Microfabric characteristics of microbial carbonates
Wu Ya-Sheng1,2,3, Jiang Hong-Xia4, Li Ying1,2,3, Yu Gong-Liang5
1 Key Laboratory of Cenozoic Geology and Environment,Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing 100029,China; 2 Innovation Academy for Earth Science,Chinese Academy of Sciences,Beijing 100029,China; 3 University of Chinese Academy of Sciences,Beijing 100049,China; 4 Institute of Paleontology,Hebei GEO University,Shijiazhuang 050031,China; 5 Institute of Hydrobiology,Chinese Academy of Sciences,Wuhan 430072,China
Abstract:Previously microbialites were identified and classified based only on mesofabrics,i.e.,the fabrics visible to naked eyes,but not on the basis of microfabrics,i.e., the fabrics visible under the microscope. This paper focuses on the basic characteristics of microfabrics of microbial carbonates and microbialites,and whether they can be used for their identification and classification. An experiment on microbe-induced calcification that we conducted shows that among a variety of microbes,only the filaments of the cyanobacterium Lyngbya form carbonate minerals on the surface of their sheaths,firstly as scattered carbonate particles,and finally as crusts almost enveloping the whole filaments. It is thus proposed that the microbial carbonates that are formed by induced precipitation have two basic constituents,namely,the mold holes,i.e.,the holes left by the microbes,and the carbonate crusts. Microscopic observations of the modern microbial carbonates from the Shark Bay of Australia,Highborne Cay of Bahamas,and Atoll of Kiritimati and the Cambrian dolomitized microbialites in Xinjiang,China revealed that mold holes and the crusts or cements between the pores are a basic characteristic. The shape,size and arrangement of the mold holes and proclots are the core contents of the study on the microfabrics,and these features can be used for the identification and classification of microbialites,as well as the basis for the analysis of their formation mechanism and environments.
[1] 邓世彪,关平,李保华,刘沛显,陈永权. 2018. 塔里木盆地下寒武统台缘带沉积结构特征及其形成过程. 沉积学报, 36(4): 706-721. [Deng S B,Guan P,Li B H,Liu P X,Chen Y Q.2018. Sedimentary texture and formation process of the lower Cambrian Platform marginal zone in the Tarim Basin,NW China. Acta Sedimentologica Sinica, 36(4): 706-721] [2] 宋金民,罗平,杨式升,杨迪,周刚,李朋威,陈文玲. 2012. 塔里木盆地苏盖特布拉克地区下寒武统肖尔布拉克组碳酸盐岩微生物建造特征. 古地理学报, 14(3): 341-354. [Song J M,Luo P,Yang S S,Yang D,Zhou G,Li P W,Chen W L.2012. Carbonate rock microbial construction of the lower Cambrian Xiaoerblak Formation in Sugaitblak area,Tarim Basin. Journal of Palaeogeography(Chinese Edition), 14(3): 341-354] [3] 王剑,庄汝礼,劳可通,龙国华. 1990. 湘西花垣地区下寒武统清虚洞组生物丘钙藻形态群与环境群带的划分及意义. 岩相古地理,(3): 9-19. [Wang J,Zhuang R L,Lao K T,Long G H.1990. Division and geological implications of calcareous algal morphological groups and environmental zones in the lower Cambrian Qingxudong Formation,Huayuan District,Western Hunan. Sedimentary Facies and Palaeogeography,(3): 9-19] [4] 王梦梦,杨丽,徐肖莹,张玮,王丽卿. 2017. 群动盖丝藻(Geitlerinema ionicum)中国蓝藻门一个新纪录种. 上海海洋大学学报, 26(2): 258-262. [Wang M M,Yang L, Xu X Y,Zhang W,Wang L Q.2017. Geitlerinema ionicum: a newly recorded genus and species of Cyanophyta in China. Journal of Shanghai Ocean University, 26(2): 258-262] [5] 吴亚生,姜红霞,虞功亮,刘丽静. 2018. 微生物岩的概念和重庆老龙洞剖面P-T界线地层微生物岩成因. 古地理学报, 20(5): 737-775. [Wu Y S,Jiang H X,Yu G L,Liu L J.2018. Conceptions of microbialites and origin of the Permian-Triassic boundary microbialites from Laolongdong,Chongqing,China. Journal of Palaeogeography(Chinese Edition), 20(5): 737-775] [6] 郑剑锋,陈永权,黄理力,严威,倪新锋,李保华,郭晓燕. 2019. 