Abstract:The study of provenance of loess on the Chinese Loess Plateau is critical for revealing evolution patterns of atmospheric circulation in East Asia and the interaction between tectonics and climate evolvement. By now,numbers of studies on provenance of loess sediments have been carried out based on different tracing systems. However,the temporal and spatial variation of loess provenance and its dynamic mechanism have not been well understood. Based on the comprehensive review of the previous studies on the Chinese Loess Plateau,the provenance and possible changes of the Quaternary loess were analyzed from the perspective of factors affecting the composition of87Sr/86Sr and 143Nd/144Nd,and the U-Pb age spectrum of single grain detrital zircons. The following conclusions are obtained. (1)The variations of Sr-Nd isotopic compositions in loess during the Quaternary have exact geological significance,for the reason that the87Sr/86Sr in Quaternary loess changed significantly with a range of 0.002 580~0.004 949,which is beyond the influence of analysis error(<0.000 018)and the maximum radioactive decay effect(<0.000 026 during the 2.6 Ma period and<0.000 001 during a glacial-interglacial interval);the variation of 143Nd/144Nd(0.000 095~0.000 240)during the Quaternary is also beyond the influence of laboratory analysis(<0.000 010)and radioactive decay effect(<0.000 013). (2)The variations of87Sr/86Sr and 143Nd/144Nd both in bulk sediments and in the dominant grain-size fraction of loess sediments are of significance of provenance change because they are hard to be interpreted solely regards of climatic changes given the provenance of loess sediments is stable. (3)Relative to the Sr-Nd isotope tracer system,the tracing systems based on single-mineral or single-grain measurement(e.g., zircon U-Pb age)is robust in detecting variation of the loess sediment provenance. (4)A limited study of the provenance of the loess based on the detrital zircon U-Pb age spectrum reveals that the original provenance of the loess in the Chinese Loess Plateau may have undergone significant spatial and temporal differentiation in geological history. In particular,different sections reflect the changes of the main provenance of the loess before and after 1.2 Ma. It is indicated that the study of the temporal and spatial variation of loess provenance by zircon U-Pb age spectrum has great potential to reveal the coupling process and history of lithosphere,atmosphere and hydrosphere.
Yang Guang-Liang,Fan Yu-Xin,Cai Qing-Song et al. Progress and prospect of research on temporal and spatial differences of the Quaternary loess provenance[J]. JOPC, 2021, 23(5): 1020-1037.
[1] 安芷生,Kukla G,刘东生. 1989. 洛川黄土地层学. 第四纪研究, 9(2): 155-168. [An Z S,Kukla G,Liu T S. 1989. Loess stratigraphy in Luochuan of China. Quaternary Sciences, 9(2): 155-168] [2] 安芷生,王苏民,吴锡浩,陈明扬,孙东怀,刘秀铭,王富葆,李力,孙有斌,周卫建,周杰,刘晓东,鹿化煜,张云翔,董光荣,强小科. 1998. 中国黄土高原的风积证据: 晚新生代北半球大冰期开始及青藏高原的隆升驱动. 中国科学(D辑: 地球科学), 28(6): 481-490. [An Z S,Wang S M,Wu X H,Chen M Y,Sun D H,Liu X M,Wang F B,Li L,Sun Y B,Zhou W J,Zhou J,Liu X D,Lu H Y,Zhang Y X,Dong G R,Qiang X K. 1998. Eolian evidence from the Chinese Loess Plateau: the onset of the Late Cenozoic Great Glaciation in the Northern Hemisphere and Qinghai-Xizang Plateau uplift forcing. Science in China(Series D: Earth Sciences), 28(6): 481-490] [3] 安芷生,张培震,王二七,王苏民,强小科,李力,宋友桂,常宏,刘晓东,周卫健,刘卫国,曹军骥,李小强,沈吉,刘禹,艾莉. 2006. 中新世以来中国季风—干旱环境演化与青藏高原的生长. 