Progress on coupling relationship between volcanic and hydrothermal-originated sediments and hydrocarbon generation in lacustrine source rocks
Jiao Xin1, Liu Yi-Qun1, Zhou Ding-Wu2, Li Hong1, Meng Zi-Yuan1, Zhao Min-Ru1, Yang Yi-Yao1
1 State Key Laboratory of Continental Dynamics,Department of Geology,Northwest University,Xi’an 710069,China; 2 College of Earth Science and Engineering,Shandong University of Science and Technology,Shandong Qingdao 266510,China
Abstract:Intracontinental lacustrine source rocks are hydrocarbon-rich fine-grained sedimentary rocks with complex mineral compositions, which are widely distributed in Chinese petroliferous basins. The rocks are important unconventional oil and gas reservoirs amid increasingly demand for unconventional hydrocarbon resources. However,they have been mis-understood as simple terrestrial sedimentary rocks for a long time because the great difficulties in petrological and mineralogical research caused by their fine-grained size. Recent studies found abundant sediments generated by volcanic eruption and hydrothermal exhalation in this type of source rocks; the sediments show a significant control on hydrocarbon generation and accumulation. Hence,the mechanisms and controlling factors of volcanic-hydrothermal sediments in hydrocarbon generation of this type of source rocks require in-depth studies. This paper summarizes and discusses recent research status on some new discoveries and viewpoints on the relationship between volcanic and hydrothermal-originated sediments and hydrocarbon formation. The connotation of the coupling relationship was preliminarily studied using detailed petrological and mineralogical as well as inorganic and organic geochemical data,on the basis of our new viewpoints on source rocks in the Permian Lucaogou Formation in Santanghu Basin. The volcanic and hydrothermal-originated sediments not only have played a significant role in deposition and diagenesis of the source rocks,but also show a co-influence on hydrocarbon generation and accumulation with conventional lacustrine sediments. We suggest that the mineral and lithological features of lacustrine source rocks should be re-studied. The result will expand the theory of hydrocarbon generation in terrestrial sediments and,practically,serve as a guide for unconventional hydrocarbon exploration of similar source rocks.
Jiao Xin,Liu Yi-Qun,Zhou Ding-Wu et al. Progress on coupling relationship between volcanic and hydrothermal-originated sediments and hydrocarbon generation in lacustrine source rocks[J]. JOPC, 2021, 23(4): 789-809.
[1] 常海亮,郑荣才,郭春利,文华国. 2016. 准噶尔盆地西北缘风城组喷流岩稀土元素地球化学特征. 地质论评, 62(3): 550-568. [Chang H L,Zheng R C,Guo C L,Wen H G.2016. Characteristics of rare earth elements of exhalative rock in Fengcheng Formation,northwestern margin of Jungger Basin. Geological Review, 62(3): 550-568] [2] 陈代钊. 2008. 构造—热液白云岩化作用与白云岩储层. 石油与天然气地质, 29(5): 614-622. [Chen D Z.2008. Structure-controlled hydrothermal dolomitization and hydrothermal dolomite reservoirs. Oil & Gas Geology, 29(5): 614-622] [3] 陈旋,刘小琦,王雪纯,马强,刘俊田,龚鑫,杨小东,石江峰,白国娟. 2019. 三塘湖盆地芦草沟组页岩油储层形成机理及分布特征. 天然气地球科学, 30(8): 1180-1189. [Chen X, Liu X Q,Wang X C,Ma Q,Liu J T,Gong X,Yang X D,Shi J F,Bai G J.2019. Formation mechanism and distribution characteristics of Lucaogou shale oil reservoir in Santanghu Basin. Natural Gas Geoscience, 30(8): 1180-1189] [4] 陈志鹏. 2019. 银额盆地哈日凹陷下白垩统湖相热水沉积岩特征及形成机理. 西北大学博士学位论文. [Chen Z P.2019. Characteristics and forming mechanism of lacustrine hydrothermal sedimentary rocks in Lower Cretaceous,Hari Sag,Yin-E Basin. Doctoral dissertation of Northwest University] [5] 何起祥. 2010. 沉积动力学若干问题的讨论. 海洋地质与第四纪地质, 30(4): 1-10. [He Q X.2010. A discussion on sediment dynamics. Marine Geology & Quaternary Geology, 30(4): 1-10] [6] 贺聪,吉利明,苏奥,刘颖,李剑锋,吴远东,张明震. 2017. 鄂尔多斯盆地南部延长组热水沉积作用与烃源岩发育的关系. 地学前缘, 24(6): 277-285. [He C,Ji L M,Su A,Liu Y,Li J F,Wu Y D,Zhang M Z.2017. Relationship between hydrothermal sedimentation process and source rock development in the Yanchang Formation,south Ordos Basin. Earth Science Frontiers, 24(6): 277-285] [7] 胡文瑄. 2016. 