苏盖特布拉克剖面肖尔布拉克组储层建模研究及其勘探意义. 沉积学报, 37(3): 601-609. [Zheng J F,Chen Y Q,Huang L L,Yan W,Ni X F,Li B H,Guo X Y.2019. Reservoir modeling of the lower Cambrian Xiaoerblak Formation in the Sugaitblak Section and its significance for exploring regions in the Tarim Basin,NW China. Acta Sedimentologica Sinica, 37(3): 601-609] [7] Aitken J D.1967. Classification and environmental significance of cryptalgal limestones and dolomites,with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology, 37(4): 1163-1178. [8] Arp G,Helms G,Karlinska K,Schumann G,Reimer A,Reitner J,Trichet J.2012. Photosynthesis versus exopolymer degradation in the formation of microbialites on the atoll of Kiritimati,Republic of Kiribati,Central Pacific. Geomicrobiology Journal, 29(1): 29-65. [9] Awramik S M,Margulis L.1974. Definition of stromatolite. Stromatolite Newsletter, 2: 5. [10] Bai Y,Luo P,Wang S,Zhou C M,Zhai X F,Wang S,Yang Z Y.2017. Structure characteristics and major controlling factors of platform margin microbial reef reservoirs: a case study of Xiaoerbulak Formation,Lower Cambrian,Aksu area,Tarim Basin,NW China. Petroleum Exploration and Development Online, 44(3): 377-386. [11] Burne R V,Moore L S.1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios, 2(3): 241-254. [12] Chen J,Lee J H,Woo J.2014. Formative mechanisms,depositional processes,and geological implications of Furongian(late Cambrian)reefs in the North China Platform. Palaeogeography,Palaeoclimatology,Palaeoecology, 414: 246-259. [13] Chen M,Xiao C T,Cheng J,Hu X,Sun D Q.2018. Sedimentary characteristics of stromatolites in Cambrian Strata in Songzi Liujiachang area and its paleoenvironmental significance. Open Journal of Yangtze Gas and Oil, 3: 79-92. [14] Dupraz C,Visscher P T,Baumgartner L K,Reid R P.2004. Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake(Eleuthera Island,Bahamas). Sedimentology, 51: 1-21. [15] Dupraz C,Reid R P,Braissant O.2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews,96:141-162. [16] Ezaki Y,Liu J,Adachi N,Yan Z.2017. Microbialite development during the protracted inhibition of skeletal-dominated reefs in the Zhangxia Formation(Cambrian Series 3)in Shandong Province,North China. Palaios, 32(9): 559-571. [17] Franke R B,Bazylinski D A.2003. Biologically induced mineralization by bacteria. Reviews in Mineralogy and Geochemistry, 54(1): 95-114. [18] Grotzinger J P.2000. Facies and paleoenvironmental setting of Thrombolite-Stromatolite Reefs,Terminal Proterozoic Nama Group(ca. 550-543 Ma),central and southern Namibia. Communications of the Geological Survey of Namibia, 12: 251-264. [19] Grotzinger J P,Knoll A H.1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27: 313-358. [20] Jahnert R J,Collins L B.2011. Significance of subtidal microbial deposits in Shark Bay,Australia. Marine Geology, 286(1-4): 106-111. [21] Kah L,Grotzinger J P.1992. Early Proterozoic(1.9 Ga)thrombolites of the Rocknest Formation,Northwest Territories,Canada. Palaios, 7: 305-315. [22] Kalkowsky E.1908. Oolith und stromatolith inm norddeutschen Buntsandstein. Zeitschrift der Deutschen Geologischen Gesellschaft, 60: 68-125. [23] Kazmierczak J,Fenchel T,Kuhl M,Kempe S,Kremer B,Lacka B,Malkowski K.2015. CaCO3 precipitation in multilayered cyanobacterial mats: clues to explain the alternation of micrite and sparite layers in calcareous