第四纪研究,26(5):678-693. [An Z S,Zhang P Z,Wang E Q,Wang S M,Qiang X K,Li L,Song Y G,Chang H,Liu X D,Zhou W J,Liu W G,Cao J J,Li X Q,Shen J,Liu Y,Ai L. 2006. Changes of the monsoon-arid environment in China and growth of the Tibetan Plateau since the Miocene. Quaternary Sciences, 26(5): 678-693] [4] 陈洪云,孙有斌. 2008. 黄土高原风尘沉积的物质来源研究: 回顾与展望. 第四纪研究, 28(5): 892-900. [Chen H Y,Sun Y B. 2008. Study on provenance of eolian dust deposits on the Chinese Loess Plateau: retrospects and prospects. Quaternary Sciences, 28(5): 892-900] [5] 陈明扬. 1991. 中国风尘堆积与全球干旱化. 第四纪研究, 11(4): 361-372. [Chen M Y. 1991. The evolution of Chinese aeolian deposits and global aridification. Quaternary Sciences, 11(4): 361-372] [6] 陈思宇,黄建平,李景鑫,贾瑞,江南萱,康丽泰,马骁骏,谢亭亭. 2017. 塔克拉玛干沙漠和戈壁沙尘起沙,传输和沉降的对比研究. 中国科学: 地球科学, 47(8): 939-957. [Chen S Y,Huang J P,Li J X,Jia R,Jiang N X,Kang L T,Ma X J,Xie T T. 2017. Comparison of dust emissions,transport,and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Science China-Earth Sciences, 60(7): 1338-1355] [7] 陈忠,刘泽夏,杨光树. 2015. 风尘Sr同位素研究. 盐湖研究, 23(1): 8-15. [Chen Z,Liu Z X,Yang G S. 2015. Research on Sr isotope in dust. Journal of Salt Lake Research, 23(1): 8-15] [8] 丁仲礼,杨石岭,孙继敏,刘东生. 1999.2.6 Ma前后大气环流重构的黄土—红粘土沉积证据. 第四纪研究, 19(3): 277-281. [Ding Z L,Yang S L,Sun J M,Liu T S. 1999. Re-organization of atmospheric circulation at about 2.6 Ma over North China. Quaternary Sciences, 19(3): 277-281] [9] 李锋. 2007. 中国北方沙尘源区铅同位素分布特征及其示踪意义的初步研究. 中国沙漠, 27(5): 738-744. [Li F. 2007. Distribution characteristics of lead isotope in dust source areas and its trace significance in the north of China. Journal of Desert Research, 27(5): 738-744] [10] 李高军,车旭东,肖国桥,陈忠. 2013. 西宁黄土碎屑锆石年龄特征及其对黄土高原黄土物源的指示意义. 第四纪研究, 33(2): 345-350. [Li G J,Che X D,Xiao G Q,Chen Z. 2013. Zircon ages of Xining Loess: implication for the provenance of the loess on Chinese Loess Plateau. Quaternary Sciences, 33(2): 345-350] [11] 刘东生. 1985. 黄土与环境. 北京: 科学出版社,1-481. [Liu T S. 1985. Loess and Environment. Beijing: Science Press,1-481] [12] 鹿化煜,安芷生. 1997. 洛川黄土粒度组成的古气候意义. 科学通报, 42(1): 66-69. [Lu H Y,An Z S. 1997. Grain-size composition of Luochuan loess and paleoclimate implication. Chinese Science Bulletin, 42(1): 66-69] [13] 马榕,张婉莹,何梦颖. 2019. 基于碎屑锆石U-Pb年龄对黄土高原黄土的空间物源差异分析. 海洋地质前沿, 35(1): 38-45. [Ma R,Zhang W Y,He M Y. 2019. Spatial provenance difference of the loess on Loess Plateau based on detrital zircons U-Pb ages. Marine Geology Frontiers, 35(1): 38-45] [14] 彭文彬,聂军胜,宋友桂,刘善品,季顺川. 2014. 用锆石U/Pb测年技术追踪黄土红黏土物源: 进展与展望. 海洋地质前沿, 30(2): 1-9. [Peng W B,Nie J S,Song Y G,Liu S P,Ji S C. 2014. A review of recent progress in Chinese loess and red-clay provenance studies using zircon U/Pb dating. Marine Geology Frontiers, 30(2): 1-9] [15] 石艳洁,吴永贵,沈佳佳,师路远,王岩,吴丰昌,廖海清. 2015. 土壤和沉积物中钚同位素组成的质谱分析方法. 地球与环境, 43(2): 252-262. [Shi Y J,Wu Y G,Shen J J,Shi L Y,Wang Y,Wu F C,Liao H Q. 2015. Review on mass spectrographic analysis of Plutonium isotopes in soils and sediments. Earth and Environment, 43(2): 252-262] [16] 孙东怀,鹿化煜,David Rea,孙有斌,吴胜光. 2000. 中国黄土粒度的双峰分布及其古气候意义. 沉积学报, 18(3): 327-335. [Sun D H,Lu H Y,David R,Sun Y B,Wu S G. 2000. Bimode grain-size distribution of Chinese loess and its paleoclimate implication. Acta Sedimentologica Sinica, 18(3): 327-335] [17] 孙继敏. 2004. 中国黄土的物质来源及其粉尘的产生机制与搬运过程. 第四纪研究, 24(2): 175-183. [Sun J M. 2004. Provenance,formation mechanism and transport of loess in China. Quaternary Sciences, 24(2): 175-183] [18] 王永焱. 1987. 中国黄土区第四纪古气候变化. 中国科学(B辑化学生物学农学医学地学), 17(10): 1099-1106. [Wang Y Y. 1987. Changes of Quaternary climate of loess district in China. Science in China(Series B: Chemical,Biology,Agriculture,Medicine,Earth Sciences), 17(10): 1099-1106] [19] 谢静,吴福元,丁仲礼. 2007. 