Sedimentary characteristics and its palaeoenvironmental significance of the Upper Devonian storm deposits at Qingfengxia section in Guangyuan City,Sichuan Province
Huang Cheng1,2, Shen Yu-Wei1,2, Wen Xin3
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China; 2 The Laboratory of Carbonate Sedimentary and Diagenetic Geochemistry,Southwest Petroleum University, Chengdu 610500, China; 3 Exploration Division of PetroChina Southwest Oil and Gas Field Company, Chengdu 610041, China
Abstract:It is well known that environmental changes during the Devonian Givetian-Frasnian(G-F) transition initiated the beginning of the Late Devonian extinction. However,it is still controversial as to the understanding of environmental changes in this period. For that,this study conducted detailed sedimentological study on six sets of tempestites in the Devonian Guanwushan Formation at the Qingfengxia section in Guangyuan City,Sichuan Province,China. Some typical storm depositional indicators,including erosional structures,coarse lag deposits,graded bedding,and hummocky cross-stratification were identified. Three proximal storm sedimentary sequences have been established based on the combined characteristics of storm sedimentary structures in the Guanwushan Formation. Storm sequence Ⅰ consists of calcirudites with erosional surface at the bottom and homogeneous mudstones at the top. Storm sequence Ⅱ is characterized by calcirudites with erosional surface at the bottom and calcarenites with graded bedding at the top. Storm sequence Ⅲ is composed of calcirudites with erosional surface at the bottom,coquinas with graded bedding in the middle interval,hummocky cross-stratificated wackestones in the upper part,and mudstones with wavy and horizontal beddings at the top. The tempestites were formed in the early Frasnian age according to the biochronological analysis of conodont assemblages. Based on the analysis of origin of modern storms,the widely distributed tempestites in early Frasnian age at the low-latitude areas might have resulted from climate warming and rapid transgression. Discovery of tempestites in the study area is of great significance in understanding of the Late Devonian sedimentary environment, palaeogeography,and palaeoclimate in the upper Yangtze region.
Huang Cheng,Shen Yu-Wei,Wen Xin. Sedimentary characteristics and its palaeoenvironmental significance of the Upper Devonian storm deposits at Qingfengxia section in Guangyuan City,Sichuan Province[J]. JOPC, 2021, 23(6): 1094-1109.
[1] 白万备,齐永安,郭英海,王敏,庆国帅. 2018. 河南鲁山寒武系第二统辛集组风暴沉积及其相关的遗迹化石. 古地理学报, 20(3): 365-376. [Bai W B,Qi Y A,Guo Y H,Wang M,Qing G S.2018. Storm deposits and relevant trace fossils from the Cambrian Series 2 Xinji Formation in Lushan area,Henan Province. Journal of Palaeogeography(Chinese Edition), 20(3): 365-376] [2] 白志强. 1998. 泥盆纪华南板块古地理的位置及其漂移. 北京大学学报(自然科学版), 34(6): 807-812. [Bai Z Q.1998. The paleogeographical position and drifting of the Southern China plate in Devonian. Acta Scientiarum Naturalium Universitatis Pekinensis, 34(6): 807-812] [3] 蔡全升,陈孝红,周鹏,危凯,李炎桂. 2020. 峡东地区震旦纪最早期风暴沉积记录及其地质意义. 沉积学报, 38(1): 182-195. [Cai Q S,Chen X H,Zhou P,Wei K,Li G Y.2020. Early Sinian storm deposits in the eastern Yangtze Gorges area and their geological significance. Acta Sedimentologica Sinica, 38(1): 182-195] [4] 陈林洲,罗新民,肖劲东. 1991. 鄂东南早三叠世钙质风暴沉积特征及其初步研究. 