Studies of diversity of the Late Devonian-Early Triassic sphenophytes from China
Deng Zhen-Zhen1, Xiong Cong-Hui2, Huang Pu3,4, Xue Jin-Zhuang1
1 School of Earth and Space Sciences,the Key Laboratory of Orogenic Belts and Crustal Evolution, Peking University,Beijing 100871,China; 2 School of Earth Sciences & Key Laboratory of Mineral Resources in Western China (Gansu Province), Lanzhou University,Lanzhou 730000,China; 3 Nanjing Institute of Geology and Palaeontology, State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing 210008, China; 4 Center for Excellence in Life and Paleoenvironment,Chinese Academy of Sciences,Nanjing 210008,China
Abstract:Taxonomic and morphological diversities of fossil groups are two fundamental aspects in studying macroevolution of life,but previous studies have paid little attention to the latter. Late Paleozoic sphenophytes are easily to be recognized and have a rich fossil record,but their diversity pattern remains little known. Based on a compilation of the genera and species record of the Late Devonian-Early Triassic sphenophytes from South China and North China blocks,and a compilation of leaf morphological characters of some selected leafy species,the macroevolution pattern of early sphenophytes is studied with respect to their taxonomic and morphological diversity. The genus/species richness of the sphenophytes from China shows continuous but uneven increase during the Late Paleozoic,including the initial diversification during the Late Devonian,a slow rise from Visean to Sakmarian,and a rapid rise from Sakmarian to Wuchiapingian;and then,the richness sharply declines at the end of the Permian. The diversity per million years also shows significant decease at the Permian-Triassic transition. Sphenophytes from South China are less diverse at both the generic and specific levels than those from North China,and their diversity reaches the peak during the Capitanian-Wuchiapingian;genus diversity of sphenophytes from North China reaches the peak during the Kungurian-Roadian. Leaf morphological diversity of sphenophytes from China,decoupled from the taxonomic richness,is smaller in the Famennian and early Carboniferous,reaches the peak in the Pennsylvanian,and then slightly declines and remains stable in the Permian. Leaf morphologies of the Late Paleozoic sphenophytes show evolution in the following aspects: increase of leaf area;leaf lamina varying from divided to undivided;leaf tip varying from split to round or obtuse round;same-sized leaves to different-sized leaves in the same leaf whorl,and showing leaf mosaic. These changes might be related to variations of light intensity at the understory levels of the Paleozoic plant communities.
Deng Zhen-Zhen,Xiong Cong-Hui,Huang Pu et al. Studies of diversity of the Late Devonian-Early Triassic sphenophytes from China[J]. JOPC, 2021, 23(3): 565-580.
[1] 陈清,樊隽轩,Melchin M J.2012. 古生物多样性统计方法及其适用性分析. 古生物学报, 51(4): 445-462. [Chen Q,Fan J X,Melchin M J.2012. Methods for paleobiodiversity measurement and case studies of their applicability. Acta Palaeontologica Sinica, 51(4): 445-462] [2] 邓珍珍,黄璞,刘乐,王德明,薛进庄. 2016. 华南晚泥盆世假弱楔叶(Sphenophyllum pseudotenerrimum)的新认识. 古生物学报, 55(1): 45-55. [Deng Z Z,Huang P,Liu L,Wang D M,Xue J Z.2016. New observations of Sphenophyllum pseudotenerrimum Sze(Sphenopsida)from the Late Devonian of South China. Acta Palaeontologica Sinica, 55(1): 45-55] [3] 樊隽轩,黄冰,泮燕红,史宇坤,陈中阳,陈清,张琳娜,杨娇. 2016. 