stromatolites. Life, 5(1): 744-769. [24] Kennard J M,James N P.1986. Thrombolites and stromatolites: two distinct types of microbial structures. Palaios, 1(5): 492-503. [25] Krumbein W E.1979. Calcification by bacteria and algae. Studies in Environmental Science, 3: 47-68. [26] Lowenstam H A,Weiner S.1989. On Biomineralization. New York: Oxford University Press,324. [27] McConnaughey T. 1989. Biomineralization Mechanisms. In: Origin,Evolution,and Modern Aspects of Biomineralization in Plants and Animals. New York:57-73. [28] Nutman A P,Bennett V C,Friend C R L,Wagoner Kranendonk M J,Chivas A R.2016. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature, 537: 535-538. [29] Patterson M.2014. Geomicrobial Investigation of Thrombolites in Green Lake,New York and Highborne Cay,Bahamas. Masteral dissertation of University of Connecticut:1-133. [30] Planavsky N,Ginsburg R N.2009. Taphonomy of modern marine Bahamian Microbialites. Palaios, 24(1-2): 5-17. [31] Reid R P,Macintyre I G,Browne K M,Steneck R S,Miller T.1995. Modern marine stromatolites in the Exuma Cays,Bahamas: uncommonly common. Facies, 33: 1-18. [32] Reid R P,Visscher P T,Decho A W,Stolz J F,Bebout B M,Dupraz C,Macintyre I G,Paerl H W,Pinckney J L,Prufert-Bebout L,Steppe T F,DesMarais D J.2000. The role of microbes in accretion,lamination and early lithification of modern marine stromatolites. Nature, 406(6799): 989-992. [33] Reid R P,James N P,Macintyre I G,Dupraz C P,Burne R V.2003. Shark bay stromatolites: microfabrics and reinterpretation of origins. Facies, 49: 299-324. [34] Riding R.1977. Calcified Plectonema(blue-green algae): a recent example of Girvanella from Aldabra Atoll. Palaeontology, 20: 33-46. [35] Riding R.2011a. Micorbialites,Stromatolites,and Thrombolites. In: Encyclopedia of Geobiology. Encyclopedia of Earth Science Series,Herdelberg: Springer,635-654. [36] Riding R.2011b. Calcified Cyanobacteria. In: Encyclopedia of Geobiology. Encyclopedia of Earth Science Series,Herdelberg: Springer,211-223. [37] Shapiro R S.2000. A comment on the systematic confusion of thrombolites. Palaios, 15: 166-169. [38] Suosaari E P,Reid R P,Araujo T A A,Playford P E,Holley D K,Mcnamara K J,Eberli G P.2016. Environmental pressures influencing living stromatolites in Hamelin pool,Shark Bay,Western Australia. Palaios, 31(10): 483-496. [39] Weiner S,Dove P M.2003. An overview of biomineralization and the problem of the vital effect. Review in Mineralogy and Geochemistry, 54(1): 1-29. [40] Wu Y S,Yu G L,Li R H,Song L R,Jiang H X,Riding R,Liu L J,Liu D Y,Zhao R.2014. Cyanobacterial fossils from 252 Ma old microbialites and their environmental significance. Scientific Reports, 4: 1-5. [41] Wu Y Y,Zhang T S,Lu J L,Liu Y.2017. The sedimentological characteristics of microbialites of the Cambrian in the vicinity of Beijing,China. Journal of Palaeogeography, 6(2): 117-131. [42] Yan Z,Liu J B,Ezaki Y,Adachi N,Du S X.2017. Stacking patterns and growth models of multiscopic structures within Cambrian Series 3 thrombolites at the Jiulongshan section,Shandong Province,northern China. Palaeogeography,Palaeoclimatology,Palaeoecology,474(SI): 45-57. [43] You X L,Sun S,Zhu J Q.2014. Significance of fossilized microbes from the Cambrian stromatolites in the Tarim Basin,Northwest China. Science China- Earth Sciences, 57(12): 2901-2913. [44] Zhang X L,Shu D G,Han J,Zhang Z F,Liu J N,Fu D J.2014. Triggers for the Cambrian explosion: Hypotheses and problems. Gondwana Research, 25(3): 896-909.