岩相古地理,11(3): 1-9. [Chen L Z,Luo X M,Xiao J D.1991. Early Triassic calcareous storm deposits in Southeastern Hubei. Sedimentary Facies and Palaeogeography,11(3): 1-9] [5] 陈世悦,杨怀宇,李文涛,张桂权,张鹏飞,时瑞坤. 2010. 贵州紫云地区上泥盆统风暴重力流沉积特征及地质意义. 地质学报, 84(1): 127-132. [Chen S Y,Yang H Y,Li W T,Zhang G Q,Zhang P F,Shi R K.2010. The sedimentary characteristics of the Upper Devonian tempestite and gravity flow in the Ziyun area,Guizhou and its geological implications. Acta Geologica Sinica(Chinese Edition), 84(1): 127-132] [6] 杜远生,龚一鸣,刘本培,冯庆来,吴诒. 1996. 华南板块泥盆纪层序地层及海平面变化. 岩相古地理, 16(6): 14-23. [Du Y S,Gong Y M,Liu B P,Feng Q L,Wu Y.1996. Devonian sequence stratigraphy and sea-level changes within the South China plate. Sedimentary Facies and Palaeogeography, 16(6): 14-23] [7] 杜远生,周道华,龚淑云,韩欣. 2001. 甘肃靖远─景泰泥盆系湖相风暴岩及其古地理意义. 矿物岩石, 21(3): 69-73. [Du Y S,Zhou D H,Gong S Y,Han X.2001. Tempestite and its palaeogeographical significance in the Devonian of Jingyuan and Jingtai counties,Gansu Province. Journal of Mineralogy and Petrology, 21(3): 69-73] [8] 龚大明. 1990. 马角坝泥盆系观雾山组顶部的牙形石. 成都地质学院学报, 17(4): 10-15. [Gong D M.1990. Conodonts from the top of the Guanwushan Formation in Majiaoba,Northern Sichuan. Journal of Chengdu College of Geology, 17(4): 10-15] [9] 龚一鸣. 1993. 东、西准噶尔泥盆系火山碎屑风暴岩类型、特征及其地质意义. 岩相古地理, 13(6): 18-25. [Gong Y M.1993. Types,characteristics and geologic significance of the Devonian pyroclassic tempestites in east and west Junggar,Xinjiang. Sedimentary Facies and Palaeogeography, 13(6): 18-25] [10] 郝毅,李文正,苑保国,姚倩颖,戴鑫,熊绍云. 2020. 川西北地区泥盆系观雾山组紫红色白云岩成因初探. 沉积与特提斯地质, 40(4): 11-16. [Hao Y,Li W Z,Yuan B G,Yao Q Y,Dai X,Xiong S Y.2020. The genesis of the purplish-red dolostone in the Middle Devonian Guanwushan Formation,northwest Sichuan Basin. Sedimentary Geology and Tethyan Geology, 40(4): 11-16] [11] 侯鸿飞,万正权,鲜思远. 1988. 四川龙门山地区泥盆纪地层古生物及沉积相. 北京: 地质出版社,1-158. [Hou H F,Wan Z Q,Xian S Y.1988. Devonian Stratigraphy,Paleontology and Sedimentary Facies of Longmenshan,Sichuan. Beijing: Geological Publishing House,1-158] [12] 胡明毅,贺萍. 2002. 潮坪风暴沉积特征及其研究意义. 地球科学进展, 17(3): 391-395. [Hu M Y,He P.2002. The study of tidal storm deposits and its research significance. Advances in Earth Science, 17(3): 391-395] [13] 黄家园,梁昆,王玉珏,郄文昆. 2019. 全球泥盆纪生物礁演化及其影响因素. 地层学杂志, 43(2): 198-209. [Huang J Y,Liang K,Wang Y J,Qie W K.2019. Evolution of Deovnian reefs and its influcing factors. Journal of Stratigraphy, 43(2): 198-209] [14] 江大勇,丁干,白顺良. 2000. 广西六景泥盆纪吉维阶—弗拉斯阶界线层牙形石生物地层. 地层学杂志, 24(3): 195-200. [Jiang D Y,Ding G,Bai S Y.2000. Conodont biostratigraphy across the Givetian-Frasnian boundary(Devonian)of Liujing,Guangxi. Journal of Stratigraphy, 24(3): 195-200] [15] 蒋武,胡祖修,郑家凤. 1996. 中国四川龙门山地区泥盆系牙形石. 微体古生物学报, 13(2): 195-204. [Jiang W,Hu Z X,Zheng J F.1996. Devonian conodonts from Longmen Mountain area of Sichuan,China. Acta Micropalaeontologica Sinica, 13(2): 195-204] [16] 金振奎,蒋盘良,冯增昭. 1995. 黔东湘西寒武纪碳酸盐斜坡上的风暴沉积. 石油大学学报(自然科学版), 19(3): 1-6. [Jin Z K,Jiang P L,Feng Z Z.1995. Cambrian storm deposits on carbonate slope at east Guizhou and west Hunan Provinces. Journal of the University of Petroleum,China, 19(3): 1-6] [17] 景宇轩,刘建波,闫振,孙永超,许振清. 2015. 利用风暴沉积类型恢复海平面变化: 以北京西山下苇甸剖面寒武纪中晚期风暴沉积为例. 古地理学报, 17(5): 653-668. [Jing Y X,Liu J B,Yan Z,Sun Y C,Xu Z Q.2015. Reconstructing sea-level changes from types of storm deposits: an example of the Middle and Late Cambrian at Xiaweidian section of Western Hills,Beijing. Journal of Palaeogeography(Chinese Edition), 17(5): 653-668] [18] 李磊,李凤杰,申玉山,林洪,杨豫川. 2013. 柴达木盆地新近纪湖相风暴岩的发现及其对青藏高原隆升的地质意义. 