Characteristics and palaeoceanographic significances of microbialite development in the Ediacaran-Cambrian transition: a case study from Hannan-Micangshan area
Deng Jia-Ting1, Li Fei1,2, Gong Qiao-Lin1, Li Hong1, Yi Chu-Heng1, Lian Cheng-Bo1
1 School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China; 2 Sichuan Key Laboratory of Natural Gas Geology, Southwest Petroleum University, Chengdu 610500, China
Abstract:Early Cambrian not only witnessed the explosion of animals,but also experienced a large-scale cyanobacterial calcification event that was rare in Precambrian. The transition of seawater chemistry from Ediacaran to Cambrian played a crucial role in the evolution of eukaryotes,but it is still unclear whether this transition also had impacts on the development and compositions of microbialites and on the start of cyanobacterial calcification event. This study conducted a systematic field investigation and petrological examination on the microbialite structures from the Upper Ediacaran to Cambrian Series 2 in the Hannan-Micangshan area that is located in the northern part of the Upper Yangtze area of the South China Block. The stromatolites of the Dengying Formation show regularly and irregularly laminated structures; the thrombolites are generally distributed between stromatolite layers or shown as individual,thick-bedded rocks,with fine-grained clotted and lump structures. In the the Xiannüdong Formation of Cambrian Series 2,the abundance of stromatolites is significantly reduced in the study area. The composition of microbialites is characterized by rigid,mound-like structures,including individual microbial mounds,and calcimicrobe-archaeocyathan bioherms. Although the laminated and clotted structures of microbialites of Cambiran Series 2 are similar to those of the Ediacaran,the Cambrian forms contain a large number of sheath-calcified microbial microfossils in microstructures,including Epiphyton,Renalcis, Girvanella, etc. Based on the literature review results of the characteristics and occurrences of the microbialites of Cambiran Series 2,this study has preliminarily sorted out the temporal and spatial distributions of the microbialites in the Cambrian Series 2 of South China. This study agrees with previous understandings that the high Ca2+ concentration in seawater and the reactive of CO2 concentration mechanism in cyanobacteria may have played a key role in the initiation of Cambrian cyanobacterial calcification event. In addition,the seawater chemical compositions in the Cambrian Series 2 that were changed from “aragonite-dolomite sea” to “calcite sea”,as well as the exceptional burial mechanism of clay coating within calcified microstructures may also be seen as two favorable conditions for the preservation of early Cambrian calcified microorganisms,which should be paid attention to.
Deng Jia-Ting,Li Fei,Gong Qiao-Lin et al. Characteristics and palaeoceanographic significances of microbialite development in the Ediacaran-Cambrian transition: a case study from Hannan-Micangshan area[J]. JOPC, 2021, 23(5): 919-936.