盆地深部流体主要来源及判识标志研究. 矿物岩石地球化学通报, 35(3): 817-826. [Hu W X.2016. Origin and indicators of deep-seated fluids in sedimentary basins. Bulletin of Mineralogy,Petrology and Geochemistry, 35(3): 817-826] [8] 黄思静,Qing H R,胡作维,邹明亮,冯文立,王春梅,郜晓勇,王庆东. 2007. 封闭体系中的白云石化作用及其石油地质学和矿床学意义: 以四川盆地东北部三叠系飞仙关组碳酸盐岩为例. 岩石学报, 23(11): 2955-2962. [Huang S J,Qing H R,Hu Z W,Zou M L,Feng W L,Wang C M,Gao X Y,Wang Q D.2007. Closed-system dolomitization and the significance for petroleum and economic geology: an example from Feixianguan carbonates,Triassic,NE Sichuan Basin of China. Acta Petrologica Sinica, 23(11): 2955-2962] [9] 吉利明,李剑锋,张明震,贺聪,马博,金培红. 2021. 鄂尔多斯盆地延长期湖泊热流体活动对烃源岩有机质丰度和类型的影响. 地学前缘, 28(1): 388-401. [Ji L M,Li J F,Zhang M Z,He C,Ma B,Jin P H.2021. Effects of the lacustrine hydrothermal activity in the Yanchang period on the abundance and type of organic matter in source rocks in the Ordos Basin. Earth Science Frontiers, 28(1): 388-401] [10] 贾承造,邹才能,杨智,朱如凯,陈竹新,张斌,姜林. 2018. 陆相油气地质理论在中国中西部盆地的重大进展. 石油勘探与开发, 45(4): 546-560. [Jia C Z,Zou C N,Yang Z,Zhu R K,Chen Z X,Zhang B,Jiang L.2018. Significant progress of continental petroleum geology theory in basins of Central and Western China. Petroleum Exploration and Development, 45(4): 546-560] [11] 姜在兴,梁超,吴靖,张建国,张文昭,王永诗,刘惠民,陈祥. 2013. 含油气细粒沉积岩研究的几个问题. 石油学报, 34(6): 1031-1039. [Jiang Z X,Liang C,Wu J,Zhang J G,Zhang W Z,Wang Y S,Liu H M,Chen X.2013. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks. Acta Petrologica Sinica, 34(6): 1031-1039] [12] 姜在兴,孔祥鑫,杨叶芃,张建国,张元福,王力,袁晓冬. 2021. 陆相碳酸盐质细粒沉积岩及油气甜点多源成因. 石油勘探与开发, 48(1): 26-37. [Jiang Z X,Kong X X,Yang Y P,Zhang J G,Zhang Y F,Wang L,Yuan X D.2021. Multi-source genesis of continental carbonate-rich fine-grained sedimentary rocks and hydrocarbon sweet spots. Petroleum Exploration and Development, 48(1): 26-37] [13] 蒋宜勤,柳益群,杨召,南云,王睿,周鹏,杨焱钧,寇均益,周宁超. 2015. 准噶尔盆地吉木萨尔凹陷凝灰岩型致密油特征与成因. 石油勘探与开发, 42(6): 741-749. [[Jiang Y Q,Liu Y Q,Yang Z,Nan Y,Wang R,Zhou P,Yang Y J,Kou J Y,Zhou N C.2015. Characteristics and origin of tuffaceous tight oil: a case from tight oil of Permian Lucaogou Formation in Jimusar Sag,Junggar Basin. Petroleum Exploration and Development, 42(6): 741-749] [14] 蒋裕强,陶艳忠,谷一凡,王珏博,强子同,江娜,林刚,蒋婵. 2016. 四川盆地高石梯—磨溪地区灯影组热液白云石化作用. 石油勘探与开发, 43(1): 51-60. [Jiang Y Q,Tao Y Z,Gu Y F,Wang J B,Qiang Z T,Jiang N,Lin G,Jiang C.2016. Hydrothermal dolomitization in Sinian Dengying Formation,Gaoshiti-Moxi area,Sichuan Basin,SW China. Petroleum Exploration and Development, 43(1): 51-60] [15] 焦存礼,何治亮,邢秀娟,卿海若,何碧竹,李程成. 2011. 塔里木盆地构造热液白云岩及其储层意义. 岩石学报, 27(1): 277-284. [Jiao C L,He Z L,Xing X J,Qing H R,He B Z,Li C C.2011. Tectonic hydrothermal dolomite and its significance of reservoirs in Tarim Basin. Acta Petrologica Sinica, 27(1): 277-284] [16] 焦鑫,柳益群,靳梦琪,周鼎武. 2017a.新疆三塘湖薄层状岩浆—热液白云质喷流沉积岩. 沉积学报, 35(6): 1087-1096. [Jiao X,Liu Y Q,Jin M Q,Zhou D W.2017a.Thin bed magmatic-hydrothermal dolomitic exhalative sedimentary rocks in Santanghu Basin,Xinjiang. Acta Sedimentologica Sinica, 35(6): 1087-1096] [17] 焦鑫,柳益群,杨晚,周鼎武. 2017b.水下火山喷发沉积特征研究进展. 地球科学进展, 32(9): 926-936. [Jiao X,Liu Y Q,Yang W,Zhou D W.2017b.Progress on sedimentation of subaqueous volcanic eruption. Advances in Earth Science, 32(9): 926-936] [18] 金之钧,胡文瑄,张刘平,陶明信. 2007. 深部流体活动及油气成藏效应. 北京: 科学出版社. [Jin Z J,Hu W X,Zhang L P,Tao M X.2007. Deep Fluid Activity and Their Effectiveness on Hydrocarbon Generation. Beijing: Science Press] [19] 李哲萱,柳益群,焦鑫,周鼎武,杨奕曜,尤继元. 2019. 火山—热液作用相关细粒沉积岩研究现状及前沿探索. 古地理学报, 21(5): 727-742. [Li Z X,Liu Y Q,Jiao X,Zhou D W,Yang Y Y,You J Y.2019. Progress and present research on volcanic-hydrothermal related fine-grained sedimentary rocks. Journal of Palaeogeography(Chinese Edition), 21(5): 727-742] [20] 李哲萱. 2020. 新疆北东部地区中二叠统芦草沟组喷积岩特征及其形成构造背景探索. 西北大学博士论文. [Li Z X.2020. The characteristics of hydrothermal-exhalative sedimentary rocks(HESR)and its involved structure information of middle Permian Lucaogou Formation in Northeast Xinjiang. Doctoral dissertation of Northwest University] [21] 梁世君,罗权生,王瑞,陈旋,杨斌,马强,梁辉. 2019. 