Variations in precipitation pathways of Mesoproterozoic shallow seawater carbonates from North China Platform:response in seawater redox fluctuations?
Wu Meng-Ting1,2, Fang Hao3, Sun Long-Fei3, Shi Xiao-Ying1,3, Tang Dong-Jie1,2
1 State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences (Beijing),Beijing 100083, China; 2 Institute of Earth Sciences,China University of Geosciences (Beijing),Beijing 100083, China; 3 School of Earth Sciences and Resources,China University of Geosciences (Beijing),Beijing 100083, China
Abstract:It has been considered that the precipitation pathways of marine carbonates are closely related to seawater redox conditions. Due to the presence of carbonate precipitation inhibitor(e.g.,Fe2+ and Mn2+)-rich shallow seawaters during Archean and Paleoproterozoic,nucleation of calcite mud in water column was inhibited but formation of seafloor aragonite precipitates was allowed. In contrast,the oxidative removal of carbonate precipitation inhibitors in Neoproterozoic shallow seawaters promoted the direct precipitation of carbonate mud from water column. However,it needs more detailed case studies to test the connection between seawater redox and pathways of carbonate precipitation,since the secular variation in the pathways of carbonate precipitation may controlled by other factors. This study focuses on the fabric and geochemistry of carbonates deposited during the Mesoproterozoic,a transitional period of carbonate precipitation. Abundant carbonate mud occurs in the Member Ⅲ of the Gaoyuzhuang Formation(~1.56 Ga),the Member Ⅳ of the Wumishan Formation(~1.48 Ga),and the Member Ⅱ of the Tieling Formation(~1.44 Ga)in North China. These water column precipitated carbonate mud has relatively high Ⅰ/(Ca+Mg)ratios(generally>0.5 μmol/mol)and negative Ce anomalies(down to 0.8),indicating moderately oxygenated conditions. In contrast,abundant seafloor precipitated aragonite fans occur in the lower Member Ⅳ of the Gaoyuzhuang Formation(~1.55 Ga)and the Member Ⅱ of the Wumishan Formation(~1.50 Ga). These seafloor precipitates have near zero Ⅰ/(Ca+Mg)ratios,suggesting suboxic to anoxic conditions. Therefore,this study,firstly using detailed cases,proves that the texture of Precambrian carbonates was largely controlled by the redox conditions of seawaters and could be used as a redox proxy to conduct long-term and multi-section study of marine redox conditions directly and efficiently based on outcrop observations in the field.
Wu Meng-Ting,Fang Hao,Sun Long-Fei et al. Variations in precipitation pathways of Mesoproterozoic shallow seawater carbonates from North China Platform:response in seawater redox fluctuations?[J]. JOPC, 2021, 23(4): 703-722.
[1] 陈晋镳,张惠民,朱士兴,赵震,王振刚. 1980. 蓟县震旦亚界的研究. 见: 中国地质科学院天津地质矿产研究所编. 中国震旦亚界. 天津: 天津科学技术出版社,56-114. [Chen J Z,Zhang H M,Zhu S X,Zhao Z,Wang Z G.1980. The study of Sinian subboundary in Jixian County. In: Tianjin Institute of Geology and Mineral Resources,Chinese Academy of Geological Sciences(ed). Sinian Subboundary in China. Tianjin: Tianjin Science and Technology Press,56-114] [2] 段超,李延河,魏明辉,杨云,侯可军,陈小丹,邹斌. 2014. 河北宣化姜家寨铁矿床串岭沟组底部碎屑锆石LA-MC-ICP-MS U-Pb年龄及其地质意义. 