[1] 曹仁关. 1980. 西南地区震旦纪叠层石、核形石和变形石. 中国地质科学院天津地质矿产研究所所刊, 1(1): 91-106. [2] [Cao R G. 1980. Stromatolites, oncolithes and catagraphes of the Sinian System in southwestern China. Journal of Chinese Academy of Tianjin Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1(1): 91-106] [3] 曹仁关. 1996. 云南东部寒武纪和志留纪叠层石. 中国区域地质,(1): 27-30. [Cao R G. 1996. Cambrian and Silurian stromatolites in eastern Yunnan. Regional Geology of China,(1): 27-30] [4] 龚峤林, 李飞, 苏成鹏, 曾楷, 唐浩, 谭秀成. 2018. 细粒浊积岩特征、分布及发育机制: 以川北唐家河剖面寒武系郭家坝组为例. 古地理学报, 20(3): 349-364. [Gong Q L, Li F, Su C P, Zeng K, Tang H, Tan X C. 2018. Characteristics, distribution and mechanisms of fine-grained turbidite: A case study from the Cambrian Guojiaba Formation in Tangjiahe section, northern Sichuan Basin. Journal of Palaeogeograhy(Chinese Edition), 20(3): 349-364] [5] 龚一鸣, 李保华. 2001. 泥盆系弗拉阶—法门阶之交事件沉积和海平面变化. 地球科学, 26(3): 251-257. [Gong Y M, Li B H. 2001. Devonian Frasnian/Famennian transitional event deposits and sea-level changes. Earth Science, 26(3): 251-257] [6] 侯奎, 陈延成. 1990. 四川秀山下寒武统清虚洞组的骨骼葛万藻藻鲕及岩石学意义. 岩石学报,(4): 85-94. [Hou K, Chen Y C. 1990. Skeletal Girvanella oolites and its petrological significance in lower Cambrian of Xiushan, Sichuan Province. Acta Petrologica Sinica,(4): 85-94] [7] 李飞, 武思琴, 刘柯. 2015. 鲕粒原生矿物识别及对海水化学成分变化的指示意义. 沉积学报, 33(3): 500-511. [Li F, Wu S Q, Liu K. 2015. Identification of ooid primary mineralogy: a clude for understanding the variation in paleo-oceanic chemistry. Acta Sedimentologica Sinica, 33(3): 500-511] [8] 李红, 李飞, 龚峤林, 曾楷, 邓嘉婷, 王浩铮, 苏成鹏. 2021. 混积岩中重矿物形貌学特征及物源意义: 以川北寒武系第二统仙女洞组为例. 沉积学报,39(3): 525-539. [Li H, Li F, Gong Q L, Zeng K, Deng J T, Wang H Z, Su C P. 2021. Morphological characteristics and provenance significance of heavy minerals in the mixed siliciclastic-carbonate sedimentation: A case study from the Xiannüdong Formation, Cambrian(Series 2), northern Sichuan. Acta Sedimentologica Sinica,39(3):525-539] [9] 李智武, 冉波, 宋金民, 郑玲, 李金玺, 王瀚, 肖斌, 叶玥豪, 蔡其新, 刘树根. 2019. 四川盆地北缘震旦纪—早寒武世隆坳格局及其油气勘探意义. 地学前缘, 26(1): 59-85. [Li Z W, Ran B, Song J M, Zheng L, Li J X, Wang H, Xiao B, Ye Y H, Cao Q X, Liu S G. 2019. Sinian to Early Cambrian uplift-depression framework along the northern margin of the Sichuan Basin, central China and its implications for hydrocarbon exploration. Earth Science Frontiers, 26(1): 59-85] [10] 刘树根, 宋金民, 罗平, Qing H, 林彤, 孙玮, 李智武, 王浩, 彭瀚霖, 余永强, 龙翼, 万元博. 2016. 四川盆地深层微生物碳酸盐岩储层特征及其油气勘探前景. 成都理工大学学报(自然科学版), 43(2): 129-152. [Liu S G, Song J M, Luo P, Qing H, Lin T, Sun W, Li Z W, Wang H, Peng H L, Yu Y Q, Long Y, Wan Y B. 2016. Characteristics of microbial carbonate reservoir and its hydrocarbon exploring outlook in the Sichuan Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 43(2): 129-152] [11] 刘学利. 2000. 大巴山、米仓山南缘早古生代礁滩发育特征及分布规律研究. 西南石油大学硕士论文. [Liu X L. 2000. The study on the development and distribution of reefs and banks of Early Paleozoic in the southern margin of the Daba-Micang mountains. Masteral dissertation of Southwest Petroleum University] [12] 罗平, 王石, 李朋威, 宋金民, 金廷福, 王果谦, 杨式升. 2013. 微生物碳酸盐岩油气储层研究现状与展望. 沉积学报, 31(5): 807-834. [Luo P, Wang S, Li P W, Song J M, Jin T F, Wang G Q, Yang S S. 2013. Review and prospectives of microbial carbonate reservoirs. Acta Sedimentologica Sinica, 31(5): 807-834] [13] 梅冥相. 2007. 微生物碳酸盐岩分类体系的修订: 对灰岩成因结构分类体系的补充. 地学前缘, 14(5): 222-234. [Mei M X. 2007. Revised classification of microbial carbonates: Complementing the classification of limestones. Earth Science Frontiers, 14(5): 222-234] [14] 梅冥相, 张瑞, 李屹尧, 接雷. 2017. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌. 岩石学报, 33(4): 1073-1093. [Mei M X, Zhang R, Li Q Y, Jie L. 2017. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North-China Platform. Acta Petrologica Sinica, 33(4): 1073-1093] [15] 梅冥相, Khalid L, 刘丽, 孟庆芬. 2019. 光合作用生物膜建造的凝块: 来自于辽东半岛芙蓉统长山组凝块石生物丘中的一些证据. 古地理学报, 21(2): 254-277. [Mei M X, Khalid L, Liu L, Meng Q F. 2019. Clots built by photosynthetic biofilms: evidences from thrombolite bieherms of the Changshan Formation of Cambrian Furongian in Liaodong Peninsula. Journal of Palaeogeography(Chinese Edition), 21(2): 254-277] [16] 穆西南, 袁训来. 2003. 绪论: 化石藻类和叠层石. 微体古生物学报, 20(1): 1-4. [Mu X N, Yuan X L. 2003. Introduction to fossil algae and stromatolites. Acta Micropalaeontologica Sinica, 20(1): 1-4] [17] 钱逸, 李国祥, 蒋志文, 陈孟莪, 杨爱华. 2007. 中国寒武系底部几种磷酸盐化保存的蓝菌类化石. 微体古生物学报, 24(2): 222-228. [Qian Y, Li G X, Jiang Z W, Chen M E, Yang A H. 2007. Some phosphatized cyanobacterian fossils form the basal Cambrian of China. Acta Micropalaeontologica Sinica, 24(2): 222-228] [18] 沈安江, 郑剑锋, 陈永权, 倪新锋, 黄理力. 2016. 塔里木盆地中下寒武统白云岩储集层特征、成因及分布. 石油勘探与开发, 43(3): 340-349. [19] [Shen A J, Zheng J F, Chen Y Q, Ni X F, Huang L L. 2016. Characteristics, origin and distribution of dolomite reservoirs in lower-middle Cambrian, Tarim Basin, NW China. Petroleum Exploration and Development, 43(3): 340-349] [20] 宋金民, 罗平, 杨式升, 杨迪, 周川闽, 李朋威, 翟秀芬. 2014. 塔里木盆地下寒武统微生物碳酸盐岩储集层特征. 石油勘探与开发, 41(4): 404-414. [Song J M, Luo P, Yang S S, Yang D, Zhou C M, Li P W, Zhai X F. 2014. Reservoirs of lower Cambrian microbial carbonates, Tarim Basin, NW China. Petroleum Exploration and Development, 41(4): 404-414] [21] 苏成鹏, 李飞, 谭秀成, 王小芳, 龚峤林, 李明隆, 芦飞凡, 唐浩, 邓嘉婷, 李红. 2021. 古代碳酸盐岩台地自生泥质组分成因及意义: 以上寺剖面中二叠统茅口组为例. 沉积学报,39(3):550-570. [Su C P, Li F, Tan X C, Wang X F, Gong Q L, Li M L, Lu F F, Tang H, Deng J T, Li H. 2021. Origin and significance of authigenic argillaceous components on the acient crbonate patform: A case study from the Maokou Formation of the Middle Permian at the Shangsi section, Guangyuan. Acta Sedimentologica Sinica,39(3):550-570] [22] 王建坡, 李越, 程龙, 曾雄伟, 王冠. 2014. 华南板块古生代生物礁及其古地理控制因素. 古生物学报, 53(1): 121-131. [Wang J P, Li Y, Cheng L, Zeng X W, Wang G. 2014. Paleozoic reefs and their paleogeological controls in South China Block. Acta Palaeontologica Sinica, 53(1): 121-131] [23] 王伟, 蔡耀平, 关成国, 万斌, 陈哲, 周传明, 袁训来. 2013. 华南埃迪卡拉纪化石保存方式及其时空分布. 古生物学报, 52(1): 68-79. [Wang W, Cai Y P, Guan C G, Wan B, Chen Z, Zhou C M, Yuan X L. 2013. Preservational modes and tempo-spatial distribution of Ediacaran fossils in China. Acta Palaeontologica Sinica, 52(1): 68-79] [24] 王永标, 童金南, 王家生, 周修高. 2005. 华南二叠纪末大灭绝后的钙质微生物岩及古环境意义. 科学通报, 50(6): 552-558. [Wang Y B, Tong J N, Wang J S, Zhou X G. 2005. Calcimicrobialites after end-Permian mass extinction in South China and its implication of Paleo-environment, Chinese Science Bulletin, 50(6): 552-558] [25] 魏显贵, 杜思清, 何政伟, 刘援朝, 吴德超. 1997. 米仓山地区构造演化. 矿物岩石, 17(s1): 107-113. [Wei X G, Du S Q, He Z W, Liu Y C, Wu D C. 1997. The tectonic evolution of Micangshan area. Journal of Mineralogy and Petrology, 17(s1): 107-113] [26] 杨爱华. 2005. 扬子地台早寒武世古杯动物群及其灭绝事件. 中国科学院南京地质古生物研究所博士论文. [Yang A H. 2005. Archaeocyaths and its extinction events on the Yangtze platform in the early Cambrian. Doctoral dissertation of Nanjing Institute of Geology and Palaeontology] [27] 杨慧宁, 毛颖颜, 潘兵, 李国祥. 2016. 