(12): 2473-2481. [Lu J,Shao L Y,Yang M F,Li Y H,Zhang Z F,Wang S,Yun Q C.2014. Coal facies evolution,sequence stratigraphy and palaeoenvironment of swamp in terrestrial basin. Journal of China Coal Society, 39(12): 2473-2481] [26] 秦勇,傅雪海,岳巍,林大扬,叶建平,焦思红. 2000. 沉积体系与煤层气储盖特征之关系探讨. 古地理学报, 2(1): 77-84. [Qin Y,Fu X H,Yue W,Lin D Y,Ye J P,Jiao S H.2000. Relationship between depositional systems and characteristics of coalbed gas reservoir and its cap rock. Journal of Palaeogeography(Chinese Edition), 2(1): 77-84] [27] 桑树勋,秦勇,范炳恒,姜波,傅雪海. 2002. 层序地层学在陆相盆地煤层气资源评价中的应用研究. 煤炭学报, 27(2): 113-118. [Sang S X,Qin Y,Fan B H,Jiang B,Fu X H.2002. Study on sequence stratigraphy applied to coalbed methane resource assessment. Journal of China Coal Society, 27(2): 113-118] [28] 邵凯,邵龙义,曲延林,张强,王举,高迪,王东东,李柱. 2013. 东北地区早白垩世含煤岩系层序地层研究. 煤炭学报,38(S2): 423-433. [Shao K,Shao L Y,Qu Y L,Zhang Q,Wang J,Gao D,Wang D D,Li Z.2013. Study of sequence stratigraphy of the Early Cretaceous coal measures in Northeastern China. Journal of China Coal Society,38(S2): 423-433] [29] 邵龙义,张鹏飞,刘钦甫,郑茂杰. 1992. 湘中下石炭统测水组沉积层序及幕式聚煤作用. 地质论评, 38(1): 52-59. [Shao L Y,Zhang P F,Liu Q F,Zheng M J.1992. The Lower Carboniferous Ceshui Formation in central Hunan,South China: depositional sequences and episodic coal accumulation. Geological Review, 38(1): 52-59] [30] 邵龙义,汪浩,Large D J.2011. 中国西南地区晚二叠世泥炭地净初级生产力及其控制因素. 古地理学报, 13(5): 473-480. [Shao L Y,Wang H,Large D J.2011. Net primary productivity and its control of the Late Permian peatlands in southwestern China. Journal of Palaeogeography(Chinese Edition), 13(5): 473-480] [31] 邵龙义,董大啸,李明培,王海生,王东东,鲁静,郑明泉,程爱国. 2014a. 华北石炭—二叠纪层序—古地理及聚煤规律. 煤炭学报, 39(8): 1725-1734. [Shao L Y,Dong D X,Li M P,Wang H S,Wang D D,Lu J,Zheng M Q,Cheng A G.2014a. Sequence-palaeogeography and coal accumulation of the Carboniferous-Permian in the North China Basin. Journal of China Coal Society, 39(8): 1725-1734] [32] 邵龙义,李英娇,靳凤仙,高彩霞,张超,梁万林,黎光明,陈忠恕,彭正奇,程爱国. 2014b. 华南地区晚三叠世含煤岩系层序-古地理. 古地理学报, 16(5): 613-630. [Shao L Y,Li Y J,Jin F X,Gao C X,Zhang C,Liang W L,Li G M,Chen Z N,Peng Z Q,Cheng A G.2014b. Sequence stratigraphy and lithofacies palaeogeography of the Late Triassic coal measures in South China. Journal of Palaeogeography(Chinese Edition), 16(5): 613-630] [33] 邵龙义,杨致宇,李永红,商晓旭,王伟超,吕景高,文怀军. 2015. 青海木里聚乎更天然气水合物潜在区中侏罗世岩相古地理特征. 现代地质, 29(5): 1061-1072. [Shao L Y,Yang Z Y,Li Y H,Shang X X,Wang W C,Lü J G,Wen H J.2015. Lithofacies palaeogeography of the Middle Jurassic in the Juhugeng gas hydrate potential area in Muli,Qinghai Province. Geoscience, 29(5): 1061-1072] [34] 邵龙义,张超,闫志明,董大啸,高彩霞,李英娇,徐晓燕,梁万林,易同生,徐锡惠,黎光明,陈忠恕,程爱国. 2016. 华南晚二叠世层序-古地理及聚煤规律. 古地理学报, 18(6): 905-919. [Shao L Y,Zhang C,Yan Z M,Dong D X,Gao C X,Li Y J,Xu X Y,Liang W L,Yi T S,Xu X H,Li G M,Chen Z N,Cheng A G.2016. Sequence-palaeogeography and coal accumulation of the Late Permian in South China. Journal of Palaeogeography(Chinese Edition), 18(6): 905-919] [35] 邵龙义,王学天,鲁静,王东东,侯海海. 2017. 