岩石学报, 30(1): 35-48. [Duan C,Li Y H,Wei M H,Yang Y,Hou K J,Chen X D,Zou B.2014. U-Pb dating study of detrital zircons from the Chuanlinggou Formation in Jiangjiazhai iron deposit,North China Craton and its geological significances. Acta Petrologica Sinica, 30(1): 35-48] [3] 高林志,张传恒,尹崇玉,史晓颖,王自强,刘耀明,刘鹏举,唐烽,宋彪. 2008a.华北古陆中、新元古代年代地层框架SHRIMP锆石年龄新依据. 地球学报, 29(3): 366-376. [Gao L Z,Zhang C H,Yin C Y,Shi X Y,Wang Z Q,Liu Y M,Liu P J,Tang F,Song B.2008a.SHRIMP ZIRCON ages: basis for refining the chronostratigraphic classification of the Meso- and Neoproterozoic strata in North China old land. Acta Geoscientica Sinica, 29(3): 366-376] [4] 高林志,张传恒,史晓颖,宋彪,王自强,刘耀明. 2008b. 华北古陆下马岭组归属中元古界的锆石SHRIMP年龄新证据. 科学通报, 53(21): 2617-2623. [Gao L Z,Zhang C H,Shi X Y,Song B,Wang Z Q,Liu Y M.2008b. Mesoproterozoic age for Xiamaling Formation in North China Plate indicated by ZIRCON SHRIMP dating. Chinese Science Bulletin, 53(21): 2665-2671] [5] 高林志,张传恒,刘鹏举,丁孝忠,王自强,张彦杰. 2009. 华北—江南地区中、新元古代地层格架的再认识. 地球学报, 30(4): 433-446. [Gao L Z,Zhang C H,Liu P J,Ding X Z,Wang Z Q,Zhang Y J.2009. Recognition of Meso- and Neoproterozoic stratigraphic framework in North and South China. Acta Geoscientica Sinica, 30(4): 433-446] [6] 郭文琳,苏文博,张健,李惠民,周红英,李怀坤,Ettensohn F R,Huff W D.2019. 天津蓟县铁岭组新剖面钾质斑脱岩锆石U-Pb测年及Hf同位素研究. 岩石学报, 35(8): 2433-2454. [Guo W L,Su W B,Zhang J,Li H M,Zhou H Y,Li H K,Ettensohn F R,Huff W D.2019. Zircon U-Pb dating and Hf isotopes of K-bentonites from the Tieling Formation in a new exposure of the Jixian Section,Tianjin,North China Craton. Acta Petrologica Sinica, 35(8): 2433-2454] [7] 李怀坤,朱士兴,相振群,苏文博,陆松年,周红英,耿建珍,李生,杨峰杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140. [Li H K,Zhu S X,Xiang Z Q,Su W B,Lu S N,Zhou H Y,Geng J Z,Li S,Yang F J.2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing,Beijing: further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China. Acta Petrologica Sinica, 26(7): 2131-2140] [8] 李怀坤,苏文博,周红英,相振群,田辉,杨立公,Huff W D,Ettensohn F R.2014. 中—新元古界标准剖面蓟县系首获高精度年龄制约: 蓟县剖面雾迷山组和铁岭组斑脱岩锆石SHRIMP U-Pb同位素定年研究. 岩石学报, 30(10): 2999-3012. [Li H K,Su W B,Zhou H Y,Xiang Z Q,Tian H,Yang L G,Huff W D,Ettensohn F R.2014. The first precise age constraints on the Jixian System of the Meso- to Neoproterozoic Standard Section of China: SHRIMP zircon U-Pb dating of bentonites from the Wumishan and Tieling Formations in the Jixian Section,North China Craton. Acta Petrologica Sinica, 30(10): 2999-3012] [9] 旷红伟,彭楠,罗顺社,岑超,李家华,陈铭培. 2009. 燕山中东部凌源地区雾迷山组MT构造的发现、地质特征和研究意义. 自然科学进展, 19(12): 1308-1318. [Kuang H W,Peng N,Luo S S,Cen C,Li J H,Chen M P.2009. Discovery of MT structure and its geological features and studying significance in the eastern Yanshan in Lingyuan,Liaoning Province. Progress in Natural Science, 19(12): 1308-1318] [10] 旷红伟,柳永清,范正秀,彭楠,许欢,安伟,王能盛,耿元生,朱志才,夏晓旭,王玉冲. 2018. 扬子克拉通北缘中元古界神农架群沉积特征. 古地理学报, 20(4): 523-544. [Kuang H W,Liu Y Q,Fan Z X,Peng N,Xu H,An W,Wang N S,Geng Y S,Zhu Z C,Xia X X,Wang Y C.2018. Sedimentary characteristics of the Mesoproterozoic Shennongjia Group in northern margin of Yangtze Craton. Journal of Palaeogeography(Chinese Edition), 20(4): 523-544] [11] 陆松年,李惠民. 1991. 蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年. 地球学报, 12(1): 137-146. [Lu S N,Li H M.1991. A precise U-Pb single zircon age determination for the volcanics of Dahongyu Formation. Acta Geoscientica Sinica, 12(1): 137-146] [12] 罗顺社,张建坤,陈小军,旷红伟. 2010. 辽西凌源地区雾迷山组沉积特征与层序地层. 