三塘湖盆地二叠系非常规石油地质特征与勘探实践. 中国石油勘探, 24(5): 624-635. [Liang S J,Luo Q S,Wang R,Chen X,Yang B,Ma Q,Liang H.2019. Geological characteristics and exploration practice of unconventional Permian oil resources in the Santanghu Basin. China Petroleum Exploration, 24(5): 624-635] [22] 刘国勇,张刘平,金之钧. 2005. 深部流体活动对油气运移影响初探. 石油实验地质, 27(3): 269-275. [Liu G Y,Zhang L P,Jin Z J.2005. Primary study on the effects of deep-sourced fluid’s movement on hydrocarbon migration. Petroleum Geology and Experiment, 27(3): 269-275] [23] 刘全有,朱东亚,孟庆强,刘佳宜,吴小奇,周冰,Qi F,金之钧. 2019. 深部流体及有机—无机相互作用下油气形成的基本内涵. 中国科学: 地球科学, 49(3): 499-520. [Liu Q Y,Zhu D Y,Meng Q Q,Liu J Y,Wu X Q,Zhou B,Qi F,Jin Z J.2019. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction. Science China: Earth Sciences, 49(3): 499-520] [24] 柳益群,焦鑫,李红,袁明生,YANG Wan,周小虎,梁浩,周鼎武,郑朝阳,孙芹,汪双双. 2011. 新疆三塘湖跃进沟二叠系地幔热液喷流型原生白云岩. 中国科学: 地球科学, 41(12): 1862-1871. [Liu Y Q,Jiao X,Li H,Yuan M S,Yang W,Zhou X H,Liang H,Zhou D W,Zheng Z Y,Sun Q,Wang S S.2011. Primary dolostone formation related to mantle-originated exhalative hydrothermal activities,Permian Yuejingou section,Santanghu area,Xinjiang,NW China. Science China: Earth Sciences, 41(12): 1862-1871] [25] 柳益群,周鼎武,焦鑫,南云,杨晚,李红,周小虎. 2013. 一类新型沉积岩: 地幔热液喷积岩: 以中国新疆三塘湖地区为例. 沉积学报, 31(5): 773-781. [Liu Y Q,Zhou D W,Jiao X,Nan Y,Yang W,Li H,Zhou X H.2013. A new type of sedimentary rocks: Mantle-originated hydroclastites and hydrothermal exhalites,Santanghu area,Xinjiang,NW China. Acta Sedimentologica Sinica, 31(5): 773-781] [26] 柳益群,周鼎武,焦鑫,冯乔,周小虎. 2019. 深源物质参与湖相烃源岩生烃作用的初步研究: 以准噶尔盆地吉木萨尔凹陷二叠系黑色岩系为例,古地理学报, 21(6): 983-998. [Liu Y Q,Zhou D W,Jiao X,Feng Q,Zhou X H.2019. A preliminary study on the relationship between deep-sourced materials and hydrocarbon generation in lacustrine source rocks: an example from the Permian black rock series in Jimusar sag,Junggar Basin. Journal of Palaeogeography(Chinese Edition), 21(6): 983-998] [27] 孟楚洁,胡文瑄,贾东,王琳. 2017. 宁镇地区上奥陶统五峰组—下志留统高家边组底部黑色岩系地球化学特征与沉积环境分析. 地学前缘, 24(6): 300-311. [Meng C J,Hu W X,Jia D,Wang L.2017. Analyses of geochemistry features and sedimentary environment in the Upper Ordovician Wufeng-Lower Silurian Gaojiabian formations in Nanjing-Zhenjiang area. Earth Science Frontiers, 24(6): 300-311] [28] 邱振,邹才能. 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1-29. [Qiu Z,Zou C N.2020. Unconventional petroleum sedimentology: connotation and prospect. Acta Sedimentologica Sinica, 38(1): 1-29] [29] 单玄龙,李吉焱,陈树民,冉清昌,陈贵标,刘超. 2014. 陆相水下火山喷发作用及其对优质烃源岩形成的影响: 以松辽盆地徐家围子断陷营城组为例. 中国科学: 地球科学, 44(12): 2637-2644. [Shan X L,Li J Y,Chen S M,Ran Q C,Chen G B.2014. Subaquatic volcanic eruptions in continental facies and their influence on high quality source rocks shown by the volcanic rocks of a faulted depression in Northeast China. Science China: Earth Sciences, 44(12): 2637-2644] [30] 孙龙德,邹才能,贾爱林,位云生,朱如凯,吴松涛,郭智. 2019. 中国致密油气发展特征与方向. 石油勘探与开发, 46(6): 1015-1026. [Sun L D,Zou C N,Jia A L,Wei Y S,Zhu R K,Wu S T,Guo Z.2019. Development characteristics and orientation of tight oil and gas in China. Petroleum Exploration and Development, 46(6): 1015-1026] [31] 文华国,郑荣才,QING Hai-Ruo,范铭涛,李雅楠,宫博识. 2014. 青藏高原北缘酒泉盆地青西凹陷白垩系湖相热水沉积原生白云岩. 中国科学: 地球科学, 44(4): 591-604. [Wen H G,Zheng R C,QING H R,Fan M T,Li Y L,Gong B S.2014. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag,Jiuquan Basin on the northern Tibetan Plateau. Science China: Earth Sciences, 44(4): 591-604] [32] 徐文礼,郑荣才,颜雪,文华国,崔璀. 2014. 下扬子地区早古生代黑色岩系地球化学特征及其地质意义. 吉林大学学报(地球科学版), 44(4): 1108-1122. [Xu W L,Zheng R C,Yan X,Wen H G,Cui C.2014. Trace and rare earth element geochemistry of the Early Paleozoic black shales in the Lower Yangtze area and its geological significances. Journal of Jilin University(Earth Science Edition), 44(4): 1108-1122] [33] 徐雄飞,于祥春,卿忠,张亦婷,李天军,于海跃,王秉乾. 2020. 三塘湖盆地芦草沟组岩相特征及其与页岩油藏的关系. 新疆石油地质, 41(6): 677-684. [Xu X F,Yu X C,Qing Z,Zhang Y T,Li T J,Yu H Y,Wang B Q.2020. Lithofacies characteristics and its relationship with shale oil reservoirs of Lucaogou Formation in Santanghu Basin. Xinjiang Petroleum Geology, 41(6): 677-684] [34] 杨仁超,金之钧,孙冬胜,樊爱萍. 2015. 