再论中国含煤岩系沉积学研究进展及发展趋势. 沉积学报, 35(5): 1016-1031. [Shao L Y,Wang X T,Lu J,Wang D D,Hou H H.2017. A reappraisal on development and prospect of coal sedimentology in China. Acta Sedimentologica Sinica, 35(5): 1016-1031] [36] 孙升林,吴国强,曹代勇,宁树正,乔军伟,朱华雄,韩亮,朱世飞,苗琦,周兢,刘亢,李聪聪,陈寒勇,蔡旭梅. 2014. 煤系矿产资源及其发展趋势. 中国煤炭地质, 26(11): 1-11. [Sun S L,Wu G Q,Cao D Y,Ning S Z,Qiao J W,Zhu H X,Han L,Zhu S F,Miao Q,Zhou J,Liu K,Li C C,Chen H Y,Cai X M.2014. Mineral resources in coal measures and development trend. Coal Geology of China, 26(11): 1-11] [37] 孙枢,王成善. 2009. “深时”(Deep Time)研究与沉积学. 沉积学报, 27(5): 792-810. [Sun S,Wang C S.2009. Deep time and sedimentology. Acta Sedimentologica Sinica, 27(5): 792-810] [38] 唐跃刚,郭鑫,李正越,王绍清,秦云虎,魏强,朱士飞,高伟程. 2000. 云南小发路C5煤层无烟煤特性与煤相分析. 矿业科学学报, 5(1): 12-21. [Tang Y G,Guo X,Li Z Y,Wang S Q,Qin Y H,Wei Q,Zhu S F,Gao W C.2020. Characteristics and coal facies of high quality anthracite from coal seam No.5 of Xiaofalu coal mine,Yunnan Province. Journal of Mining Science and Technology, 5(1): 12-21] [39] 田景春,陈洪德,覃建雄,侯中健,侯明才,彭军. 2004. 层序—岩相古地理图及其编制. 地球科学与环境学报, 26(1): 6-12. [Tian J C,Chen H D,Tan J X,Hou Z J,Hou M C,Peng J.2004. Case study of sequence-based lithofacies-palaeogeography research and mapping of south China. Journal of Earth Sciences and Environment, 26(1): 6-12] [40] 王成善. 2019. 深时古气候与未来地球. 国土资源科普与文化,(1): 4-9. [Wang C S.2019. Deep-time palaeoclimate and future Earth. Scientific and Cultural Popularization of Land and Resources,(1): 4-9] [41] 王东东,李增学,王真奉,吕大炜,刘海燕,王平丽,郑雪,吕育林,蔺兴旺. 2013. 黑龙江依兰盆地古近系煤与油页岩共生特点及层序地层格架. 中国煤炭地质, 25(12): 1-7. [Wang D D,Li Z X,Wang Z F,Lü D W,Liu H Y,Wang P L,Zheng X,Lü Y L,Lin X W.2013. Paleogene coal and oil shale paragenetic features and sequence stratigraphic framework in Yilan Basin,Heilongjiang. Coal Geology of China, 25(12): 1-7] [42] 王东东,邵龙义,刘海燕,邵凯,于得明,刘炳强. 2016a. 超厚煤层成因机制研究进展. 煤炭学报, 41(6): 1487-1497. [Wang D D,Shao L Y,Liu H Y,Shao K,Yu D M,Liu B Q.2016a. Research progress in formation mechanisms of super-thick coal seam. Journal of China Coal Society, 41(6): 1487-1497] [43] 王东东,李增学,吕大炜,刘海燕,王平丽,冯婷婷. 2016b. 陆相断陷盆地煤与油页岩共生组合及其层序地层特征. 地球科学, 41(3): 508-522. [Wang D D,Li Z X,Lü D W,Liu H Y,Wang P L,Feng T T.2016b. Coal and oil shale paragenetic assemblage and sequence stratigraphic features in continental faulted basin. Earth Science, 41(3): 508-522] [44] 王华,郑云涛,杨红. 2001. 法国典型聚煤盆地厚煤层独特的沉积条件分析. 煤田地质与勘探, 29(1): 1-4. [Wang H,Zheng Y T,Yang H.2001. Analysis on the sedimentary conditions of thick coalbeds in French faulted coal basins. Coal Geology & Exploration, 29(1): 1-4] [45] 王佟,王庆伟,傅雪海. 2014. 煤系非常规天然气的系统研究及其意义. 煤田地质与勘探, 42(1): 24-27. [Wang T,Wang Q W,Fu X H.2014. The significance and the systematic research of the unconventional gas in coal measures. Coal Geology & Exploration, 42(1): 24-27] [46] 王佟,邵龙义,夏玉成,傅雪海,孙玉壮,孙亚军,琚宜文,毕银丽,于景邨,谢志清,马国东,王庆伟,周兢,江涛. 2017. 