定量古生物学及重要名词释义. 古生物学报, 55(2): 220-243. [Fan J X,Huang B,Pan Y H,Shi Y K,Chen Z Y,Chen Q,Zhang L N,Yang J.2016. Quantitative paleobiology and explanations of its key parameters. Acta Palaeontologica Sinica, 55(2): 220-243] [4] 谷峰,冯少南,张淼. 2005. 二叠系. 见: 汪啸风,陈孝红. 中国各地质时代地层划分与对比. 北京: 地质出版社,277-342. [Gu F,Feng S N,Zhang M.2005. Permian. In: Wang X F,Chen X H(eds). Stratigraphic Subdivision and Correlation of Each Geologic Period in China. Beijing: Geological Publishing House,277-342] [5] 金玉玕,尚庆华,侯静鹏,李莉,王玉净,朱自力,费淑英. 2000. 二叠系. 见: 金玉玕. 中国地层典. 北京: 地质出版社,1-149. [Jin Y G,Shang Q H,Hou J P,Li L,Wang Y J,Zhu Z L,Fei S Y.2000. Permian. In: Jin Y G(ed). Stratigraphical Lexicon of China. Beijing: Geological Publishing House,1-149] [6] 曲仲湘,吴玉树,王焕校,姜汉侨,唐廷贵. 1984. 植物生态学. 北京: 高等教育出版社. [Qu Z X,Wu Y S,Wang H X,Jiang H Q,Tang T G.1984. Phytoecology. Beijing: Higher Education Press] [7] 全国地层委员会《中国地层表》编委会. 2014. 中国地层表. 地球学报, 35(3): 插图 1. [National Commission on Stratigraphy of China. 2014. The stratigraphic chart of China. Acta Geoscientica Sinica, 35(3): Illustration Ⅰ] [8] 王金星,鲜思远,侯鸿飞. 2005a. 泥盆系. 见: 汪啸风,陈孝红. 中国各地质时代地层划分与对比. 北京: 地质出版社,194-234. [Wang J X,Xian S Y,Hou H F.2005a. Devonian. In: Wang X F,Chen X H(eds). Stratigraphic Subdivision and Correlation of Each Geologic Period in China. Beijing: Geological Publishing House,194-234] [9] 王金星,鲜思远,侯鸿飞. 2005b. 石炭系. 见: 汪啸风,陈孝红. 中国各地质时代地层划分与对比. 北京: 地质出版社,235-276. [Wang J X,Xian S Y,Hou H F.2005b. Carboniferous. In: Wang X F,Chen X H(eds). Stratigraphic Subdivision and Correlation of Each Geologic Period in China. Beijing: Geological Publishing House,235-276] [10] 王自强. 1989. 华北二叠纪大型古植物事件. 古生物学报, 28(3): 314-343. [Wang Z Q.1989. Permian gigantic palaeobotanical events in North China. Acta Palaeontologica Sinica, 28(3): 314-343] [11] 吴秀元,赵修祜. 1982. 中国石炭纪陆相地层的划分和对比. 见: 中国科学院南京地质古生物研究所. 中国各纪地层对比表及说明书. 北京: 科学出版社,137-152. [Wu X Y,Zhao X H.1982. Subdivision and Correlation of the Carboniferous Continental Strata in China. In: Nanjing Institute of Geology and Palaeontology,Academia Sinica. Stratigraphic Correlation Chart in China with Explanatory Text. Beijing: Science Press,137-152] [12] 杨关秀,陈芬,黄其胜. 1994. 古植物学. 北京: 地质出版社,1-330. [Yang G X,Chen F,Huang Q S.1994. Paleobotany. Beijing: Geological Publishing House,1-330] [13] 杨关秀. 2006. 中国豫西二叠纪华夏植物群: 禹州植物群. 北京: 地质出版社,1-339. [Yang G X.2006. The Permian Cathaysian Flora in Western Henan Province,China: Yuzhou Flora. Beijing: Geological Publishing House,1-339] [14] 张善祯,姚兆奇,莫壮观,李星学. 1982. 中国二叠纪陆相地层的划分和对比. 见: 中国科学院南京地质古生物研究所. 中国各纪地层对比表及说明书. 北京: 科学出版社,171-190. [Zhang S Z,Yao Z Q,Mo Z G,Li X X.1982. Subdivision and Correlation of the Permian Continental Strata in China. In: Nanjing Institute of Geology and Palaeontology,Academia Sinica. Stratigraphic Correlation Chart in China with Explanatory Text. Beijing: Science Press,171-190] [15] 中国科学院南京地质古生物研究所、植物研究所《中国古生代植物》编写小组. 1974. 中国植物化石,第一册,中国古生代植物. 北京: 科学出版社,1-226. [《Palaeozoic plants from China》Writing Group of Nanjing Institute of Geology and Palaeontology,Institute of Botany,Academia Sinica. 1974. Palaeozoic Plants from China. Beijing: Science Press,1-226] [16] Bapst D W,Bullock P C,Melchin M J,Sheets H D,Mitchell C E.2012. Graptoloid diversity and disparity became decoupled during the Ordovician mass extinction. Proceedings of the National Academy of Sciences of the United States of America, 109: 3428-3433. [17] Benson R B J,Druckenmiller P S.2014. Faunal turnover of marine tetrapods during the Jurassic-Cretaceous transition. Biological Reviews, 89: 1-23. [18] Benton M J,Newell A J.2014. Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gondwana Research, 25: 1308-1337. [19] Feng Z,Wei H B,Guo Y,He X Y,Sui Q,Zhou Y,Liu H Y,Gou X D,Lü Y.2020. From rainforest to herbland: new insights into land plant responses to the end-Permian mass extinction. Earth-Science Reviews, 204: 103153. [20] Foote M.1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology, 19: 185-204. [21] Halliday T J D,Goswami A.2016. Eutherian morphological disparity across the end-Cretaceous mass extinction. Biological Journal of the Linnean Society, 118: 152-168. [22] Hammer Ø,Harper D A T,Ryan P D.2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1): 1-9. [23] Huang B C,Yan Y G,Piper J D A,Zhang D H,Yi Z Y,Yu S,Zhou T G.2018. Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times. Earth-Science Reviews, 186: 8-36. [24] Huang P,Liu L,Deng Z Z,Basinger J F,Xue J Z.2017. Xihuphyllum,a novel sphenopsid plant with large laminate leaves from the Upper Devonian of South China. Palaeogeography,Palaeoclimatology, Palaeoecology, 466: 7-20. [25] Li X X,Zhou Z Y,Cai C Y,Sun G,Ouyang S,Deng L H.1995. Fossil Floras of China through the Geological Ages. Guangzhou: Guangdong Science and Technology Press,1-695. [26] Schweitzer H J.1967. Die Oberdevon-Flora der Bäreninsel,1. Pseudobornia ursina Nathorst. Palaeontographica,120B: 116-137. [27] Taylor N T,Taylor E L,Krings M.2009. Paleobotany: The Biology and Evolution of Fossil Plants. New York: Academic Press,1-1230. [28] Wang D M,Hao S G,Tian L,Xue J Z.2006. Further study of the Late Devonian sphenopsid Hamatophyton verticillatum from China. International Journal of Plant Sciences, 167(4): 885-896. [29] Wang J.2010. Late Paleozoic macrofloral assemblages from Weibei Coalfield,with reference to vegetational change through the Late Paleozoic Ice-age in the North China Block. International Journal of Coal Geology, 83: 292-317. [30] Wang S J,Hilton J,Galtier J,Tian B L.2006. A large anatomically preserved calamitean stem from the Upper Permian of southwest China and its implications for calamitean development and functional anatomy. Plant Systematics and Evolution, 261: 229-244. [31] Wang Y,Wang J,Xu H H,He X Z.2010. The evolution of Paleozoic vascular land plant diversity of South China. Science China(Earth Sciences), 53(12): 1828-1835. [32] Xiong C H,Wang D M,Wang Q,Benton M J,Xue J Z,Meng M C,Zhao Q,Zhang J.2013. Diversity dynamics of Silurian-Early Carboniferous land plants in South China. Plos One, 8: e75706. [33] Xiong C H,Wang Q.2011. Permian-Triassic land-plant diversity in South China: was there a mass extinction at the Permian/Triassic boundary?Paleobiology, 37: 157-167. [34] Xue J Z,Huang P,Ruta M,Benton M J,Hao S G,Xiong C H,Wang D M,Cascales-Miñana B,Wang Q,Liu L.2015. Stepwise evolution of Paleozoic tracheophytes from South China: contrasting leaf disparity and taxic diversity. Earth-Science Reviews, 148: 77-93. [35] Xue J Z,Huang P,Wang D M,Xiong C H,Liu L,Basinger J F.2018. Silurian-Devonian terrestrial revolution in South China: taxonomy,diversity,and character evolution of vascular plants in a paleogeographically isolated,low-latitude region. Earth-Science Reviews, 180: 92-125.