浑善达克沙地的碎屑锆石U-Pb年龄和Hf同位素组成及其源区意义. 岩石学报, 23(2): 523-528. [Xie J,Wu F Y,Ding Z L. 2007. Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance. Acta Petrologica Sinica, 23(2): 523-528] [20] 谢静,杨石岭,丁仲礼. 2012. 黄土物源碎屑锆石示踪方法与应用. 中国科学: 地球科学, 42(6): 133-143. [Xie J,Yang S L,Ding Z L. 2012. Methods and application of using detrital zircons to trace the provenance of loess. Science China-Earth Science, 42(6): 133-143] [21] 延昊,王长耀,牛铮,张晔萍. 2002. 东亚沙尘源地、沙尘输送路径的遥感研究. 地理科学进展, 21(1): 90-94. [Yan H,Wang C Y,Niu Z,Zhang Y P. 2002. Remote sensing study of tracks and source areas of Eastern Asian dust. Progress in Geography, 21(1): 90-94] [22] 杨杰东,李高军,戴澐,饶文波,季峻峰. 2009. 黄土高原黄土物源区的同位素证据. 地学前缘, 16(6): 195-206. [Yang J D,Li G J,Dai Y,Rao W B,Ji J F. 2009. Isotopic evidences for provenances of loess of the Chinese Loess Plateau. Earth Science Frontiers, 16(6): 195-206] [23] 杨石岭,丁仲礼. 2017. 黄土高原黄土粒度的空间变化及其古环境意义. 第四纪研究, 37(5): 934-944. [Yang S L,Ding Z L. 2017. Spatial changes in grain size of loess deposits in the Chinese Loess Plateau and implications for palaeoenvironment. Quaternary Sciences, 37(5): 934-944] [24] 张宏飞,高山. 2012. 地球化学. 北京: 地质出版社,1-410. [Zhang H F,Gao S. 2012. Geochemistry. Beijing: Geological Publishing House,1-410] [25] 张小曳. 2001. 亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积. 第四纪研究, 21(1): 29-40. [Zhang X Y. 2001. Source distributions,emission,transport,deposition of Asian dust and loess accumulation. Quaternary Sciences, 21(1): 29-40] [26] 张小曳. 2007. 有关中国黄土高原黄土物质的源区及其输送方式的再评述. 第四纪研究, 27(2): 181-186. [Zhang X Y. 2007. Review on sources and transport of loess materials on the Chinese Loess Plateau. Quaternary Sciences, 27(2): 181-186] [27] Adams S M,Soreghan G S. 2020. A test of the efficacy of sand saltation for silt production: implications for the interpretation of loess. Geology, 48(11): 1105-1109. [28] Aléon J,Chaussidon M,Marty B,Schütz L,Jaenicke R. 2002. Oxygen isotopes in single micrometer-sized quartz grains: tracing the source of Saharan dust over long-distance atmospheric transport. Geochimica et Cosmochimica Acta, 66(19): 3351-3365. [29] Amit R,Enzel Y,Mushkin A,Gillespie A,Batbaatar J,Crouvi O,Wagonerdenberghe J,An Z. 2014. Linking coarse silt production in Asian sand deserts and Quaternary accretion of the Chinese Loess Plateau. Geology, 42(1): 23-26. [30] An Z S,Kukla G,Porter S C,Xiao J. 1991. Late quaternary dust flow on the Chinese Loess Plateau. Catena, 18(2): 125-132. [31] An Z S. 2000. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews, 19(1-5): 171-187. [32] An Z S,Kutzbach J E,Prell W L,Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411(6833): 62-66. [33] Asahara Y,Tanaka T,Kamioka H,Nishimura A,Yamazaki T. 1999. Provenance of the north Pacific sediments and process of source material transport as derived from Rb-Sr isotopic systematics. Chemical Geology, 158(3-4): 271-291. [34] Assallay A,Rogers C,Smalley I,Jefferson I. 1998. Silt: 2-62 μm,9-4φ. Earth Science Reviews, 45(1-2): 61-88. [35] Bird A,Stevens T,Rittner M,Vermeesch P,Carter A,Andò S,Garzanti E,Lu H,Nie J S,Zeng L. 2015. Quaternary dust source variation across the Chinese Loess Plateau. Palaeogeography,Palaeoclimatology,Palaeoecology, 435: 254-264. [36] Bird A,Millar I,Rodenburg T,Stevens T,Rittner M,Vermeesch P,Lu H Y. 2020. A constant Chinese Loess Plateau dust source since the late Miocene. Quaternary Science Reviews, 227: 106042. [37] Buggle B,Glaser B,Hambach U,Gerasimenko N,Marković S. 2011. An evaluation of geochemical weathering indices in loess-paleosol studies. Quaternary International, 240(1-2): 12-21. [38] Che X D,Li G J. 2013. Binary sources of loess on the Chinese Loess Plateau revealed by U-Pb ages of zircon. Quaternary Research, 80(3): 545-551. [39] Chen J,Li G J,Yang J D,Rao W B,Lu H Y,Balsam W,Sun Y B,Ji J F. 2007. Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust. Geochimica et Cosmochimica Acta, 71(15): 3904-3914. [40] Chen J,Li G J. 2011. Geochemical studies on the source region of Asian dust. Science China-Earth Sciences, 54(9): 1279. [41] Chen J. 2012. Progress of aeolian sediments and dust geochemistry in Asia in the new century. Bulletin of Mineralogy Petrology Geochemistry, 31(5): 433-446. [42] Chen Z,Li G J. 2013. Evolving sources of eolian detritus on the Chinese Loess Plateau since early Miocene: tectonic and climatic controls. Earth and Planetary Science Letters, 371: 220-225. [43] Clark P U,Archer D,Pollard D,Blum J D,Rial J A,Brovkin V,Mix A C,Pisias N G,Roy M. 2006. The middle Pleistocene transition: characteristics,mechanisms,and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews, 25(23-24): 3150-3184. [44] Crouvi O,Amit R,Enzel Y,Gillespie A R. 2010. Active sand seas and the formation of desert loess. Quaternary Science Reviews, 29(17-18): 2087-2098. [45] Crouvi O,Amit R,Enzel Y,Porat N,Sandler A. 2008. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert,Israel. Quaternary Research, 70(2): 275-282. [46] Dasch E J. 1969. Strontium isotopes in weathering profiles,deep-sea sediments,and sedimentary rocks. Geochimica et Cosmochimica Acta, 33(12): 1521-1552. [47] Ding Z L,Sun J M,Liu T S,Zhu R X,Yang S L,Guo B. 1998a. Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau,China. Earth and Planetary Science Letters, 161(1-4): 135-143. [48] Ding Z L,Sun J M,Yang S L,Liu T S. 1998b. Preliminary magnetostratigraphy of a thick eolian red clay-Loess sequence at Lingtai,the Chinese Loess Plateau. Geophysical Research Letters, 25(8): 1225-1228. [49] Ding Z L,Xiong S F,Sun J M,Yang S L,Liu T S. 1999. Pedostratigraphy and paleomagnetism of a 7.0 Ma eolian loess-red clay sequence at Lingtai,Loess Plateau,north-central China and the implications for paleomonsoon evolution. Palaeogeography,Palaeoclimatology,Palaeoecology, 152(1): 49-66. [50] Ding Z L,Derbyshire E,Yang S L,Sun J M,Liu T S. 2005. Stepwise expansion of desert environment across northern China in the past 35 Ma and implications for monsoon evolution. Earth and Planetary Science Letters, 237(1-2): 45-55. [51] Enzel Y,Amit R,Crouvi O,Porat N. 2010. Abrasion-derived sediments under intensified winds at the latest Pleistocene leading edge of the advancing Sinai-Negeverg. Quaternary Research, 74(1): 121-131. [52] Fan Y X,Chen F H,Wei G X,Madsen D B,Oviatt C G,Zhao H,Chun X,Yang L P,Fan T L,Li G Q. 2010. Potential water sources for Late Quaternary Megalake Jilantai-Hetao,China,inferred from mollusk shell87Sr/86Sr ratios. Journal of Paleolimnology, 43(3): 577-587. [53] Fan Y X,Li Z J,Wang F,Ma J,Mou X S,Li X H,Zhang Q S,Zhao H,Chen F H. 2019. Provenance variations of the Tengger Desert since 2.35 Ma and its linkage with the Northern Tibetan Plateau: evidence from U-Pb age spectra of detrital zircons. Quaternary Science Reviews, 223: 105916. [54] Ferrat M,Weiss D J,Strekopytov S,Dong S,Chen H,Najorka J,Sun Y,Gupta S,Tada R,Sinha R. 2011. Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau. Geochimica et Cosmochimica Acta, 75(21): 6374-6399. [55] Gallet S,Jahn B M,Torii M. 1996. Geochemical characterization of the Luochuan loess-paleosol sequence,China,and paleoclimatic implications. Chemical Geology, 133(1-4): 67-88. [56] Gallet S,Jahn B M,Lanoe B V,Dia A,Rossello E. 1998. Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth and Planetary Science Letters, 156(3-4): 157-172. [57] Gehrels G,Kapp P,DeCelles P,Pullen A,Blakey R,Weislogel A,Ding L,Guynn J,Martin A,McQuarrie N,Yin A. 2011. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics, 30(5): TC5016. [58] Guan Q Y,Pan B T,Gao H S,Li N,Zhang H,Wang J P. 2008. Geochemical evidence of the Chinese Loess provenance during the late Pleistocene. Palaeogeography,Palaeoclimatology,Palaeoecology, 270(1-2): 53-58. [59] Guo Z T,Ruddiman W F,Hao Q Z,Wu H B,Qiao Y S,Zhu R X,Peng S Z,Wei J J,Yuan B Y,Liu T S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416(6877): 159-163. [60] Isozaki Y,Tada R,Sun Y B,Nagashima K,Tani A. 2008. Provenance changes of eolian dust at Lingtai section in the Chinese Loess Plateau since 7 Ma and its implication for desert development in East Asia. Climate of the Past Discussions, 4(2): 335-374. [61] Jacques G,Hauff F,Hoernle K,Jung S,Bindeman Ⅰ. 2020. Sr-Nd-Pb-Hf-O isotopic constraints on the Neoproterozoic to Miocene upper and mid crust in central Chile and western Argentina and trench sediments(33°~35°S). Journal of South American Earth Sciences, 104: 102879. [62] Jahn B M,Gallet S,Han J M. 2001. Geochemistry of the Xining,Xifeng and Jixian sections,Loess Plateau of China: eolian dust provenance and paleosol evolution during the last 140 ka. Chemical Geology, 178(1-4): 71-94. [63] Jeong G Y,Hillier S,Kemp R A. 2008. Quantitative bulk and single-particle mineralogy of a thick Chinese loess-paleosol section: implications for loess provenance and weathering. Quaternary Science Reviews, 27(11-12): 1271-1287. [64] Jeong G Y,Lee K S. 2010. A mineral tracer toward high-resolution dust provenance on the Chinese Loess Plateau: SEM,TEM,and sulfur isotopes of sulfate inclusions in biotite. American Mineralogist, 95(1): 64-72. [65] Li G J,Chen J,Chen Y,Yang J D,Ji J F,Liu L W. 2007. Dolomite as a tracer for the source regions of Asian dust. Journal of Geophysical Research: Atmospheres, 112: D17021. [66] Li G J,Pettke T,Chen J. 2011. Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene. Geology, 39(3): 199-202. [67] Li J J,Fang X M,Song C H,Pan B T,Ma Y Z,Yan M D. 2014. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes. Quaternary Research, 81(3): 400-423. [68] Li L,Liu X J,Li T,Li L F,Zhao L,Ji J F,Chen J,Li G J. 2017. Uranium comminution age tested by the eolian deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters, 467: 64-71. [69] Li L,Chen J,Chen Y,Hedding D W,Li T,Li L F,Liu X J,Zeng F M,Wu W H,Zhao L,Li G J. 2018. Uranium isotopic constraints on the provenance of dust on the Chinese Loess Plateau. Geology, 46(9): 747-750. [70] Licht A,Pullen A,Kapp P,Abell J,Giesler N. 2016. Eolian cannibalism: reworked loess and fluvial sediment as the main sources of the Chinese loess plateau. Geological Society of America Bulletin, 128(5-6): 944-956. [71] Liu C Q,Masuda A,Okada A,Yabuki S,Zhang J,Fan Z L. 1993. A geochemical study of loess and desert sand in northern China: implications for continental crust weathering and composition. Chemical Geology, 106(3-4): 359-374. [72] Liu C Q,Masuda A,Okada A,Yabuki S,Fan Z L. 1994. Isotope geochemistry of Quaternary deposits from the arid lands in northern China. Earth and Planetary Science Letters, 127(1-4): 25-38. [73] Lu H Y,An Z S. 1998. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese loess plateau. Science in China(Series D), 41(6): 626-631. [74] Lu H Y,Sun D H. 2000. Pathways of dust input to the Chinese Loess Plateau during the last glacial and interglacial periods. Catena, 40(3): 251-261. [75] Meng X Q,Liu L W,Balsam W,Li S L,He T,Chen J,Ji J F. 2015. Dolomite abundance in Chinese loess deposits: a new proxy of monsoon precipitation intensity. Geophysical Research Letters, 42(23): 10391-10398. [76] Meng X Q,Liu L W,Zhao W C,He T,Chen J,Ji J F. 2019. Distant Taklimakan Desert as an important source of aeolian deposits on the Chinese Loess Plateau as evidenced by carbonate minerals. Geophysical Research Letters, 46(9): 4854-4862. [77] Nesbitt H W,Markovics G,Price R C. 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44(11): 1659-1666. [78] Nie J S,Stevens T,Rittner M,Stockli D,Garzanti E,Limonta M,Bird A,Ando S,Vermeesch P,Saylor J,Lu H Y,Breecker,D,Hu X F,Liu S P,Resentini A,Vezzoli G,Peng W B,Carter A,Ji S C,Pan B T. 2015. Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment. Nature Communication, 6(1): 8511. [79] Nie J S,Pullen A,Garzione C N,Peng W B,Wang Z. 2018. Pre-quaternary decoupling between asian aridification and high dust accumulation rates. Science Advances, 4(2): EAAO6977. [80] Pettke T,Lee D C,Halliday A N,Rea D K. 2002. Radiogenic hf isotopic compositions of continental eolian dust from Asia,its variability and its implications for seawater Hf. Earth and Planetary Science Letters, 202(2): 453-464. [81] Pullen A,Kapp P,McCallister A T,Chang H,Gehrels G E,Garzione C N,Heermance R V,Ding L. 2011. Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications. Geology, 39(11): 1031-1034. [82] Pullen A,Ibáñez-Mejía M,Gehrels G E,Ibáñez-Mejía J C,Pecha M. 2014. What happens when n=1000?Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations. Journal of Analytical Atomic Spectrometry, 29(6): 971-980. [83] Pye K. 1995. The nature,origin and accumulation of loess. Quaternary Science Reviews, 14(7-8): 653-667. [84] Qin X G,Cai B G,Liu T S. 2005. Loess record of the aerodynamic environment in the east Asia monsoon area since 60 000 years before present. Journal of Geophysical Research-Solid Earth, 110: B01204. [85] Rao W B,Chen J,Yang J D,Ji J F,Li G J,Tan H B. 2008. Sr-Nd isotopic characteristics of eolian deposits in the Erdos Desert and Chinese Loess Plateau: implications for their provenances. Geochemical Journal, 42(3): 273-282. [86] Roskin J,Katra I,Porat N,Zilberman E. 2013. Evolution of Middle to Late Pleistocene sandy calcareous paleosols underlying the northwestern Negev Desert Dunefield(Israel). Palaeogeography,Palaeoclimatology,Palaeoecology, 387: 134-152. [87] Roskin J,Katra I,Blumberg D G. 2014. Particle-size fractionation of eolian sand along the Sinai-Negev erg of Egypt and Israel. Geological Society of America Bulletin, 126(1-2): 47-65. [88] Shao Y,Dong C H. 2006. A review on East Asian dust storm climate,modelling and monitoring. Global and Planetary Change, 52(1-4): 1-22. [89] Sheng X F,Chen J,Ji J F,Chen T H,Li G J,Teng H H. 2008. Morphological characters and multi-element isotopic signatures of carbonates from Chinese loess-paleosol sequences. Geochimica Et Cosmochimica Acta, 72(17): 4323-4337. [90] Slama J,Kosler J. 2012. Effects of sampling and mineral separation on accuracy of detrital zircon studies. Geochemistry Geophysics Geosystems, 13: Q05007. [91] Stevens T,Palk C,Carter A,Lu H Y,Clift P D. 2010. Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons. Geological Society of America Bulletin, 122(7-8): 1331-1344. [92] Stevens T,Carter A,Watson T P,Vermeesch P,Ando S,Bird A,Lu H Y,Garzanti E,Cottam M A,Sevastjanova I. 2013. Genetic linkage between the Yellow River,the Mu Us desert and the Chinese Loess Plateau. Quaternary Science Reviews, 78: 355-368. [93] Sun D H,Shaw J,An Z S,Cheng M Y,Yue L P. 1998. Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic Eolian sediments from the Chinese Loess Plateau. Geophysical Research Letters, 25(1): 85-88. [94] Sun D H,Bloemendal J,Rea D K,Wagonerdenberghe J,Jiang F C,An Z S,Su R X. 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments,and numerical partitioning of the sedimentary components. Sedimentary Geology, 152(3-4): 263-277. [95] Sun D H. 2004. Monsoon and westerly circulation changes recorded in the late Cenozoic aeolian sequences of northern China. Global and Planetary Change, 41(1): 63-80. [96] Sun D H,Bloemendal J,Rea D K,An Z S,Wagonerdenberghe J,Lu H Y,Su R X,Liu T S. 2004. Bimodal grain-size distribution of Chinese loess,and its palaeoclimatic implications. Catena, 55(3): 325-340. [97] Sun J M,Liu T S. 2000. Stratigraphic evidence for the uplift of the Tibetan Plateau between~1.1 and~0.9 Myr ago. Quaternary Research, 54(3): 309-320. [98] Sun J M. 2002. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters, 203(3-4): 845-859. [99] Sun J M. 2005. Nd and Sr isotopic variations in Chinese eolian deposits during the past 8 Ma: implications for provenance change. Earth and Planetary Science Letters, 240(2): 454-466. [100] Sun J M,Zhu X K. 2010. Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma: implications for provenance change. Earth and Planetary Science Letters, 290(3): 438-447. [101] Sun J M,Ding Z L,Xia X P,Sun M,Windley B F. 2018. Detrital zircon evidence for the ternary sources of the Chinese Loess Plateau. Journal of Asian Earth Sciences, 155: 21-34. [102] Sun Y B,An Z S. 2002. History and variability of Asian interior aridity recorded by eolian flux in the Chinese Loess Plateau during the past 7 Ma. Science in China(Series D), 45(5): 420-429. [103] Sun Y B,An Z S. 2005. Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau. Journal of Geophysical Research-Atmospheres, 110: D23101. [104] Sun Y B,Tada R,Chen J,Chen H Z,Toyoda S,Tani A,Isozaki Y,Nagashima K,Hasegawa H,Ji J F. 2007. Distinguishing the sources of asian dust based on electron spin resonance signal intensity and crystallinity of quartz. Atmospheric Environment, 41(38): 8537-8548. [105] Sun Y B,Tada R,Chen J,Liu Q S,Toyoda S,Tani A,Ji J F,Isozaki Y. 2008. Tracing the provenance of fine-grained dust deposited on the central Chinese Loess Plateau. Geophysical Research Letters, 35(1): L01804. [106] Sun Y B,An Z S,Clemens S C,Bloemendal J,Wagonerdenberghe J. 2010. Seven million years of wind and precipitation variability on the Chinese Loess Plateau. Earth and Planetary Science Letters, 297(3-4): 525-535. [107] Swet N,Elperin T,Kok J F,Martin R L,Yizhaq H,Katra I. 2019. Can active sands generate dust particles by wind-induced processes? Earth and Planetary Science Letters, 506: 371-380. [108] Swet N,Kok J F,Huang Y,Yizhaq H,Katra I. 2020. Low dust generation potential from active sand grains by wind abrasion. Journal of Geophysical Research: Earth Surface, 125(7): e2020JF005545. [109] Vermeesch P. 2004. How many grains are needed for a provenance study? Earth and Planetary Science Letters, 224(3-4): 441-451. [110] Wang Y X,Yang J D,Chen J,Zhang K J,Rao W B. 2007. The Sr and Nd isotopic variations of the Chinese Loess Plateau during the past 7 Ma: implications for the East