中国煤炭地质研究取得的重大进展与今后的主要研究方向. 中国地质, 44(2): 242-262. [Wang T,Shao L Y,Xia Y C,Fu X H,Sun Y Z,Sun Y J,Ju Y W,Bi Y L,Yu J C,Xie Z Q,Ma G D,Wang Q W,Zhou J,Jiang T.2017. Major achievements and future research directions of the coal geology in China. Geology in China, 44(2): 242-262] [47] 王竹泉,潘随贤,顾寿昌,蔺广茂,杨锡禄,杜兴亚. 1964. 华北地台石炭纪岩相古地理. 煤炭学报, 1(1): 1-20. [Wang Z Q,Pan S X,Gu S C,Lin G M,Yang X L,Du X Y.1964. Lithofacies palaeogeography of Carboniferous in North China Platform. Journal of China Coal Society, 1(1): 1-20] [48] 吴冲龙,李绍虎,王根发,刘刚,孔春芳. 2006. 先锋盆地超厚优质煤层的异地成因模式. 沉积学报, 24(1): 1-9. [Wu C L,Li S H,Wang G F,Liu G,Kong C F.2006. New evidence and new model about allochthonous accumulation of extra-thick coalbeds in continental fault basin. Acta Sedimentologica Sinica, 24(1): 1-9] [49] 谢家荣. 2001(原著1949). 古地理为探矿工作之指南. 古地理学报, 3(4): 1-9. [Xie J R.2001. Palaeogeography as a guide to mineral exploration. Journal of Palaeogeography(Chinese Edition), 3(4): 1-9] [50] 徐克剑,邵龙义,马立军,野兆瑞,曲延林. 2015. 黑龙江兴凯湖古近系—新近系沉积环境及聚煤规律分析. 中国煤炭地质, 27(8): 1-7. [Xu K J,Shao L Y,Ma L J,Ye Z R,Qu Y L.2015. Paleogene-Neogene sedimentary environment and coal accumulation pattern analysis in lake Xingkai Basin,Heilongjiang. Coal Geology of China, 27(8): 1-7] [51] 徐小涛,郝洪波,王海亮,王东东. 2016. 山东五图煤矿李家崖组煤与油页岩共生沉积特征研究. 中国煤炭地质, 28(9): 1-9. [Xu X T,Hao H B,Wang H L,Wang D D.2016. Study on Lijiaya Formation coal and oil shale paragenesis sedimentary features in Wutu coalmine. Coal Geology of China, 28(9): 1-9] [52] 闫志明,邵龙义,王帅,Large D J,汪浩,孙钦平. 2016. 早白垩世泥炭地净初级生产力及其控制因素: 来自二连盆地吉尔嘎郎图凹陷6号煤的证据. 沉积学报, 34(6): 1068-1076. [Yan Z M,Shao L Y,Wang S,Large D J,Wang H,Sun Q P.2016. Net primary productivity and its control factors of early Cretaceous peatlands: evidence from No.6 coal in the Jiegalangtu sag of the Erlian Basin. Acta Sedimentologica Sinica, 34(6): 1068-1076] [53] 杨起,韩德馨. 1979. 中国煤田地质学: 上册. 北京: 煤炭工业出版社,1-261. [Yang Q,Han D X.1979. Coalfield Geology in China: Volume Ⅰ. Beijing: China Coal Industry Publishing House,1-261] [54] 张鹏飞,刘焕杰,卓越,贾玉如,陈昌荣,何楚玉,殷宗昌. 1983. 试论局限台地碳酸盐岩型含煤建造: 桂中马滩一带合山组的某些沉积特征. 沉积学报, 1(3): 16-28. [Zhang P F,Liu H J,Zhuo Y,Jia Y R,Chen C R,He C Y,Yin Z C.1983. The coal-bearing formation of carbonatite type in restricted platform: some sedimentary characteristics of Heshan Formation in the Matan region of central Guangxi. Acta Sedimentologica Sinica, 1(3): 16-28] [55] 张鹏飞,金奎励,吴涛,王昌桂. 1997. 吐哈盆地含煤沉积与煤成油. 北京: 煤炭工业出版社,1-269. [Zhang P F,Jin K L,Wu T,Wang C G.1997. Study on Sedimentology and Oil Source from Jurassic Coal-bearing Series in Tuha Basin,Northwestern China. Beijing: China Coal Industry Publishing House,1-269] [56] 张韬. 1995. 中国主要聚煤期沉积环境与聚煤规律. 北京: 地质出版社,1-273. [Zhang T.1995. Depositional Environment and Coal-accumulating Regularities of Main Coal-accumulating Stages of China. Beijing: Geological Publishing House,1-273] [57] 郑秀娟,杜远生,朱筱敏,刘招君,胡斌,吴胜和,邵龙义,旷红伟,罗静兰,钟大康,李华,何登发,朱如凯,鲍志东. 2020. 