Eogenetic karst characteristics and its geological significance of mixed rocks in the Cambrian Terreneuvian Yuertus Formation in northwestern Tarim Basin
Jin Zhi-Min1,2, Tan Xiu-Cheng1,2, Tang Hao1,2, Shen An-Jiang3, Li Fei1,2, Qiao Zhan-Feng3, Luo Si-Cong1,2, Zheng Jian-Feng3, Wang Xiao-Fang3
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500, China; 2 Research Branch of Southwest Petroleum University,Key Laboratory of Carbonate Reservoirs,CNPC,Chengdu 610500,China; 3 Key Laboratory of Carbonate Reservoir,CNPC,Hangzhou 310023, China
Abstract:Based on macro- and micro-scale studies on the outcrop profiles in the Akesu-Keping-Wushi areas in Northwestern Tarim Basin,three distinct subaerial exposed surfaces within the Yuertus Formation of the Cambrian Terreneuvian Series have been identified and are characterized as follows: (1)ferruginous crust,(2)near-surface karst(plastic)breccia,(3)karst trench,fissure and cystic cave,(4)breccia and terrigenous clastics filled in Karst system,and (5)sediments onlapped onto the exposed surfaces. The comprehensive analysis shows that the Yurtus Formation in the study area is not continuously deposited,but presents several internal sedimentary hiatus and a regional unconformable contact with the overlying Xiaoerbulake Formation. Meanwhile,based on a comparative analysis of eogenetic karst characteristics between limestone and dolomite,it is suggested that the mixed rocks(mixed siliciclastic-carbonate sediments) with poor percolation conditions are characterized by the development of small karst caves and immature horizontal underflow zone. This can be used to distinguish the typical characteristics of facies-controlled karst caves,variegated karst,and near-in-situ brecciation of limestone from dolomite-type in early diagenetic stage. The findings show that the karstification and reservoir optimization in the early diagenetic stage under open conditions are more controlled by the rock fabric,so it is inferred that under relatively closed burial conditions,the early densified rocks are difficult to undergo karst modification to form facies-controlled vuggy reservoirs. This result not only has an important reference for the formation and maintenance of reservoirs under deep burial conditions,but also provides new materials for the supplement of eogenetic karst geological theory.
Jin Zhi-Min,Tan Xiu-Cheng,Tang Hao et al. Eogenetic karst characteristics and its geological significance of mixed rocks in the Cambrian Terreneuvian Yuertus Formation in northwestern Tarim Basin[J]. JOPC, 2021, 23(1): 191-206.
[1] 淡永,梁彬,曹建文,张庆玉,郝彦珍,李景瑞. 2015. 碳酸盐岩早成岩岩溶作用及油气地质意义. 中国岩溶, 34(2): 126-135. [Dan Y,Liang B,Cao J W,Zhang Q Y,Hao Y Z,Li J R.2015. Eogenetic karstification in carbonatite and its significance for hydrocarbon geology. Carsologica Sinica, 34(2): 126-135] [2] 董桂玉,陈洪德,何幼斌,秦志勇,罗进雄,辛长静. 2007. 陆源碎屑与碳酸盐混合沉积研究中的几点思考. 地球科学进展, 22(9): 931-939. [Dong G Y,Chen H D,He Y B,Qin Z Y,Luo J X,Xin C J.2007. Some problems on the study of the mixed siliciclastic-carbonate sediments. Advances in Earth Science, 22(9): 931-939] [3] 管树巍,张春宇,任荣,张水昌,吴林,王雷,马培领,韩长伟. 2019. 塔里木北部早寒武世同沉积构造:兼论寒武系盐下和深层勘探. 