鄂尔多斯晚三叠世湖盆异重流沉积新发现. 沉积学报, 33(1): 10-20. [Yang R C,Jin Z J,Sun D S,Fan A P.2015. Discovery of hyperpycnal flow deposits in the Late Triassic lacustrine Ordos Basin. Acta Sedimentologica Sinica, 33(1): 10-20] [35] 张泉兴,李雨梁,胡忠良,张启明. 1989. 莺歌海盆地梅山组的石油深热成因和水相运移. 中国海上油气, (3): 25-33. [Zhang Q X,Li Y L,Hu Z L,Zhang Q M.1989. Hot,deep origin of petroleum in & its migration by molecular solution from Meishan Formation,Yinggehai Basin. China Offshore Oil & Gas, (3): 25-33] [36] 张文正,杨华,解丽琴,杨奕华. 2010. 湖底热水活动及其对优质烃源岩发育的影响: 以鄂尔多斯盆地长7烃源岩为例. 石油勘探与开发, 37(4): 424-429. [Zhang W Z,Yang H,Xie L Q,Yang Y H.2010. Lake-bottom hydrothermal activities and their influences on the high-quality source rock development: a case from Chang 7 source rocks in Ordos Basin. Petroleum Exploration and Development, 37(4): 424-429] [37] 郑荣才,文华国,范铭涛,汪满福,吴国瑄,夏佩芬. 2006. 酒席盆地下沟组湖相白烟型喷流岩岩石学特征. 岩石学报, 22(12): 3027-3038. [Zheng R C,Wen H G,Fan M T,Wang M F,Wu G X,Xia P F.2006. Lithological characteristics of sublacustrine white smoke type exhalative rock of the Xiagou Formation in Jiuxi Basin. Acta Petrologica Sinica, 22(12): 3027-3038] [38] 郑荣才,文华国,李云,常海亮. 2018. 甘肃酒西盆地青西凹陷下白垩统下沟组湖相喷流岩物质组分与结构构造. 古地理学报, 20(1): 1-18. [Zheng R C,Wen H G,Li Y,Chang H L.2018. Compositions and texture of lacustrine rocks from the Lower Cretaceous Xiagou Formation in Qingxi Sag of Jiuxi Basin,Gansu. Journal of Palaeogeography(Chinese Edition), 20(1): 1-18] [39] 钟大康,杨喆,孙海涛,张硕. 2018. 热水沉积岩岩石学特征: 以内蒙古二连盆地白音查干凹陷下白垩统腾格尔组为例. 古地理学报, 20(1): 19-32. [Zhong D K,Yang Z,Sun H T,Zhang S.2018. Petrological characteristics of hydrothermal-sedimentary rocks: A case study of the Lower Cretaceous Tengger Formation in the Baiyinchagan Sag of Erlian Basin,Inner Mongolia. Journal of Palaeogeography(Chinese Edition), 20(1): 19-32] [40] 朱东亚,金之钧,胡文瑄. 2009. 塔中地区热液改造型白云岩储层. 石油学报, 30(5): 698-704. [Zhu D Y,Jin Z J,Hu W X.2009. Hydrothermal alteration dolomite reservoir in Tazhong area. Acta Petrolei Sinica, 30(5): 698-704] [41] 朱如凯,邹才能,吴松涛,杨智,毛治国,杨海波,范春怡,惠潇,崔景伟,苏玲,王焕第. 2019. 中国陆相致密油形成机理与富集规律. 石油与天然气地质, 40(6): 1168-1184. [Zhu R K,Zou C N,Wu S T,Yang Z,Mao Z G,Yang H B,Fan C Y,Hui X,Cui J W,Su L,Wang H D.2019. Mechanism for generation and accumulation of continental tight oil in China. Oil & Gas Geology, 40(6): 1168-1184] [42] 邹才能. 2014. 非常规油气地质学. 北京: 地质出版社. [Zou C N.2014. Unconventional Petroleum Geology. Beijing: Geological Publishing House] [43] 邹才能,朱如凯,白斌,杨智,侯连华,查明,付金华,邵雨,刘可禹,曹宏,袁选俊,陶士振,唐晓明,王岚,李婷婷. 2015. 致密油与页岩油内涵、特征、潜力及挑战. 矿物岩石地球化学通报, 34(1): 3-17. [Zou C N,Zhu R K,Bai B,Yang Z,Hou L H,Zha M,Fu J H,Shao Y,Liu K Y,Cao H,Yuan X J,Tao S Z,Tang X M,Wang L,Li T T.2015. Significance,geologic characteristics,resource potential and future challenges of tight oil and shale oil. Bulletin of Mineralogy,Petrology and Geochemistry, 34(1): 3-17] [44] 邹才能,潘松圻,荆振华,高金亮,杨智,吴松涛,赵群. 2020. 页岩油气革命及影响. 石油学报, 41(1): 1-12. [Zou C N,Pan S Q,Jing Z H,Gao J L,Yang Z,Wu S T,Zhao Q.2020. Shale oil and gas revolution and its impact. Acta Petrolei Sinica, 41(1): 1-12] [45] Anders M H.1994. Constraints on North American Plate velocity from the Yellowstone hotspot deformation field. Nature, 369(6475): 53-55. [46] Aplin A C,Macquaker J H S.2011. Mudstone diversity: origin and implications for source,seal,and reservoir properties in petroleum systems. AAPG, 95(12): 2031-2059. [47] Belousov A,Belousova M.2001. Eruptive process,effects and deposits of the 1996 and the ancient basaltic phreatomagmatic eruptions in Karymskoye lake,Kamchatka,Russia. Special publication number 30 of the International Association of Sedimentolgists, 30: 35-60. [48] Buckland H M,Eychenne J,Rust A C,Cashman K V.2018. Relating the physical properties of volcanic rocks to the characteristics of ash generated by experimental abrasion. Journal of Volcanology and Geothermal Research, 349: 335-350. [49] Carapezza M L,Tarchini L,Granieri D,Martelli M,Gattuso A,Pagliuca N,Ranaldi M,Ricci T,Grassa F,Rizzo A.2015. Gas blowout from shallow boreholes