中国古地理学近十年主要进展. 矿物岩石地球化学通报, 40(1): 94-114. [Zheng X J,Du Y S,Zhu X M,Liu Z J,Hu B,Wu S H,Shao L Y,Kuang H W,Luo J L,Zhong D K,Li H,Ge D F,Zhu R K,Bao Z D.2020. The main progresses of Chinese palaeogeography in the past decade. Bulletin of Mineralogy,Petrology and Geochemistry, 40(1): 94-114] [58] 周倩羽. 2016. 西湖凹陷古近系煤沉积环境及生烃潜力研究. 中国矿业大学(北京)博士论文. [Zhou Q Y.2016. The depositional environments and hydrocarbon generation potential of the Paleogene coals in the Xihu depression. Doctoral dissertation of China University of Mining and Technology(Beijing)] [59] 周贤青,秦勇,陆鹿. 2019. 中国煤型铀地质—地球化学研究进展. 煤田地质与勘探, 47(4): 45-53. [Zhou X Q,Qin Y,Lu L.2019. Advances on geological-geochemical research of coal-type uranium in China. Coal Geology & Exploration, 47(4): 45-53] [60] 朱华雄,陈寒勇,章伟,宁树正,韩亮. 2016. 华北煤中金属矿产的种类和分布特征. 煤炭学报, 41(2): 303-309. [Zhu H X,Chen H Y,Zhang W,Ning S Z,Han L.2016. Metal mineral types and distribution characteristics in coal in Northern China. Journal of China Coal Society, 41(2): 303-309] [61] 朱如凯. 1997. 煤系高岭岩的地球化学判别标志. 地质论评, 43(2): 121-130. [Zhu R K.1997. Geochemical discriminant criteria of the genesis of kaolin rocks in coal measures. Geological Review, 43(2): 121-130] [62] 庄军. 1995. 鄂尔多斯盆地南部巨厚煤层形成条件. 煤田地质与勘探, 23(1): 9-13. [Zhuang J.1995. Formation conditions of extra-thick coal seam in southern Ordos Basin. Coal Geology & Exploration, 23(1): 9-13] [63] Bohacs K,Suter J.1997. Sequence stratigraphic distribution of coaly rocks: fundamental controls and paralic examples. AAPG Bulletin, 81: 1612-1639. [64] Brown S A E,Scott A C,Glasspool I J,Collinson M E.2012. Cretaceous wildfires and their impact on the Earth system. Cretaceous Research, 36: 162-190. [65] Calder J H,Gibling M R,Mukhopadhyay P K.1991. Peat formation in a Westphalian B piedmont setting,Cumberland Basin,Nova Scotia: implication for the maceral-based,interpretation of rheotrophic and raised paleomires. Bulletin of Society of Geology, 162: 283-298. [66] Diessel C F K.1982. An appraisal of coal facies based on maceral characteristics. Australian Coal Geology, 4: 474-483. [67] Diessel C F K.1986. On the correlation between coal facies and depositional environment: advances in the study of the Sydney Basin. Proceedings of 20th Symposium of University of Newcastle,19-22. [68] Diessel C F K.1992. Coal-bearing Depositional Systems. Berlin: Springer-Verlag Berlin,1-721. [69] Diessel C F K.2010. The stratigraphic distribution of inertinite. International Journal of Coal Geology, 81(4): 251-268. [70] Djarar L,Wang H,Guriaud M,Clermonte J,Courel L,Dumain M,Laversanne J.1997. The Cevennes Stephanian Basin(massif central): an example of relationship between sedimentation and late-orogenic extensive tectonics of the Variscan belt. Geodynamica Acta(Paris), 9(5): 193-222. [71] Flint S S,Aitken J F,Hampson