中国地质, 37(2): 394-403. [Luo S S,Zhang J K,Chen X J,Kuang H W.2010. Sedimentary characteristics and sequence stratigraphy of Wumishan Formation in Lingyuan area,western Liaoning Province. Chinese Geology, 37(2): 394-403] [13] 梅冥相. 2005. 天津蓟县剖面中元古界高于庄组臼齿状构造的层序地层位置及其成因的初步研究. 古地理学报, 7(4): 437-447. [Mei M X.2005. Preliminary study on sequence-stratigraphic position and origin for molar-tooth structure of the Gaoyuzhuang Formation of Mesoproterozoic at Jixian in Tianjin. Journal of Palaeogeography(Chinese Edition), 7(4): 437-447] [14] 梅冥相. 2007. 燕山地区中元古代高于庄组非叠层石碳酸盐岩序列的沉积特征及其重要意义. 现代地质, 21(1): 45-56. [Mei M X.2007. Sedimentary features and their implication for the depositional succession of non-stromatolitic carbonates, Mesoproterozoic Gaoyuzhuang Formation in Yanshan area of North China. Geoscience, 21(1): 45-56] [15] 乔秀夫,高林志,张传恒. 2007. 中朝板块中、新元古界年代地层柱与构造环境新思考. 地质通报, 26(5): 503-509. [Qiao X F,Gao L Z,Zhang C H.2007. New idea of the Meso- and Neoproterozoic chronostratigraphic chart and tectonic environment in Sino-Korean Plate. Geological Bulletin of China, 26(5): 503-509] [16] 孙龙飞,汤冬杰,周利敏,方浩,吴孟亭,郭华,周锡强,邹佳男,史晓颖. 2020. 华北中元古界雾迷山组浅海脉冲式增氧. 古地理学报, 22(6): 1181-1196. [Sun L F,Tang D J,Zhou L M,Fang H,Wu M T,Guo H,Zhou X Q,Zou J N,Shi X Y.2020. A pulsed oxygenation in shallow seawater recorded by Mesoproterozoic Wumishan Formation,North China. Journal of Palaeogeography(Chinese Edition), 22(6): 1181-1196] [17] 苏文博. 2014.2012年全球前寒武纪新年表与中国中元古代年代地层学研究. 地学前缘, 21(2): 119-138. [Su W B.2014. A review of the revised Precambrian Time Scale(GTS2012)and the research of the Mesoproterozoic chronostratigraphy of China. Earth Science Frontiers, 21(2): 119-138] [18] 汤冬杰,史晓颖,张文浩,刘云,吴金键. 2017. 华北中元古代鱼骨状方解石: 成因机制和古环境意义. 古地理学报, 19(2):227-240. [Tang D J,Shi X Y,Zhang W H,Liu Y,Wu J J.2017. Mesoproterozoic herringbone calcite from North China Platform: genesis and paleoenvironmental significance. Journal of Palaeogeography(Chinese Edition), 19(2): 227-240] [19] 天津地质矿产局. 1992. 天津市区域地质志. 北京: 地质出版社. [Tianjin Bureau of Geology and Mineral Resources. 1992. Regional Geology of Tianjin. Beijing: Geological Publishing House] [20] 田辉,张健,李怀坤,苏文博,周红英,杨立公,相振群,耿建珍,刘欢,朱士兴,许振清. 2015. 蓟县中元古代高于庄组凝灰岩锆石LA-MC-ICPMS U-Pb定年及其地质意义. 地球学报, 36(5): 647-658. [Tian H,Zhang J,Li H K,Su W B,Zhou H Y,Yang L G,Xiang Z Q,Geng J Z,Liu H,Zhu S X,Xu Z Q.2015. Zircon LA-MC-ICPMS U-Pb dating of tuff from Mesoproterozoic Gaoyuzhuang Formation in Jixian County of North China and its geological significance. Acta Geoscientica Sinica, 36(5): 647-658] [21] 谢树成,颜佳新,史晓颖,殷鸿福,等. 2016. 烃源岩地球生物学. 北京: 科学出版社,83-87. [Xie S C,Yan J X,Shi X Y,Yin H F,et al. 2016. Geobiology of Hydrocarbon Source Rocks. Beijing: Science Press,83-87] [22] 张拴宏,赵越,叶浩,胡健民,吴飞. 2013. 燕辽地区长城系串岭沟组及团山子组沉积时代的新制约. 岩石学报, 29(7): 2481-2490. [Zhang S H,Zhao Y,Ye H,Hu J M,Wu F.2013. New constraints on ages of the Chuanlinggou and Tuanshanzi formations of the Changcheng System in the Yan-Liao area in the northern North China Craton. Acta Petrologica Sinica, 29(7): 2481-2490] [23] 周弘屹. 2020. 华北陆表海中元古代铁岭组沉积期氧化还原状态. 