石油勘探与开发, 46(6): 1075-1086. [Guan S W,Zhang C Y,Ren R,Zhang S C,Wu L,Wang L,Ma P L,Han C W.2019. Early Cambrian syndepositional structure of the northern Tarim Basin and a discussion of Cambrian subsalt and deep exploration. Petroleum Exploration and Development, 46(6): 1075-1086] [4] 何金有,贾承造,邬光辉,徐备. 2010. 新疆阿克苏地区震旦系风化壳古岩溶特征及其发育模式. 岩石学报, 26(8): 2513-2518. [He J Y,Jia C Z,Wu G H,Xu B.2010. Characteristics and model of Sinian weathering paleo-karst in Aksu area Xinjiang. Acta Petrologica Sinica, 26(8): 2513-2518] [5] 金民东,曾伟,谭秀成,李凌,李宗银,罗冰,张静蕾,刘吉伟. 2014. 四川盆地磨溪—高石梯地区龙王庙组深埋优质滩控岩溶型储集层特征及控制因素. 石油勘探与开发, 41(6): 650-660. [Jin M D,Zeng W,Tan X C,Li L,Li Z Y,Luo B,Zhang J L,Liu J W.2014. Characteristics and controlling factors of beach-controlled karst reservoirs in Cambrian Longwangmiao Formation,Moxi-Gaoshiti area,Sichuan Basin,NW China. Petroleum Exploration and Development, 41(6): 650-660] [6] 金值民,谭秀成,郭睿,赵丽敏,钟原,陈延涛. 2018. 伊拉克哈法亚油田白垩系Mishrif组碳酸盐岩孔隙结构及控制因素. 沉积学报, 36(5): 981-994. [Jin Z M,Tan X C,Guo R,Zhao L M,Zhong Y,Chen Y T.2018. Pore structure characteristics and control factors of carbonate reservoirs: the Cretaceous Mishrif Formation,Halfaya oilfield,Iraq. Acta Sedimentologica Sinica, 36(5): 981-994] [7] 金值民,谭秀成,唐浩,沈安江,乔占峰,郑剑锋,李飞,张世轩,陈雷,周成刚. 2020. 浅水超覆沉积的富有机质细粒沉积物的岩石学特征: 以塔里木盆地寒武系玉尔吐斯组为例. 石油勘探与开发, 47(3): 1-14. [Jin Z M,Tan X C,Tang H,Shen A J,Qiao Z F,Zhen J F,Li F,Zhang S X,Chen L,Zhou C G.2020. Sedimentary environment and petrological features of organic-rich fine sediments in shallow water overlapping deposits: a case study of Cambrian Yuertus Formation in northwestern Tarim Basin,NW China. Petroleum Exploration and Development, 47(3): 1-14] [8] 李江海,周肖贝,李维波,王洪浩,刘仲兰,张华添,塔斯肯. 2015. 塔里木盆地及邻区寒武纪—三叠纪构造古地理格局的初步重建. 地质论评, 61(6): 1225-1234. [Li J H,Zhou X B,Li W B,Wang H H,Liu Z L,Zhang H T,Ta S K.2015. Preliminary reconstruction of tectonic paleogeography of Tarim Basin and its adjacent aeras from Cambrian to Triassic,NW China. Geological Review, 61(6): 1225-1234] [9] 马永生,蔡勋育,赵培荣. 2011. 深层、超深层碳酸盐岩油气储层形成机理研究综述. 地学前缘, 18(4): 181-198. [Ma Y S,Cai X Y,Zhao P R.2011. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir. Earth Science Frontiers, 18(4): 181-192] [10] 谭秀成,肖笛,陈景山,李凌,刘宏. 2015. 早成岩期喀斯特化研究新进展及意义. 古地理学报, 17(4): 441-456. [Tan X C,Xiao D,Chen J S,Li L,Liu H.2015. New advance and enlightenment of eogenetic karstification. Journal of Palaeogeography(Chinese Edition), 17(4): 441-456] [11] 王务严,肖兵,章森桂,未兆玲. 1985. 新疆阿克苏—乌什地区寒武系划分与对比. 新疆地质, 3(4): 59-74. [Wang W Y,Xiao B,Zhang S G,Wei Z L.1985. Dicision and correlation of Cambrian system in Aksu-Wushi district of Xinjiang. Xinjiang Geology, 3(4): 59-74] [12] 肖笛,谭秀成,郗爱华,刘宏,山述娇,夏吉文,程遥,连承波. 2015. 四川盆地南部中二叠统茅口组碳酸盐岩岩溶特征: 古大陆环境下层控型早成岩期岩溶实例. 古地理学报, 17(4): 457-476. [Xiao D,Tan X C,Xi A H,Liu H,Shan S J,Xia J W,Cheng Y,Lian C B.2015. Palaeokarst characteristics of carbonate rocks of the Middle Permian Maokou Formation in southern Sichuan Basin: example of strata-bound eogenetic karst in palaeo-continental settings. Journal of Palaeogeography(Chinese Edition), 17(4): 457-476] [13] 熊冉,周进高,倪新锋,朱永进,陈永权. 2015. 塔里木盆地下寒武统玉尔吐斯组烃源岩分布预测及油气勘探的意义. 天然气工业, 35(10): 49-56. [Xiong R,Zhou J G,Ni X F,Zhu Y J,Chen Y Q.2015. Distribution prediction of Lower Cambrian Yuertusi Formation source rocks and its significance to oil and gas exploration in the Tarim Basin. Natural Gas Industry, 35(10): 49-56] [14] 张春宇,管树巍,吴林,任荣. 2019. 塔西北地区早寒武世玉尔吐斯组热液作用及沉积模式. 