near Fiumicino International Airport(Rome): gas origin and hazard assessment. Chemical Geology, 407-408: 54-65. [50] Ciotoli G,Etiope G,Florindo F,Marra F,Ruggiero L,Sauer P E.2013. Sudden deep gas eruption nearby Rome’s airport of Fiumicino. Geophysical Research Letters, 40: 5632-5636. [51] Dai J,Yang S,Chen H,Shen X.2005. Geochemistry and occurrence of inorganic gas accumulations in Chinese sedimentary basins. Organic Geochemistry, 36: 1664-1688. [52] Davies G R,Smith L B.2006. Structurally controlled hydrothermal dolomite reservoir facies: an overview. AAPG, 90(11): 1641-1690. [53] Desbois G,Janos L,Kukla P,Konstanty J,Baerle C.2011. High-resolution 3D fabric and porosity model in a tight gas sandstone reservoir: A new approach to investigate microstructures from mm-to nm-scale combining argon beam cross-sectioning and SEM imaging. Journal of Petroleum Science and Engineering, 78(2): 243-257. [54] Dick G J,Anantharaman K,Baker B J,Li M,Reed D C,Sheik C S.2013. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Frontiers Microbiology, 4: 124. [55] Fan X,Wang G,Li Y,Dai Q,Linghu S,Duan C,Zhang C,Zhang F.2019. Pore structure evaluation of tight reservoirs in the mixed siliciclastic-carbonate sediments using fractal analysis of NMR experiments and logs. Marine Petroleum Geology, 109: 484-493. [56] Fisher R V.1984. Submarine volcaniclastic rocks. Geological Society,London,Special Publications, 16(1): 5-27. [57] Fouquet Y.1999. Where are the large hydrothermal sulphide deposits in the oceans?In: Cann J R,Elderfield H,Laughton A(eds). Mid-Ocean Ridges: Dynamics of Processes Associated with Creation of New Ocean Crust. Cambridae: Cambridze University Press: 211-224. [58] Hackley P,Fishman N,Wu T,Baugher G.2016. Organic petrology and geochemistry of mudrocks from the lacustrine Lucaogou Formation,Santanghu Basin,northwest China: Application to lake basin evolution. International Journal of Coal Geology, 168: 20-34. [59] He C,Ji L,Wu Y,Su A,Zhang M.2016. Characteristics of hydrothermal sedimentation process in the Yanchang Formation,south Ordos Basin,China: evidence from element geochemistry. Sedimentary Geology, 345: 33-41. [60] Heiken G,Wohletz K.1991. Fragmentation processes in explosive volcanic eruptions: sedimentation in Volcanic Settings. SEPM special publication, 45: 19-26. [61] Houghton B F,Wilson C J N.1989. Avesicularity index for pyroclastic deposits. Bulletin of Volcanology, 51: 451-462. [62] Hyatt J A.1984. Liquid and supercritical carbon dioxide as organic solvents. Journal of Organic Chemistry, 49: 5097-5101. [63] Irwin H,Curtis C,Coleman M.1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature, 269: 209-213. [64] Jaime G P,Gerardo J A,Pablo D.2018. Boiling-over dense pyroclastic density currents during the formation of the~100 km3 Huichapan ignimbrite in Central Mexico: Stratigraphic and lithofacies analysis. Journal of Volcanology and Geothermal Research, 349: 268-282. [65] Jiao X,Liu Y,Yang W,Zhou D,Bai B,Zhang T,Zhao M,Li Z,Meng Z,Yang Y,Li Z.2020. Fine-grained volcanic-hydrothermal sedimentary rocks in Permian Lucaogou Formation,Santanghu Basin,NW China: implications on hydrocarbon source rocks and accumulation in lacustrine rift basins. Marine Petroleum Geology, 114: 104201. [66] Jiao X,Liu Y,Yang W,Zhou D,Li H,Jin M.2018a.A magmatic-hydrothermal lacustrine exhalite from the Permian Lucaogou Formation,Santanghu Basin,NW China-the volcanogenic origin of fine-grained clastic sedimentary rocks. Journal of Asian Earth Sciences, 156: 11-25. [67] Jiao X,Liu Y,Yang W,Zhou D,Wang S,Jin M,Sun B,Fan T.2018b.Mixed biogenic and hydrothermal quartz in Permian lacustrine shale of Santanghu Basin,NW China: implications for penecontemporaneous transformation of silica minerals. International Journal of Earth Sciences, 107: 1989-2009. [68] Jones B,Peng X.2015. Laminae development in opal: a precipitates associated with seasonal growth of the form-genus Calothrix(Cyanobacteria),Rehai geothermal area,Tengchong,Yunnan Province,China. Sedimentary Geology, 319: 