中国地质大学(北京)本科学位论文. [Zhou H Y.2020. Shallow seawater redox conditions during the deposition of the Mesoproterozoic Tieling Formation,North China Land Surface Sea. Undergraduate dissertation of China University of Geoscience(Beijing)] [24] Ahm A S C,Bjerrum C J,Blättler C L,Swart P K,Higgins J A.2018. Quantifying early marine diagenesis in shallow-water carbonate sediments. Geochimica et Cosmochimica Acta, 236(1): 140-159. [25] Arp G,Reimer A,Reitner J.2002. Calcification of cyanobacterial filaments. Girvanella and the origin of lower Paleozoic lime mud. Comment and reply: comment. Geology, 30(6): 579-580. [26] Badger M R,Hanson D,Price G D.2002. Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Functional Plant Biology, 29: 161-173. [27] Badger M R,Price G D.2003. CO2 concentrating mechanisms in cyanobacteria: molecular components,their diversity and evolution. Journal of Experimental Botany, 54(383): 609-622. [28] Bellefroid E J,Hood A S,Hoffman P F,Thomas M D,Reinhard C T,Planavsky N J.2018. Constraints on Paleoproterozoic atmospheric oxygen levels. Proceedings of the National Academy of Sciences of the United States of America, 115(32): 8104-8109. [29] Byrne R,Sholkovitz E.1996. Marine chemistry and geochemistry of the lanthanides. In: Gschneider K A Jr,Eyring L R(eds). Handbook on the Physics and Chemistry of the Rare Earths,23. Amsterdam: Elsevier,497-593. [30] Canfield D E,Zhang S,Frank A B,Wang X,Wang H,Su J,Ye Y,Frei R.2018. Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nature Communications, 9(1): 2871. [31] Chu X,Zhang T,Zhang Q,Lyons T.2007. Sulfur and carbon isotope records from 1700 to 800 Ma carbonates of the Jixian section,northern China: implications for secular isotope variations in Proterozoic seawater and relationships to global supercontinental events. Geochimica et Cosmochimica Acta, 71(19): 4668-4692. [32] Cole D B,Reinhard C T,Wang X,Gueguen B,Halverson G P,Gibson T,Hodgskiss M S W,McKenzie N R,Lyons T W,Planavsky N J.2016. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology, 44(7): 555-558. [33] Fang H,Tang D,Shi X,Lechte M,Yu W.2020. Manganese-rich deposits in the Mesoproterozoic Gaoyuzhuang Formation(ca. 1.58 Ga),North China platform: genesis and paleoenvironmental implications. Palaeogeography,Palaeoclimatology,Palaeoecology, 559: 109966. [34] Fralick P,Riding R.2015. Steep rock lake: sedimentology and geochemistry of an Archean carbonate platform. Earth-Science Reviews, 151: 132-175. [35] German C R,Elderfield H.1990. Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography, 5(5): 823-833. [36] German C R,Holliday B P,Elderfield H.1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta, 55(12): 3553-3558. [37] Gilleaudeau G J,Kah L C.2015. Heterogeneous redox conditions and a shallow chemocline in the Mesoproterozoic ocean: evidence from carbon-sulfur-iron relationships. Precambrian Research, 257: 94-108. [38] Gilleaudeau G J,Frei R,Kaufman A J,Kah L C,Azmy K,Bartley J K,Chernyavskiy P,Knoll A H.2016. Oxygenation of the Mesoproterozoic atmosphere: clues from chromium isotopes in carbonates. Geochemical Perspectives Letters, 2(2): 178-187. [39] Gischler E,Dietrich S,Harris D,Webster J M,Ginsburg R N.2013. A comparative study of modern carbonate mud in reefs and carbonate platforms: mostly biogenic,some precipitated. Sedimentary Geology, 292(15): 36-55. [40] Grotzinger J P.1989. Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. SEPM(Society for Sedimentary Geology)Special Publication, 44: 79-106. [41] Grotzinger J P.1990. Geochemical model for Proterozoic stromatolite decline. American Journal of Science,290-A: 80-103. [42] Grotzinger J P,Kasting J F.1993. New constraints on Precambrian ocean composition. The Journal of Geology, 101(2): 235-243. [43] Grotzinger J P,James N P.2000. Precambrian carbonates: evolution of understanding. SEPM(Society for Sedimentary Geology)Special Publication, 67: 3-20. [44] Guo H,Du Y,Kah L C,Huang J,Hu C,Huang H,Yu W.2013. Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group,North China: implications for biological and oceanic evolution. Precambrian Research, 224: 169-183. [45] Guo H,Du Y,Kah L C,Hu C,Huang J,Huang H,Yu W,Song H.2015. Sulfur isotope composition of carbonate-associated sulfate from the Mesoproterozoic Jixian Group,North China: implications for the marine sulfur cycle. Precambrian Research, 266: 319-336. [46] Hardisty D S,Lu Z,Planavsky N J,Bekker A,Philippot P,Zhou X,Lyons T W.2014. An iodine record of Paleoproterozoic surface ocean oxygenation. Geology, 42(7): 619-622. [47] Hardisty D S,Lu Z,Bekker A,Diamond C W,Gill B C,Jiang G,Kah L C,Knoll A H,Loyd S J,Osburn M R,Planavsky N J,Wang C,Zhou X,Lyons T W.2017. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth and Planetary Science Letters, 463(1): 159-170. [48] Higgins J A,Fischer W W,Schrag D P.2009. Oxygenation of the ocean and sediments: consequences for the seafloor carbonate factory. Earth and Planetary Science Letters, 284(1): 25-33. [49] Higgins J A,Blättler C L,Lundstrom E A,Santiago-Ramos D P,Akhtar A A,Crüger Ahm A S,Bialik O,Holmden C,Bradbury H,Murray S T,Swart P K.2018. Mineralogy,early marine diagenesis,and the chemistry of shallow-water carbonate sediments. Geochimica et Cosmochimica Acta, 220: 512-534. [50] Hofmann H J,Thurston P C,Wallace H.1985. Archean stromatolites from Uchi greenstone belt,northwestern Ontario. In: Evolution of Archean Supracrustal Sequences. Newfoundland: GAC St Johns, 125-132. [51] Hofmann H J,Jackson G D.1987. Proterozoic ministromatolites with radial-fibrous fabric. Sedimentology, 34(6): 963-971. [52] Holland H D.1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton,New Jersey: Princeton University Press,582. [53] Hood A,Wallace M W.2012. Synsedimentary diagenesis in a Cryogenian reef complex: ubiquitous marine dolomite precipitation. Sedimentary Geology, 255-256: 56-71. [54] Hood A,Wallace M W.2015. Extreme ocean anoxia during the Late Cryogenian recorded in reefal carbonates of Southern Australia. Precambrian Research, 261: 96-111. [55] Kaczmarek S E,Sibley D F.2007. A comparison of nanometer-scale growth and dissolution features on natural and synthetic dolomite crystals: implications for the origin of dolomite. Journal of Sedimentary Research, 77(5): 424-432. [56] Kah L C,Riding R.2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology, 35(9): 799-802. [57] Kaufman A J,Knoll A H.1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Research, 73(1-4): 27-49. [58] Knoll A H,Swett K.1990. Carbonate deposition during the late Proterozoic Era: an example from Spitsbergen. American Journal of Science, 290: 104-132. [59] Kuang H W,Liu Y Q,Peng N,Luo S S,Li J H,Cen C,Chen M P.2012. Molar-tooth structure from the Mesoproterozoic Wumishan Formation in Lingyuan,Yanshan region,North China,and geological implications. Acta Geologica Sinica-English Edition, 86(1): 85-95. [60] Li C,Peng P,Sheng G,Fu J,Yan Y.2003. A molecular and isotopic geochemical study of Meso- to Neoproterozoic(1.73-0.85 Ga)sediments from the Jixian section,Yanshan Basin,North China. Precambrian Research, 125(3-4): 337-356. [61] Li H,Lu S,Su W,Xiang Z,Zhou H,Zhang Y.2013. Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216-227. [62] Li X,Liu L,Wu Y,Liu T.2019. Determination of the redox potentials of solution and solid surface of Fe(Ⅱ)associated with iron oxyhydroxides. ACS Earth and Space Chemistry, 3(5): 711-717. [63] Li Z,Bogdanova S,Collins A,Davidson A,De Waele B,Ernst R E,Fitzsimons I C W,Fuck R A,Gladkochub D P,Jacobs J,Karlstrom K E,Lu S,Natapov L M,Pease V,Pisarevsky S A,Thrane K,Vernikovsky V.2008. Assembly,configuration,and break-up history of Rodinia: a synthesis. Precambrian Research, 160(1-2): 179-210. [64] Lin Y,Tang D,Shi X,Zhou X,Huang K.2019. Shallow-marine ironstones formed by microaerophilic iron-oxidizing bacteria in terminal Paleoproterozoic. Gondwana Research, 76: 1-18. [65] Ling H F,Chen X,Li D A,Wang D,Shields-Zhou G A,Zhu M.2013. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area,South China: implications for oxygenation of coeval shallow seawater. Precambrian Research, 225: 110-127. [66] Liu X M,Kah L C,Knoll A H,Cui H,Wang C,Bekker A,Hazen R M.2021. A persistently low level of atmospheric oxygen in Earth's middle age. Nature Communications, 12(1): 1-7. [67] Lu S,Yang C,Li H K,Li H M.2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123-131. [68] Lu S,Zhao G,Wang H,Hao G.2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: a review. Precambrian Research, 160(1-2): 77-93. [69] Lu W,Wörndle S,Halverson G P,Zhou X,Bekker A,Rainbird R H,Hardisty D S,Lyons T W,Lu Z.2017. Iodine proxy evidence for increased ocean oxygenation during the Bitter Springs Anomaly. Geochemical Perspectives Letters, 5: 53-57. [70] Lu W,Ridgwell A,Thomas E,Hardisty D S,Luo G,Algeo T J,Saltzman M R,Gill B C,Shen Y,Ling H F.2018. Late inception of a resiliently oxygenated upper ocean. Science, 361(6398): 147-177. [71] Lu Z,Jenkyns H C,Rickaby R E.2010. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology, 38(12): 1107-1110. [72] Luo G,Hallmann C,Xie S,Ruan X,Summons R E.2015. Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation. Geochimica et Cosmochimica Acta, 151: 150-167. [73] Meyer H J.1984. The influence of impurities on the growth rate of calcite. Journal of Crystal Growth, 66(3): 639-646. [74] Noffke N,Gerdes G,Klenke T,Krumbein W E.2001. Microbially induced sedimentary structures: a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71(5): 649-656. [75] Okubo J,Klyukin Y I,Warren L V,Bodnar R J,Xiao S.2018. The Origin of Barite in the Basal Ediacaran Sete Lagoas Cap Carbonate(bambui Group,Brazil)and Its Implications. In: GSA Annual Meeting in IndianapoLis,Indiana,USA-2018. [76] Planavsky N J,Reinhard C T,Wang X,Thomson D,McGoldrick P,Rainhard R H,Johnson T,Fischer W W,Lyons T W.2014. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science, 346(6209): 635-638. [77] Poulton S W,Fralick P W,Canfield D E.2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geoscience, 3(7): 486-490. [78] Raven J A.1997. Putting the C in phycology. European Journal of Phycology, 32(4): 319-333. [79] Reinhard C T,Planavsky N J,Olson S L,Lyons T W,Erwin D H.2016. Earth's oxygen cycle and the evolution of animal Life. Proceedings of the National Academy of Sciences of the United States of America, 113(32): 8933-8938. [80] Riding R.2006. Cyanobacterial calcification,carbon dioxide concentrating mechanisms,and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4(4): 299-316. [81] Sami T T,James N P.1994. Peritidal carbonate platform growth and cyclicity in an early Proterozoic foreland basin,Upper Pethei Group,northwest Canada. Journal of Sedimentary Research,64(2b): 111-131. [82] Shang M,Tang D,Shi X,Zhou L,Zhou X,Song H,Jiang G.2019. A pulse of oxygen increase in the early Mesoproterozoic ocean at ca. 1.57-1.56 Ga. Earth and Planetary Science Letters, 527: 115797. [83] Sherman A G,James N P,Narbonne G M.2000. Sedimentology of a late Mesoproterozoic muddy carbonate ramp,northern Baffin Island,Arctic Canada. In: Grotzinger J P,James N P(eds). Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. SEPM Special Publication, 67: 275-294. [84] Sperling E A,Rooney A D,Hays L,Sergeev V N,Vorob'eva N G,Sergeeva N D,Selby D,Johnston D T,Knoll A H.2014. Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean. Geobiology, 12(5): 373-386. [85] Su W,Li H,Huff W,Ettensohn F,Zhang S,Zhou H,Wan Y.2010. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation,North China. Chinese Science Bulletin, 55(29): 3312-3323. [86] Sumner D Y,Grotzinger J P.1996. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?Geology, 24: 119-122. [87] Sumner D Y,Grotzinger J P.2000. Late archean aragonite precipitation: petrography,facies associations,and environmental significance. In: Grotzinger J P, James N P(eds). Carbonates Sedimentation and Diagenesis in the Evolving Precambrian World. SEPM Special Publication, 67: 123-144. [88] Sumner D Y,Grotzinger J P.2004. Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani Platform,South Africa. Sedimentology, 51(6): 1273-1299. [89] Tang D,Shi X,Jiang G,Pei Y,Zhang W,Wang Y,Liu M.2013. Environment controls on Mesoproterozoic thrombolite morphogenesis: a case study from the North China Platform. Journal of Palaeogeography, 2(3): 275-296. [90] Tang D,Shi X,Jiang G.2014. Sunspot cycles recorded in Mesoproterozoic carbonate biolaminites. Precambrian Research, 248: 1-16. [91] Tang D,Shi X,Liu D,Lin Y,Zhang C,Song G,Wu J.2015. Terminal Paleoproterozoic ooidal ironstone from North China: a sedimentary response to the initial breakup of Columbia supercontinent. Earth Science: Journal of China University of Geosciences, 40: 290-304. [92] Tang D,Shi X,Wang X,Jiang G.2016. Extremely low oxygen concentration in Mesoproterozoic shallow seawaters. Precambrian Research, 276: 145-157. [93] Tang D,Shi X,Jiang G,Zhou X,Shi Q.2017a.Ferruginous seawater facilitates the transformation of glauconite to chamosite: an example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 102(11): 2317-2332. [94] Tang D,Shi X,Ma J,Jiang G,Zhou X,Shi Q.2017b.Formation of shallow-water glaucony in weakly oxygenated Precambrian ocean: an example from the Mesoproterozoic Tieling Formation in North China. Precambrian Research, 294: 214-229. [95] Tang D,Shi X,Jiang G,Wu T,Ma J,Zhou X.2018. Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: genesis and environmental implications. Gondwana Research, 58: 1-15. [96] Tang D,Ma J,Shi X,Lechte M,Zhou X.2020. The formation of marine red beds and iron cycling on the Mesoproterozoic North China Platform. American Mineralogist, 105(9): 1412-1423. [97] Thompson J B,Schultze-Lam S,Beveridge T J,Marais D J D.1997. Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnology and Oceanography, 42(1): 133-141. [98] Tosti F,Riding R.2017a.Fine-grained agglutinated elongate columnar stromatolites: Tieling Formation,ca 1420 Ma,North China. Sedimentology, 64(4): 871-902. [99] Tosti F,Riding R.2017b. Current molded,storm damaged,sinuous columnar stromatolites: Mesoproterozoic of northern China. Palaeogeography,Palaeoclimatology,Palaeoecology, 465: 93-102. [100] Wan B,Tang Q,Pang K,Wang X,Bao Z,Meng F,Zhou C,Yuan X,Hua H,Xiao S.2019. Repositioning the Great Unconformity at the southeastern margin of the North China Craton. Precambrian Research, 324: 1-17. [101] Wang H,Zhang Z,Li C,Algeo T J,Cheng M,Wang W.2020. Spatiotemporal redox heterogeneity and transient marine shelf oxygenation in the Mesoproterozoic ocean. Geochimica et Cosmochimica Acta, 270: 201-217. [102] Wei W,Frei R,Klaebe R,Tang D,Wei G Y,Li D,Tian L L,Huang F,Ling H F.2021. A transient swing to higher oxygen levels in the atmosphere and oceans at~1.4 Ga. Precambrian Research, 354: 106058. [103] Wörndle S,Crockford P W,Kunzmann M,Bui T H,Halverson G P.2019. Linking the Bitter Springs carbon isotope anomaly and early Neoproterozoic oxygenation through Ⅰ/[Ca+Mg]ratios. Chemical Geology, 524: 119-135. [104] Zhao G,Sun M,Wilde S,Li S.2003. Assembly,accretion and breakup of the Paleo-Mesoproterozoic Columbia supercontinent: records in the North China Craton. Gondwana Research, 6(3): 417-434. [105] Zhao G,Li S,Sun M,Wilde S A.2011. Assembly,accretion,and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: record in the North China Craton revisited. International Geology Review, 53(11-12): 1331-1356. [106] Zhang K,Zhu X,Wood R A,Shi Y,Gao Z,Poulton S W.2018. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes. Nature Geoscience, 11: 345-350. [107] Zhang S,Zhao Y,Yang Z,He Z,Wu H.2009. The 1.35 Ga diabase sills from the northern North China craton: implications for breakup of the Columbia(Nuna)supercontinent. Earth and Planetary Science Letters, 288(3-4): 588-600. [108] Zhang S,Li Z,Evans D,Wu H,Li H,Dong J.2012. Pre-Rodinia supercontinent Nuna shaping up: a global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, 353: 145-155. [109] Zhang S,Wang X,Hammarlund E,Wang H,Costa M,Bjerrum C,Connelly J,Zhang B,Bian L,Candield D.2015. Orbital forcing of climate 1.4 billion years ago. Proceedings of the National Academy of Sciences of the United States of America, 112(12): E1406-E1413. [110] Zhang S,Wang X,Wang H,Bjerrum C J,Hammarlund E U,Costa M M,Connelly J N,Zhang B,Su J,Canfield D E.2016. Sufficient oxygen for animal respiration 1,400 million years ago. Proceedings of the National Academy of Sciences, 113(7): 1731-1736. [111] Zhou X,Jenkyns H C,Owens J D,Junium C K,Zheng X Y,Sageman B B,Hardisty D S,Lyons T W,Ridgwell A,Lu Z.2015. Upper ocean oxygenation dynamics from Ⅰ/Ca ratios during the Cenomanian-Turonian OAE 2. Paleoceanography, 30(5): 510-526.