G.1995. Application of sequence stratigraphy to coal-bearing coastal plain successions: implications for the UK coal measures. Geological Society London Special Publications, 82(1): 1-16. [72] Glasspool I J,Scott A C.2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience, 3(9): 627-630. [73] Glasspool I J,Scott A C,Waltham D,Pronina N,Shao L Y.2015. The impact of fire on the Late Paleozoic Earth system. Frontiers in Plant Science, 6: 756. [74] Greb S F, DiMichele W A, Gastaldo R A. 2006. Evolution and Importance of Wetlands in Earth History. In: Greb S F,DiMichele W A(eds). Wetlands Through Time. Boulder: Geological Society of America Special Paper 399,1-40. [75] Guo B,Shao L Y,Hilton J,Wang S,Zhang L.2018. Sequence stratigraphic interpretation of peatland evolution in thick coal seams: examples from Yimin Formation(Early Cretaceous),Hailaer Basin,China. International Journal of Coal Geology, 196: 211-231. [76] Horne J C,Ferm J C,Caruccio F T,Baganz B P.1978. Depositional models in coal exploration and mine planning in Appalachian region. AAPG Bulletin, 62(12): 2379-2411. [77] Jerrett R M,Davies R C,Hodgson D M,Flint S S,Chiverrell R C.2011a. The significance of hiatal surfaces in coal seams. Journal of the Geological Society, 168(3): 629-632. [78] Jerrett R M,Flint S S,Davies R C,Hodgson D M.2011b. Sequence stratigraphic interpretation of a Pennsylvanian(Upper Carboniferous)coal from the central Appalachian Basin,USA. Sedimentology, 58: 1180-1207. [79] Jones R.1987. Organic facies. In: Welte D(ed). Advance in Petroleum Geochemistry. London: Academic Press,1-89. [80] Large D J,Jones T F,Somerfield C,Gorringe M C,Spiro B,Macquaker J H S,Atkin B P.2003. High-resolution terrestrial record of orbital climate forcing in coal. Geology, 31: 303-306. [81] Large D J,Jones T F,Briggs J.2004. Orbital tuning and correlation of 1.7 m.y. of continuous carbon storage in an Early Miocene peatland. Geology, 32: 873-876. [82] Li Y N,Shao L Y,Hou H H,Tang Y,Yuan Y,Zhang J Q,Shang X X,Lu J.2018b. Sequence stratigraphy,palaeogeography,and coal accumulation of the fluvio-lacustrine Middle Jurassic Xishanyao Formation in central segment of southern Junggar Basin,NW China. International Journal of Coal Geology, 192: 14-38. [83] Li Y N,Shao L Y,Fielding C R,Wang D W,Mu G Y,Luo H H.2020. Sequence stratigraphic analysis of thick coal seams in paralic environments: a case study from the Early Permian Shanxi Formation in the Anhe coalfield,Henan Province,North China. International Journal of Coal Geology, 222: 103451. [84] Li Z X,Wang D D,Lü D W,Li Y,Liu H Y,Wang P L,Liu Y,Liu J Q,Li D D.2018a. The geologic settings of Chinese coal deposits. International Geology Review, 60(5): 1-31. [85] Lü D W,Wang D D,Li Z X,Liu H Y,Li Y.2017. Depositional environment,sequence stratigraphy and sedimentary mineralization mechanism in the coal bed and oil shale-bearing succession: a case from the Paleogene Huangxian Basin of China. Journal of Petroleum Science and Engineering, 148: 32-51. [86] Marynowski L,Simoneit B R T.2009. Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: Evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. Palaios, 24(12): 785-798. [87] McCabe P J. 1984. Depositional models of coal and coal-bearing strata. In: Rahamani R A,Flores R M(eds). Sedimentology of coal and coal-bearing sequences. International Association of Sedimentologists,Special Publication, 7: 13-42. [88] Miall A D.1995. Whither stratigraphy?Sedimentary Geology, 100: 5-20. [89] Petersen H I,Andsbjerg J.1996. Organic facies development within Middle Jurassic coal seams,Danish Central Graben,and evidence for relative sea-level control on the peat accumulation in a coastal plain environmet. Sedimentary Geology, 106: 259-277. [90] Petersen H I,Ratanasthien B.2011. Coal facies in a Cenozoic paralic lignite bed,Krabi Basin,southern Thailand: Changing peat-forming conditions related to relative sea-level controlled watertable variations. International Journal of Coal Geology, 87: 2-12. [91] Rogers M A.1979. Application of organic facies concepts to hydrocarbon source rock evaluation. Proceedings of the 10th World Petroleum Congress, 2: 23-30. [92] Scott A C.2000. The Pre-Quaternary history of fire. Palaeogeography,Palaeoclimatology,Palaeoecology, 164(1): 281-329. [93] Scott A C,Glasspool I J.2007. Observations and experiments on the origin and formation of inertinite group macerals. International Journal of Coal Geology, 70(1-3): 53-66. [94] Shao L Y,Zhang P F,Gayer R A,Chen J L,Dai S F.2003. Coal in a carbonate sequence stratigraphic framework: The Upper Permian Heshan Formation in central Guangxi,southern China. Journal of Geological Society London, 160: 285-298. [95] Shao L Y,Wang H,Yu X H,Lu J,Zhang M Q.2012. Paleo-fires and atmospheric oxygen levels in the latest Permian. Acta Geologica Sinica(English Edition), 86(4): 949-962. [96] Shao L Y,Wang X T,Wang D D,Li M P,Wang S,Li Y J,Shao K,Zhang C,Gao C X,Dong D X,Cheng A G,Lu J,Ji C W,Gao D.2020. Sequence stratigraphy,paleogeography,and coal accumulation regularity of major coal-accumulating periods in China. International Journal of Coal Science & Technology, 7(2): 240-262. [97] Shearer J C,Staub J R,Moore T A.1994. The conundrum of coal bed thickness: a theory for stacked mire sequences. Journal of Geology, 102: 611-617. [98] Stach E,Mackowsky M T H,Teichmüller M,Taylor G H,Chandra D,Teichmüller R.1982. Stach's Textbook of Coal Petrology. Berlin:Stuttgart,1-535. [99] Teichmüller M.1982. Origin of the petrographic constitutions of coal. In: Stach E,Mackowsky M T,Teichmüller M,Taylor G H,Chandra D,Teichmüller R(eds). Stach's Textbook of Coal Petrology. Berlin,Stuttgart: Gebrüder Borntraeger,1-428. [100] Tyson R.1996. Sequence-stratigraphical