52-68. [69] Kelley D S,Karson J A,Früh-Green G L,Yoerger D R,Shank T M,Butterfield D A,Hayes J M,Schrenk M O,Oison E J,Proskurowski G,Jakuba M,Bradley A,Larson B,Ludwing K,Glickson D,Buckman K,Bradley A S,Brazelton W J,Roe K,Elend M J,Delacour A,Bernasconi S M,Lilley M D,Baross J A,Summons R E,Sylva S P.2005. A serpentinite-hosted submarine ecosystem: the lost city hydrothermal field. Science, 307: 1428-1434. [70] Kelley D S,Karson J A,Blackman D K,Früh-Green G L,Butterfield D A,Lilley M D,Olson E J,Schrenk M O,Roe K R,Lebon G T,Rivizzigno P.2001. The AT3-60 Shipboard Party: an off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature, 412: 145-149. [71] Kokelaar B P,Busby C J.1992. Subaqueous explosive eruption and welding of pyroclastic deposits. Science, 257: 196-201. [72] Kuenen P H,Migliorini C I.1950. Turbidity currents as a cause of graded bedding. The Journal of Geology, 58(2): 97-127. [73] Lee C T A,Jiang H,Ronay E,Minisini D,Stiles J,Neal M.2018. Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous. Scientific Reports, 8: 4197. [74] Li H,Liu Y,Yang K,Liu Y,Niu Y.2021. Hydrothermal mineral assemblages of calcite and dolomite-analcime-pyrite in Permian lacustrine Lucaogou mudstones,eastern Junggar Basin,Northwest China. Mineralogy and Petrology, 115: 63-85. [75] Li X,Ma Q,Liang H,Zhang P,Zhang Q,Jia X,Pu Z,Yan L,Meng Y.2015. Geological characteristics and exploration potential of diamictite tight oil in the second Member of the Permian Lucaogou Formation,Santanghu Basin,NW China. Petroleum Exploration and Development, 42(6): 833-843. [76] Liu B,Song Y,Zhu K,Su P,Ye X,Zhao W.2020. Mineralogy and element geochemistry of salinized lacustrine organic-rich shale in the Middle Permian Santanghu Basin: implications for paleoenvironment,provenance,tectonic setting and shale oil potential. Marine and Petroleum Geology,120: 104569. [77] Liu B,Bechtel A,Gross D,Fu X,Li X,Sachsenhofer R F.2018. Middle Permian environmental changes and shale oil potential evidenced by high-resolution organic petrology,geochemistry and mineral composition of the sediments in the Santanghu Basin,Northwest China. International Journal of Coal Geology, 185: 119-137. [78] Liu B,Bechtel A,Sachsenhofer R F,Gross D,Gratzer R,Chen X.2017. Depsositional environment of oil shale within the second member of Permian Lucaogou Formation in the Santanghu Basin,Northwest China. International Journal of Coal Geology, 175: 10-25. [79] Liu Q,Zhu D,Jin Z,Meng Q,Wu X,Yu H.2017. Effects of deep CO2 on petroleum and thermal alteration: the case of the Huangqiao oil and gas field. Chemical Geology, 469: 214-229. [80] Liu Y,Jiao X,Li H,Yuan M,Yang W,Zhou X,Liang H,Zhou D,Zheng C,Sun Q,Wang S.2012. Mantle exhalative hydrothermal original dolostones of Permian,in Yuejingou section,Santanghu area,Xinjiang. Science China: Earth Sciences, 55: 183-192. [81] Ma J,Huang Z,Liang S,Liu Z,Liang H.2016. Geochemical and tight reservoir characteristics of sedimentary organic-matter-bearing tuff from the Permian Tiaohu Formation in the Santanghu Basin,northwest China. Marine and Petroleum Geology, 73: 405-418. [82] Marani M P,Gamberi F,Rosi M,Bertagnini A.2009. Subaqueous density flow processes and deposits of an island volcano landslide(Stromboli Island,Italy). Sedimentology, 56: 1488-1504. [83] Mazzullo S J.2000. Organogenic dolomitization in peritidal to deep-sea sediments. Journal of Sedimentary Research, 70: 10-23. [84] Meyers P A,Pratt L M,Nagy B.1992. Geochemistry of metalliferous black shales. Chemical Geology, 99: 211. [85] Michaelis W,Jenisch A,Richnow H H.1990. Hydrothermal petroleum generation in Red Sea sediments from the Kebrit and Shaban Deeps. Applied Geochemistry, 5: 103-114. [86] Mount J.1984. Mixing of siliciclastic and carbonate sediments in shallow shelf environments. Geology, 7: 432-435. [87] Mulder T,Syvitski J P M.1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans. The Journal of Geology, 103(3): 285-299. [88] Nemeth K,Pecskay Z,Martin U,Gmeling K,Molnar F.2008. Hyaloclastites,peperites