地学前缘, 26(1): 202-211. [Zhang C Y,Guan S W,Wu L,Ren R.2019. Hydrothermal activity and depositional model of the Yurtus Formation in the Early Cambrian,NW Tarim,China. Earth Science Frontiers, 26(1): 202-211] [15] 张恒,蔡忠贤,漆立新,云露. 2016. 塔中地区西北部鹰山组成岩早期岩溶作用类型及其特征. 石油与天然气地质, 37(3): 291-303. [Zhang H,Cai Z X,Qi L X,Yun L.2016. Types and characteristics of eogenetic karst in the Yingshan Formation in northwestern Tazhong area,Tarim Basin. Oil & Gas Geology, 37(3): 291-303] [16] 张敏,张智礼,于深洋,李越. 2016. 新疆塔里木西北地区寒武纪初的碳酸盐岩微相和环境指标. 微体古生物学报, 33(2): 190-200. [Zhang M,Zhang Z L,Yu S Y,Li Y.2016. Carbonate microfacies and encironental parameters of the lower Cambrian in the Aksu-Wushi region,Northwest Tarim,Northwest China. Acta Micropalaeontologica Sinica, 33(2): 190-200] [17] 周志毅,赵治信,胡兆珣,陈丕基,张师本,雍天寿. 2001. 塔里木盆地各纪地层. 北京: 科学出版社,1-359. [Zhou Z Y,Zhao Z X,Hu Z X,Chen P J,Zhang S B,Yong T S.2001. Stratigraphy of Tarim Basin. Beijing: Science Press,1-359] [18] 朱光有,陈斐然,陈志勇,张颖,邢翔,陶小晚,马德波. 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征. 天然气地球科学, 27(1): 8-21. [Zhu G Y,Chen F R,Chen Z Y,Zhang Y,Xing X,Tao X W,Ma D B.2016. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin. Natural Gas Geoscience, 27(1): 8-21] [19] Aubrecht R,Lánczos T,Gregor M,Schlögl J,Šmída B,Liščák P,Brewer-Carías Ch,Vlček L.2011. Sandstone caves on Venezuelan tepuis: return to pseudokarst? Geomorphology, 132(3-4): 351-365. [20] Berner E K,Berner R A.2012. Global Environment: Water,Air,and Geochemical Cycles. U.S.A.: Princeton University Press,1-68. [21] Brantley S L,Kubicki J D,White A F.2008. Kinetics of Water-Rock Interaction. Springer,New York: 833. [22] Coffey B P,Read J F.2004. Mixed carbonate-siliciclastic sequence stratigraphy of a Paleogene transition zone continental shelf,southeastern USA. Sedimentary Geology, 166(1): 21-57. [23] Davis J R A,Cuffe C K,Kowalski K A,Shock E J.2003. Stratigraphic models for microtidal tidal deltas: examples from the Florida Gulf coast. Marine Geology, 200: 49-60. [24] Fish J,Stewart M T.1991. Hydrogeology of the Surficial Aquifer System,Dade County Florida. US Geological Survey Water-Resources Investigations Report, 90-4108: 1-50. [25] Florea L J,Vacher H L.2007. Eogenetic karst hydrology: insights from the 2004 hurricanes,peninsular Florida. Groundwater, 45(4): 439-446. [26] Gleeson T,Smith L,Moosdorf N,Hartmann J,Dürr H H,Manning A H,Beek L P H V, Jellinek A. M.2011. Mapping permeability over the surface of the Earth. Geophysical Research Letters, 38(2): 1-6. [27] Morse J W,Arvidson R S.2002. The dissolution kinetics of major sedimentary carbonate minerals. Earth-Science Reviews, 58(1-2): 51-84. [28] Mount J F.1984. Mixing of siliciclastic and carbonate sediments in shallow shelf environments. Geology, 12(7): 432-435. [29] Mount J F.1985. Mixed siliciclastic and carbonate sediments: a proposed first-order textural and compositional classification. Sedimentology, 32(3): 435-442. [30] Mylroie J E,Carew J L,Vacher H L.1995. Karst development in the Bahamas and Bermuda. Geological Society of America Special Papers, 300: 251-267. [31] Mylroie J E,Jenson J W,Taborosi D,Jocson J M U,Wagonern D T,Wexel C.2001. Karst features of Guam in terms of a general model of carbonate island karst. Journal of Cave and Karst Studies, 63(1): 