陕南寒武纪早期仙女洞组生物礁灰岩微相序列. 微体古生物学报, 33(1): 75-86. [Yang H N, Mao Y Y, Pan B, Li G X. 2016. Microfacies sequences of the early Cambrian(Series 2)Xiannüdong Formation reefs in southern Shaanxi Province, NW China. Acta Micropalaeontologica Sinica, 33(1): 75-86] [28] 杨友运, 叶俭. 1996. 陕西西乡杨家沟早寒武世的生物礁. 西北地质, 17(2): 1-5. [Yang Y Y, Ye J. 1996. Early Cambrian reefs from Yangjiagou(Xixiang County, Shaanxi Province). Northwestern Geology, 17(2): 1-5] [29] 余谦, 牟传龙, 张海全, 谭钦银, 许效松, 闫剑飞. 2011. 上扬子北缘震旦纪—早古生代沉积演化与储层分布特征. 岩石学报, 27(3): 672-680. [Yu Q, Mou C L, Zhang H Q, Tan Q Y, Xu X S, Yan J F. 2011. Sedimentary evolution and reservoir distribution of northern Upper Yangtze plate in Sinian-Early Paleozoic. Acta Petrologica, 27(3): 672-680] [30] 曾楷, 李飞, 龚峤林, 唐浩, 苏成鹏, 车正强, 邓嘉婷, 胡广, 李凌, 曾伟, 谭秀成. 2020. 寒武系第二统仙女洞组混合沉积特征及古环境意义: 以川北旺苍唐家河剖面为例. 沉积学报, 38(1): 166-181. [Zeng K, Li F, Gong Q L, Tang H, Su C P, Che Z Q, Deng J T, Hu G, Li L, Zeng W, Tan X C. 2020. Characteristics and paleoenvironmental significance of mixed siliciclastic carbonate sedimentation in the Xiannüdong Formation, Cambrian(Series 2): a case study from the Tangjiahe section, Wangcang, northern Sichuan. Acta Sedimentologica Sinica, 38(1): 166-181] [31] 张廷山, 沈昭国, 兰光志, 王顺玉, 戴鸿鸣. 2002. 四川盆地早古生代灰泥丘中的微生物及其造岩和成丘作用. 沉积学报, 20(2): 243-248. [Zhang T S, Shen Z G, Lan G Z, Wang S Y, Dai H M. 2002. Microbial fossils and their biosedimentation & buildup in Paleozoic mud mounds, Sichuan Basin. Acta Sedimentologica Sinica, 20(2): 243-248] [32] 张廷山, 兰光志, 沈昭国, 王顺玉, 姜照勇. 2005. 大巴山、米仓山南缘早寒武世礁滩发育特征. 天然气地球科学, 16(6): 710-714. [Zhang T S, Lan G Z, Shen Z G, Wang S Y, Jiang Z Y. 2005. Early Cambrian reefs and banks development in southern margin of Daba Mt. and Micang Mt. Natural Gas Geoscience, 16(6): 710-714] [33] 张廷山, 姜照勇, 陈晓慧. 2008. 四川盆地古生代生物礁滩特征及发育控制因素. 中国地质, 35(5): 1017-1031. [Zhang T S, Jiang Z Y, Chen X H. 2008. Characteristics and controlling factors of development of Paleozoic reef-banks in the Sichuan Basin. Geology in China, 35(5): 1017-1031] [34] 赵兵, 杜思清, 徐新煌. 1997. 米仓山南缘寒武纪岩石地层及层序地层. 矿物岩石, 17(s1): 18-28. [Zhao B, Du S Q, Xu X H. 1997. The lithostratigraphy and sequence stratigraphy of Cambrian in the South of Micangshan area. Journal of Mineralogy and Petrology, 17(s1): 18-28] [35] 周传明, 袁训来, 肖书海, 陈哲, 华洪. 2019. 中国埃迪卡拉纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 7-25. [Zhou C M, Yuan X L, Xiao S H, Chen Z, Hua H. 2019. Ediacaran integrative stratigraphy and timescale of China. Science China-Earth Sciences, 49(1): 7-25] [36] 朱茂炎, 杨爱华, 袁金良, 李国祥, 张俊明, 赵方臣, Ahn Soo-Yeun, 苗兰云. 2019. 中国寒武纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 26-65. [Zhu M Y, Yang A H, Yuan J L, Li G X, Zhang J M, Zhao F C, Ahn S Y, Miao L Y. 2019. Cambrian integrative stratigraphy and timescale of China. Science China-Earth Sciences, 49(1): 26-65] [37] Adachi N, Nakai T, Ezaki Y, Liu J. 2014. Late early Cambrian archaeocyath reefs in Hubei Province, South China: Modes of construction during their period of demise. Facies, 60(2): 703-717. [38] Arp G, Reimer A, Reitner J. 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in phanerozoic oceans. Science, 292: 1701-1704. [39] Baumgartner L K, Reid R P, Dupraz C, Decho A W, Buckley D H, Spear J R, Przekop K M, Visscher P T. 2006. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sedimentary Geology, 185(3-4): 131-145. [40] Berner R A. 1975. The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochimica et Cosmochimica Acta, 39(4): 489-494. [41] Brennan S T, Lowenstein T K, Horita J. 2004. Seawater chemistry and the advent of biocalcification. Geology, 32(6): 473-476. [42] Burne R V, Moore L S. 1987. Microbialites: organosedimentary deposits of benthic micribial communities. Palaios, 2: 241-254. [43] Caron J B, Jackson D A. 2006. Taphonomy of the Greater Phyllopod Bed community, Burgess Shale. Palaios, 21(5): 451-465. [44] Chafetz H S, Guidry S A. 1999. Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: bacterial vs. a biotic precipitation. Sedimentary Geology, 126(1): 57-54. [45] Chen J, Lee J-H. 2014. Current progress on the geological record of microbialites and microbial carbonates. Acta Geologica Sinica, 88: 260-275. [46] Ding Y, Li Z, Liu S, Song J, Zhou X, Sun W, Zhang X, Li S, Ran B, Peng H, Li Z, Wang H, Chen D. 2021. Sequence stratigraphy and tectono-depositional evolution of a late Ediacaran epeiric platform in the upper Yangtze area, South China. Precambrian Research, 354: 106077. [47] Dupraz C, Visscher P T, Baumgartner L K, Reid R P. 2004. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake(Eleuthera Island, Bahamas). Sedimentology, 51(4): 745-765. [48] Dupraz C, Reid R P, Braissant O, Decho A W, Norman R S, Visscher P T. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3): 141-162. [49] Foster J S, Green S J, Ahrendt S R, Golubic S, Reid R P, Hetherington K L, Lee B. 2009. Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas. The ISME Journal, 3(5): 573-587. [50] Golubic S, Lee S-J, Browne K M. 2000. Cyanobacteria: Architects of sedimentary structures. In: Riding R, Awramik S M(eds). Microbial Sediments. Berlin, Heidelberg: Springer, 57-67. [51] Grotzinger J P, Knoll A H. 1999. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27: 313-358. [52] Hicks M, Rowland S M. 2009. Early Cambrian microbial reefs, archaeocyathan inter-reef communities, and associated facies of the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 281(1-2): 137-153. [53] Hood A V S, Wallace M W, Drysdale R N. 2011. Neoproterozoic aragonite-dolomite seas? widespread marine dolomite precipitation in Cryogenian reef complexes. Geology, 39(9): 871-874. [54] Konhauser K, Riding R. 2012. Bacterial Biomineralization. In: Knoll A H, Canfield D E, Konhauser K O(eds). Fundamentals of Geobiology. Chichester: Wiley-Blackwell, 105-130. [55] Lee J-H, Chen J, Chough S K. 2015. The middle-late Cambrian reef transition and related geological events: a review and new view. Earth-Science Reviews, 145: 66-84. [56] Lee J-H, Hong J, Choh S-J, Lee D-J, Woo J, Riding R. 2016. Early recovery of sponge framework reefs after Cambrian archaeocyath extinction: Zhangxia Formation(early Cambrian Series 3), Shandong, North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 457: 269-276. [57] Lenton T M, Daines S J. 2018. The effects of marine eukaryote evolution on phosphorus, carbon and oxygen cycling across the Phanerozoic transition. Emerging Topics in Life Sciences, 2: 267-278. [58] Luchinina V A, Korovnikov I V, Novozhilova N V, Tokarev D A. 2013. Benthic Cambrian biofacies of the Siberian