and sofy-sediments deformation textures of a shallow subaqueous Miocene rhyolitc dome-crytodome comples,Palhaza,Hungary. Geological Society,London,Special Publications, 302(1): 52-60. [89] Pan Y,Huang Z,Li T,Guo X,Xu X,Chen X.2020. Environmental response to volcanic activity and its effect on organic matter enrichment in the Permian Lucaogou Formation of the Malang Sag,Santanghu Basin,Northwest China. Palaeogeography,Palaeoclimatology,Palaeoecology, 560: 110024. [90] Pan Y,Huang Z,Li T,Xu X,Chen X,Guo X.2021. Pore structure characteristics and evaluation of lacustrine mixed fine-grained sedimentary rocks: a case study of the Lucaogou Formation in the Malang sag,Santanghu Basin,Western China. Journal of Petroleum Science and Engineering, 201: 108545. [91] Pederson G K,Surlyk F.1977. Dish structures in Eocene volcanic ash layers,Denmark. Sedimentology, 24: 581-590. [92] Peter J M,Peltonen P,Scott S D,Simoneit B R T,Kawka O E.1991. 14C ages of hydrothermal petroleum and carbonate in Guaymas Basin,Gulf of California: implications for oil generation,expulsion,and migration. Geology, 19: 253-256. [93] Procesi M,Ciotoli G,Mazzini A,Etiope G.2019. Sediment-hosted geothermal systems: review and first global mapping. Earth-Science Reviews, 192: 529-544. [94] Rona P A,McGregor B A,Betzer P R.1975. Anomalous water temperatures over Mid-Atlantic Ridgecrest at 26°N latitude. Deep-Sea Research, 22: 611-618. [95] Sakhaee-Pour A.2017. Decomposing J-function to account for the pore structure effect in tight gas sandstones. Transport Porous Media, 116(2): 453-471. [96] Santillan-Jimenez E,Pace R,Morgan T,Behnke C,Sajkowski D J,Lappas A,Crocker M.2019. Co-processing of hydrothermal liquefaction algal bio-oil and petroleum feedstock to fuel-like hydrocarbons via fluid catalytic cracking. Fuel Processing Technology, 188: 164-171. [97] Schieber J.1996. Early diagenetic silica deposition in algal cysts and spores: a source of sand in black shales?Journal of Sedimentary Research, 66(1): 175-183. [98] Schieber J,Krinsley D,Riciputi L.2000. Diagenetic origin of quartz silt in mudstones and implications for silica cycling. Nature, 406: 981-985. [99] Seghedi I.2011. Permian rhyolitic volcanism,changing from subaqueous to subaerial in post-Variscan intra-continental Sirinia Basin(SW Romania-Eastern Europe). Journal of Volcanology and Geothermal Research, 201: 312-324. [100] Simoneit B R T,Aboul-Kassim T A T,Tiercelin J J.2000. Hydrothermal petroleum from lacustrine sedimentary organic matter in the East African Rift. Applied Geochemistry, 15: 355-368. [101] Simoneit B R T.1984. Hydrothermal effects on organic matter-High vs low temperature components. Organic Geochemistry, 6: 857-864. [102] Slack J F.2012. Exhalites in volcanogenic massive sulfide occurrence model. U. S. Geological Survey Scientific Investigations Report,2010-5070-C,chapter 10: 6. [103] Smith J V.2018. Susceptibility of lava domes to erosion and collapse by toppling on cooling joints. Journal of Volcanology and Geothermal Research, 349: 311-322. [104] Smith L B.2006. Origin and reservoir characteristics of Upper Ordovician Trenton-Black Rivers in New York. AAPG, 90(11): 1691-1718. [105] Spears D A,Lundegard P D,Samuels N. D.1980. Field classification of fine-grained sedimentary rocks: discussion and reply. Journal of Sedimentary Research, 51(3): 1031-1033. [106] Su C,Zhong D,Qin P,Wang A.2020. Mineral precipitation sequence and formation of the lacustrine hydrothermal sediments in the Lower Cretaceous Tenggeer Formation in the Baiyinchagan Sag,China. Sedimentary Geology,398: 105586. [107] Talling P J,Masson D G,Sumner E J,Malgesini G.2012. Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology, 59(7): 1937-2003. [108] Tao S,Xu Y,Tang D,Xu H,Li S,Chen S,Liu W,Cui Y,Gou M.2017. Geochemistry of the Shitoumei oil shale in the Santanghu Basin,Northwest China: implications for paleoclimate conditions,weathering,provenance and tectonic setting. International Journal of Coal Geology, 184: 42-56. [109] Tourtelot H A.1979. Black shale its deposition and diagenesis. Clay Mine, 27: 313-321. [110] Wang Y,Yang R,Song M,Lenhardt N,Wang X,Zhang X,Yang S,Wang J,Cao H.2018. Characteristics,controls and geological models of hydrocarbon accumulation in the Carboniferous volcanic reservoirs of the Chunfeng Oilfield,Junggar Basin,northwestern China. Marine and Petroleum Geology,94: 65-79. [111] Weitze W Z.1985. New aspects on the formation of hydrocarbon source rocks. Geologische Rundschau, 74(2): 385-416. [112] Wen H,Zheng R,Qing H,Fan M,Li Y,Gong B.2013. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi Sag,Jiuquan Basin on the northern Tibetan Plateau. Science China: Earth Sciences, 56: 2080-2093. [113] White J D L.2000. Subaqueous eruption-fed density currents and their deposits. Precambrian Research, 101: 87-109. [114] White D E.1955. Thermal springs and epithermal ore deposits. Economic Geology 50th Anniversary Volume: 99-154. [115] White J D L,Houghton B F.2006. Primary volcaniclastic rocks. Geology, 34(8): 677-680. [116] Wohletz K H.2002. Water/magma interaction: some theory and experiments on peperite formation. Journal of Volcanology and Geothermal Research, 114: 19-35. [117] Wohletz K H.1986. Explosive magma-water interactions: thermodynamics,explosion mechanisms,and field studies. Bulletin of Volcanology, 48: 245-264. [118] Wohletz K H,Sheridan M F.1983. Hydrovolcanic explosions Ⅱ. Evolution of basaltic tuff rings and tuff cones. American Journal of Science, 283: 384-413. [119] Wright V P.2012. Lacustrine carbonates in rift settings: the interaction of volcanic and microbial processes on carbonate deposition. Geological Society London Special Publications, 370(1): 39-47. [120] Xi K,Cao Y,Haile B,Zhu R,Jahren J,Bjørlykke K,Zhang X,Hellevang H.2016. How does the pore-throat size control the reservoir quality and oiliness of tight sandstones?The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin,China. Marine Petroleum Geology, 76: 1-15. [121] Xie S,Pancost D R,Wang Y,Yang H,Wignall B P,Luo G,Jia C,Chen L.2010. Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis. Geology, 38(5): 447-450. [122] Yang R,Jin Z,Loon T V,Han Z,Fan A.2017. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin,central China: implications for unconventional petroleum development. AAPG, 101(1): 95-117. [123] Yang Z,Chen X,Li Q,Liu J,Wu S,Pan S,Lin S,Fang X,Wang L,Wu Y.2020. Permian sedimentary tuff tight reservoirs in the Santanghu Basin,NW China. Marine and Petroleum Geology,119: 104447. [124] Yang Z,Zhong D,Whitaker F,Sun H,Su C,Cao X.2021. Reservoir quality of tight oil plays in lacustrine rift basins: insights from early Cretaceous fine-grained hydrothermal dolomites of the Erlian Basin,NE China. Marine and Petroleum Geology,124: 104827. [125] Yang Z,Zhong D,Whitaker F,Lu Z,Zhang S,Tang Z,Liu R,Li Z.2020. Syn-sedimentary hydrothermal dolomites in a lacustrine rift basin: petrographic and geochemical evidence from the Lower Cretaceous Erlian Basin,Northern China. Sedimentology, 67(1): 305-329. [126] Zhang L,Lu S,Xiao D,Li B.2017. Pore structure characteristics of tight sandstones in the northern Songliao Basin,China. Marine Petroleum Geology, 88: 170-180. [127] Zhang S,Liu C,Liang H,Jia L,Bai J,Zhang L,Wang J.2021. Mineralogical composition and organic matter characteristics of lacustrine fine-grained volcanic-hydrothermal sedimentary rocks: a data-driven analytics for the second member of Permian Lucaogou Formation,Santanghu Basin,NW China. Marine and Petroleum Geology,126: 104920. [128] Zhang S,Liu C,Liang H,Wang J,Bai J,Yang M,Liu G,Huang H,Guan Y.2018. Paleoenvironmental conditions,organic matter accumulation,and unconventional hydrocarbon potential for the Permian Lucaogou Formation organic-rich rocks in Santanghu Basin,NW China. International Journal of Coal Geology, 185: 44-60. [129] Zhu J,Li S,Sun X,Zhu J,Xin M,Xu H.1994. Discovery of early tertiary hydrothermal activity and its significance in oil/gas geology,Dongpu Depression,Henan Province,China. Chinese Journal of Geochemistry, 13: 270-283.