Asian winter monsoon and source areas of loess. Palaeogeography,Palaeoclimatology,Palaeoecology, 249(3-4): 351-361. [111] Weltje G J,Prins M A. 2007. Genetically meaningful decomposition of grain-size distributions. Sedimentary Geology, 202(3): 409-424. [112] Xiao G Q,Zong K Q,Li G J,Hu Z C,Dupont-Nivet G,Peng S Z,Zhang K X. 2012. Spatial and glacial-interglacial variations in provenance of the Chinese Loess Plateau. Geophysical Research Letters, 39(20): L20715. [113] Xie Y Y,Liu L,Kang C G,Chi Y P. 2020. Sr-Nd isotopic characteristics of the Northeast Sandy Land,China and their implications for tracing sources of regional dust. Catena, 184: 104303. [114] Xiong J G,Zhang H P,Zhao X D,Liu Q R,Zhang P Z. 2021. Origin of the youngest Cenozoic aeolian deposits in the southeastern Chinese Loess Plateau. Palaeogeography,Palaeoclimatology,Palaeoecology, 561: 110080. [115] Yan Y,Ma L,Sun Y B. 2017. Tectonic and climatic controls on provenance changes of fine-grained dust on the Chinese loess plateau since the late Oligocene. Geochimica et Cosmochimica Acta, 200: 110-122. [116] Yang J D,Chen J,Zhang J X. 2005. Variations in87Sr/86Sr of the Huanxian profile,Loess Plateau of China from 40 ka B.P. to 10 ka B.P. and Heinrich events. Geochemical Journal, 39(2): 165-171. [117] Yang Y B,Galy A,Fang X M,Yang R S,Zhang W F,Song B W,Liu Y D,Han W X,Zhang W L,Yang S. 2021. Neodymium isotopic constraints on Cenozoic Asian dust provenance changes linked to the exhumation history of the northern Tibetan Plateau and the Central Asian Orogenic Belt. Geochimica et Cosmochimica Acta, 296: 38-55. [118] Yokoo Y,Nakano T,Nishikawa M,Quan H. 2004. Mineralogical variation of Sr-Nd isotopic and elemental compositions in loess and desert sand from the central Loess Plateau in China as a provenance tracer of wet and dry deposition in the northwestern Pacific. Chemical Geology, 204(1-2): 45-62. [119] Zhang H Y,Lu H Y,Jiang S Y,Wagonerdenberghe J,Wang S J,Cosgrove R. 2012. Provenance of loess deposits in the Eastern Qinling Mountains(central China)and their implications for the paleoenvironment. Quaternary Science Reviews, 43: 94-102. [120] Zhang H Z,Lu H Y,Xu X S,Liu X M,Yang T,Stevens T,Bird A,Xu Z W,Zhang T,Lei F. 2016a. Quantitative estimation of the contribution of dust sources to Chinese loess using detrital zircon U-Pb age patterns. Journal of Geophysical Research: Earth Surface, 121(11): 2085-2099. [121] Zhang H Z,Lu H Y,Stevens T,Feng H,Fu Y,Geng J Y,Wang H L. 2018. Expansion of Dust Provenance and Aridification of Asia Since ~7.2 Ma Revealed by Detrital Zircon U-Pb Dating. Geophysical Research Letters, 45(24): 13437-13448. [122] Zhang J,Li J J,Guo B H,Ma Z H,Li X M,Ye X Y,Yu H,Liu J,Yang C,Zhang S D,Song C H,Hui Z C,Peng T J. 2016b. Magnetostratigraphic age and monsoonal evolution recorded by the thickest Quaternary loess deposit of the Lanzhou region,western Chinese Loess Plateau. Quaternary Science Reviews, 139: 17-29. [123] Zhang W F,Chen J,Li G J. 2015. Shifting material source of Chinese loess since~2.7 Ma reflected by Sr isotopic composition. Scientific Reports, 5(1): 10235. [124] Zhang X Y,Arimoto R,An Z S,Chen T,Zhang G Y,Zhu G H,Wang X F. 1993. Atmospheric trace elements over source regions for Chinese dust: concentrations,sources and atmospheric deposition on the Loess Plateau. Atmospheric Environment Part A General Topics, 27(13): 2051-2067. [125] Zhang X Y,Gong S L,Zhao T L,Arimoto R,Wang Y Q,Zhou Z J. 2003. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophysical Research Letters, 30(24): 2272.