interpretation of organic facies variation in marine siliciclastic system: General principal and application to the on shore Kimmeridge clay formation. In: Hesselbo S,Parkinson D(eds). Sequence Stratigraphy in British Geology. London: Geology Society Special Publication,75-96. [101] Udden J A.1912. Geology and mineral resources of the Peoria quadrangle,Illinois. U.S. Geological Survey Bulletin, 506: 103. [102] van Wagoner J C,Mitchum R M,Campion K M,Rahmanian V D.1990. Siliciclastic sequence stratigraphy in well logs,cores,and outcrops concepts for high-resolution correlation of time and facies. AAPG,Methods in Exploration Series, 7: 55. [103] Wadsworth J,Boyd R,Diessel C,Leckie D.2003. Stratigraphic style of coal and non-marine strata high accommodation setting: Falher member and Gates Formation(Lower Cretaceous),western Canada. Bulletin of Canadian Petroleum Geology, 51(3): 275-303. [104] Wanless H R,Weller J M.1932. Correlation and extent of Pennsylvanian Cyclothems. Geological Society of America Bulletin, 43: 1003-1016. [105] Wang D D,Yan Z M,Liu H Y,Lü D W,Hou Y J.2018. The net primary productivity of mid-Jurassic peatland and its control factors: evidenced by the Ordos Basin. International Journal of Mining Science and Technology, 28(2): 177-185. [106] Wang D D,Li Z X,Liu H Y,Lü D W,Dong G Q.2019c. The genetic environmental transformation mechanism of coal and oil shale deposits in eastern China's continental fault basins and the developmental characteristics of the area's symbiotic assemblages: taking Huangxian Basin as an example. Petroleum Science, 16(3): 469-491. [107] Wang D D,Mao Q,Dong G Q,Yang S P,Lü D W,Yin L S.2019d. The genetic mechanism of inertinite in the Middle Jurassic inertinite-rich coal seams of the southern Ordos Basin. Journal of Geological Research, 1(3): 1-15. [108] Wang S,Shao L Y,Wang D D,Hilton J,Guo B,Lu Jing.2019a. Controls on accumulation of anomalously thick coals: implications for sequence stratigraphic analysis. Sedimentology, 67(2): 991-1013. [109] Wang S,Shao L Y,Yan Z M,Shi M J,Zhang Y H.2019b. Characteristics of Early Cretaceous wildfires in peat-forming environment,NE China. Journal of Palaeogeography, 8(3): 238-250. [110] Xu X T,Shao L Y,Fu Y F,Wang D D,Cai H A,Qin J Y,Hou H H,Zhao J.2020. Sequence palaeogeography,lacustrine basin evolution,and coal accumulation in the Lower Cretaceous Fuxin continental faulted basin,China. Geological Journal, 55(2): 1195-1215. [111] Yan Z M,Shao L Y,Glasspool I J,Wang J,Wang X T,Wang H.2019. Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the End-Permian Mass Extinction Event. International Journal of Coal Geology, 207: 75-83. [112] Zhang Z H,Wang C S,Lü D W,Hay W W,Wang T,Cao S.2020. Precession-scale climate forcing of peatland wildfires during the early middle Jurassic greenhouse period. Global and Planetary Change, 184: 103051.