Platform(hyoliths, small shelly fossils, archeocyaths, trilobites and calcareous algae). Stratigraphy and Geological Correlation, 21(2): 131-149. [59] Martin D, Briggs D E G, Parkes R J. 2004. Experimental attachment of sediment particles to invertebrate eggs and the preservation of soft-bodied fossils. Journal of the Geological Society, 161(5): 735-738. [60] Merz M U E, Zankl H. 1993. The influence of culture conditions on growth and sheath development of calcifying cyanobacteria. Facies, 29(1): 75-80. [61] Min X, Hua H, Liu L, Sun B, Cui Z, Dai Q. 2020. A diverse calcified cyanobacteria assemblage in the latest Ediacaran. Precambrian Research, 342: 105669. [62] Morse J W, Arvidson R S, Luttge A. 2007. Calcium carbonate formation and dissolution. Chemical Reviews, 107(2): 342-381. [63] Muscente A D, Hawkins A D, Xiao S. 2015. Fossil preservation through phosphatization and silicification in the Ediacaran Doushantuo Formation(South China): a comparative synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology, 434: 46-62. [64] Muscente A D, Schiffbauer J D, Broce J, Laflamme M, O’donnell K, Boag T H, Meyer M, Hawkins A D, Huntley J W, Mcnamara M, Mackenzie L A, Stanley Jr. G D, Hinman N W, Hofmann M H, Xiao S. 2017. Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Research, 48: 164-188. [65] Nealson K H. 1997. Sediment bacteria: Who’s there, what are they doing, and what’s new? Annual Reviews of Earth & Planetary Sciences, 25: 403-434. [66] Porter S M. 2007. Seawater chemistry and early carbonate biomineralization. Science, 316(5829): 1302. [67] Pratt B R. 1984. Epiphyton and Renalcis-Diagenetic microfossils from calcification of coccoid blue-green algae. AAPG Bulletin, 54: 948-971. [68] Pratt B R, Spincer B R, Wood R A, Zhurave A Y. 2000. Ecology and Evolution of Cambrian Reefs. In: Zhurave A Y, Riding R(eds). The Ecology of the Cambrian Radiation. New York: Columbia University Press, 254-274. [69] Price G D, Badger M R, Woodger F J, Long B M. 2008. Advances in understanding the cyanobacterial CO2-Concentrating-Mechanism(CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. Journal of Experimental Botany, 59(7): 1441-1461. [70] Riding R. 1991. Classification of Microbial Carbonates. In: Robert R(ed). Calcareous Algae and Stromatolites. Berlin, Heidelberg: Springer, 21-51. [71] Riding R. 1992. Temporal variation in calcification in marine cyanobacteria. Journal of the Geological Society, 149(6): 979-989. [72] Riding R. 2000. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47: 179-214. [73] Riding R. 2001. Calcified algae and bacteria. In: Zhuravlev A Y, Riding R(eds). The Ecology of the Cambrian Radiation. New York: Columbia University Press, 445-473. [74] Riding R. 2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4(4): 299-316. [75] Riding R. 2011a. Microbialites, Stromatolites, and Thrombolites. In: Reitner J, Thiel V(eds). Encyclopedia of Geobiology. Dordrecht: Springer Netherlands, 635-654. [76] Riding R. 2011b. Calcified Cyanobacteria. In: Reitner J, Thiel V(eds). Encyclopedia of Geobiology. Dordrecht: Springer Netherlands, 211-223. [77] Ries J B, Anderson M A, Hill R T. 2008. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time. Geobiology, 6(2): 106-119. [78] Rowland S M, Shapiro R S. 2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician. In: Kiessling W, Flügel E, Golonka J(eds). Phanerozoic Reef Patterns. Tulsa, Okla: SEPM Special Publication, 95-128. [79] Sandberg P A. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305(5929): 19-22. [80] Shapiro R S, Awramik S M. 2006. Favosamceria cooperi new Group and form: A widely dispersed, time-restricted thrombolite. Journal of Paleontology, 80(3): 411-422. [81] Song J, Liu S, Qing H, Jansa L, Li Z, Luo P, Yang D, Sun W, Peng H, Lin T. 2018. The depositional evolution, reservoir characteristics, and controlling factors of microbial carbonates of Dengying Formation in upper Neoprotozoic, Sichuan Basin, southwest China. Energy Exploration & Exploitation, 36(4): 591-619. [82] Su C, Li F, Tan X, Gong Q, Zeng K, Tang H, Li M, Wang X. 2020. Recognition of diagenetic contribution to the formation of limestone-marl alternations: a case study from Permian of South China. Marine and Petroleum Geology, 111: 765-785. [83] Sutherland I W. 2001. Exopolysaccharides in biofilm flocs and related structures. Water Science and Technology, 43(6): 77-86. [84] Tang H, Kershaw S, Tan X, Li F, Shen C, Lu F, Yang X. 2019. Sedimentology of reefal buildups of the Xiannüdong Formation(Cambrian Series 2), SW China. Journal of Palaeogeography, 8(2): 170-180. [85] Tarhan L G, Hood A V S, Droser M L, Gehling J G, Briggs D E G. 2016. Exceptional preservation of soft-bodied Ediacara Biota promoted by silica-rich oceans. Geology, 44(11): 951-954. [86] Thorie A, Mukhopadhyay A, Banerjee T, Mazumdar P. 2018. Giant ooids in a Neoproterozoic carbonate shelf, Simla Group, Lesser Himalaya, India: An analogue related to Neoproterozoic glacial deposits. Marine and Petroleum Geology, 98: 582-606. [87] Visscher P T, Stolz J F. 2005. Microbial mats as bioreactors: Populations, processes, and products. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1-2): 87-100. [88] Webb G E. 1996. Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates(microbial carbonate and biologically induced cement)? Sedimentology, 43: 947-971. [89] Webb G E, Kamber B S. 2000. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. [90] Wood R, Zhuravlev A Y. 2012. Escalation and ecological selectively of mineralogy in the Cambrian Radiation of skeletons. Earth-Science Reviews, 115(4): 249-261. [91] Wood R A, Zhuravlev A Y, Sukhov S S, Zhu M, Zhao F. 2017. Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform. Geology, 45(1): 27-30. [92] Zempolich W G, Wilkinson B H, Lohmann K C. 1988. Diagenesis of late Proterozoic carbonates; the Beck Spring dolomite of eastern California. Journal of Sedimentary Research, 58: 656-672. [93] Zhang M, Hong J, Choh S, Lee D. 2017. Thrombolite reefs with archaeocyaths from the Xiannüdong Formation(Cambrian Series 2), Sichuan, China: Implications for Early Paleozoic bioconstruction. Geosciences Journal, 21(5): 1-12. [94] Zhu M, Zhang J, Yang A, Li G, Steiner M, Erdtmann B D. 2003. Sinian-Cambrian stratigraphic framework for shallow-to deep-water environments of the Yangtze Platform: An integrated approach. Natural Science, 13(12): 951-960. [95] Zhuravlev A Y, Naimark E B, Wood R A. 2015. Controls on the diversity and structure of earliest metazoan communities: Early Cambrian reefs from Siberia. Earth-Science Reviews, 147: 18-29.