9-22. [32] Safonova I Y,Santosh M.2014. Accretionary complexes in the Asia-Pacific region: tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Research, 25(1): 126-158. [33] Shand P, Edmunds W M, Lawrence A R, Smedley P L, Burke S.2007. The Natural(Baseline) Quality of Groundwater in England and Wales. RR/07/06 & NC/99/74/24. British Geological Survey & Environment Agency, Keyworth and Solihull. [34] Smart P L,Beddows P A,Coke J,Doerr S,Smith S,Whitake F F.2006. Cave development on the Caribbean coast of the yucatan Peninsula,Quintana Roo,Mexico. Special Papers-Geological Society of America, 404: 105-127. [35] Tan X C,Liu H,Li L,Luo B,Liu X G,Mou X H,Nie Y,Xi W Y.2011. Primary intergranular pores in oolitic shoal reservoir of lower Triassic Feixianguan Formation,Sichuan Basin,Southwest China: fundamental for reservoir formation and retention diagenesis. Journal of Earth Science, 22(1): 101-114. [36] Tcherepanov E N,Droxler A W,Lapointe P D,Gerald R B,Sam J B,Luc P,Larry C D,James O,Bradley N.2008. Neogene evolution of the mixed carbonate-siliciclastic system in the Gulf of Papua,Papua New Guinea. Journal of Geophysical Research: Earth Surface,113(F01S21): 1-15. [37] Toccalino P L,Norman J E,Hitt K J.2010. Quality of Source Water from Public-Supply Wells in the United States,1993-2007. U. S. Geological Survey, 5024: 1-126. [38] Tuo J,Philp R P.2003. Occurrence and distribution of high molecular weight hydrocarbons in selected non-marine source rocks from the Liaohe,Qaidam and Tarim Basins,China. Organic Geochemistry, 34(11): 1543-1558. [39] Vacher H L,Mylroie J E.2002. Eogenetic karst from the perspective of an equivalent porous medium. Carbonates and Evaporites, 17(2): 182-196. [40] Worthington S R H,Davies G J,Alexander Jr E C.2016. Enhancement of bedrock permeability by weathering. Earth-Science Reviews, 160: 188-202. [41] Xiao D,Tan X C,Xi A H,Liu H,Shan S J,Xia J W,Cheng Y,Lian C B.2016. An inland facies-controlled eogenetic karst of the carbonate reservoir in the Middle Permian Maokou Formation,southern Sichuan Basin,SW China. Marine and Petroleum Geology, 72: 218-233. [42] Xiong Y,Tan X C,Zuo Z F,Zou G L,Liu M J,Liu Y,Liu L,Xiao D,Zhang J.2019. Middle Ordovician multi-stage penecontemporaneous karstification in North China: implications for reservoir genesis and sea level fluctuations. Journal of Asian Earth Sciences, 183: 1-14. [43] Xu Z Q,He B Z,Zhang C L,Zhang J X,Wang Z M,Cai Z H.2013. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: new geochronological evidence from deep drilling samples. Precambrian Research, 235: 150-162. [44] Yao J X,Xiao S H,Yin L M,Li G X,Yuan X L.2005. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations(Tarim Northwest China): systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs from China. Palaeontology, 48: 687-708. [45] Zhong Y,Tan X C,Zhao L M,Guo R,Li F,Jin Z M,Chen Y T,Xiao D.2019. Identification of facies-controlled eogenetic karstification in the Upper Cretaceous of the Halfaya oilfield and its impact on reservoir capacity. Geological Journal, 54(1): 450-465. [46] Zonneveld J P,Gingras M,Beatty T W,Bottjer D,Chaplin J R,Greene S E,Martindale R C,Mata S A,McHugh L P,Pemberton G,Schoengut J.2012. Mixed siliciclastic/carbonate systems. Developments in Sedimentology, 64: 807-833.