地层学杂志, 37(1): 48-53. [Li L,Li F J,Shen Y S,Lin H,Yang Y C.2013. The discovery of Neogene lacustrine tempestites in the Qaidam basin and its geological significance for the uplift of the Qinghai-Tibet plateau. Journal of Stratigraphy, 37(1): 48-53] [19] 李壮福,郭英海. 2000. 徐州地区震旦系贾园组的风暴沉积. 古地理学报, 2(2): 19-28. [Li Z F,Guo Y H.2000. Storm deposits in the Sinian Jiayuan Formation of Xuzhou area. Journal of Palaeogeography(Chinese Edition), 2(2): 19-28] [20] 刘宝珺,张继庆,许效松. 1986. 四川兴文四龙下二叠统碳酸盐风暴岩. 地质学报,60(1): 55-67. [Liu B J,Zhang J Q,Xu X S.1986. On the calcareous tempestites in the Lower Permian of Silong,Xingwen,Sichuan. Acta Geologica Sinica(Chinese Edition),60(1): 55-67] [21] 刘树根,李智武,曹俊兴,刘顺,邓宾,王国芝,邓斌. 2009. 龙门山陆内复合造山带的四维结构构造特征. 地质科学, 44(4): 1151-1180. [Liu S G,Li Z W,Cao J X,Liu S,Deng B,Wang G Z,Deng B.2009.4-D textural and structural characteristics of Longmen intracontinental composite orogenic belt,Southwest China. Chinese Journal of Geology, 44(4): 1151-1180] [22] 刘文均,郑荣才,李祥辉. 1999. 龙门山泥盆纪沉积盆地的古地理和古构造重建. 地质学报, 73(2): 109-119. [Liu W J,Zheng R C,Li X H.1999. Reconstruction of palaeogeography and palaeotect onics of a Devonian sedimentary basin in the Longmenshan area. Acta Geologica Sinica(Chinese Edition), 73(2): 109-119] [23] 龙学明. 1991. 龙门山中北段地史发展的若干问题. 成都地质学院学报, 18(1): 8-16. [Long X M.1991. Several questions of geochronic evolution in the mid-northern segment of Longmenshan mountains. Journal of Chengdu College of Geology, 18(1): 8-16] [24] 罗志立,金以钟,朱夔玉,赵锡奎. 1988. 试论上扬子地台的峨眉地裂运动. 地质论评, 34(1): 11-24. [Luo Z L,Jin Y Z,Zhu K Y,Zhao X K.1988. On Emei Taphrogenesis of the Upper Yangtze platform. Geological Review, 34(1): 11-24] [25] 孟祥化,乔秀夫,葛铭. 1986. 华北古浅海碳酸盐风暴沉积和丁家滩相序模式. 沉积学报, 4(2): 1-18. [Meng X H,Qiao X F,Ge M.1986. Study on ancient shallow sea carbonate storm deposits(tempesitite)in North China and Dingjiatan model of facies sequences. Acta Sedimentologica Sinica, 4(2): 1-18] [26] 宋金民,杨迪,李朋威,罗平. 2012. 中国碳酸盐风暴岩发育特征及其地质意义. 现代地质, 26(3): 589-600. [Song J M,Yang D,Li P W,Luo P.2012. Development characteristics and geological significance of carbonate tempestites in China. Geoscience, 26(3): 589-600] [27] 魏钦廉,郑荣才,周刚,肖玲. 2011. 龙门山甘溪组谢家湾段风暴岩沉积特征及其意义. 中国地质, 38(5): 1282-1288. [Wei Q L,Zheng R C,Zhou G,Xiao L.2011. Clastic tempestite in Xiejiawan Member of Ganxi Formation within Longmenshan area and its significance. Geology in China, 38(5): 1282-1288] [28] 鲜思远,陈继荣,万正权. 1995. 四川龙门山甘溪泥盆纪生态地层、层序地层与海平面变化. 岩相古地理, 15(6): 1-47. [Xian S Y,Chen J R,Wan Z Q.1995. Devonian ecostratigraphy,sequence stratigraphy and sea-level changes in Ganxi,Longmen Mountain,Sichuan. Sedimentary Facies and Palaeogeography, 15(6): 1-47] [29] 熊连桥,姚根顺,沈安江,陈剑,熊绍云,郝毅. 2017. 川西北部泥盆系观雾山组沉积相新认识: 以大木垭剖面与何家梁剖面为例. 海相油气地质, 22(3): 1-11. [Xiong L Q,Yao G S,Shen A J,Chen J,Xiong S Y,Hao Y.2017. A view of the sedimentary facies of Middle Devonian Guanwushan Formation in Northwestern Sichuan Basin,China: a case study of Damuya & Hejialiang sections. Marine Origin Petroleum Geology, 22(3): 1-11] [30] 熊连桥,姚根顺,熊绍云,沈安江,郝毅. 2019. 基于平衡剖面对断裂带地层展布恢复的方法: 以川西地区中泥盆统观雾山组为例. 大地构造与成矿学, 43(6): 1079-1093. [Xiong L Q,Yao G S,Xiong S Y,Shen A J,Hao Y.2019. A method of stratum restoration for fault belt based on balanced cross-section: a case study of the Middle Devonian Guanwushan Formation in the Longmenshan area,Western Sichuan Basin,China. Geotectonica et Metallogenia, 43(6): 1079-1093] [31] 许安涛,李凤杰,刘奎,向鹏飞,赵晨圆,胡鹏. 2018. 北川甘溪下泥盆统风暴岩沉积特征及其沉积模式. 中国地质, 45(5): 1049-1061. [Xu A T,Li F J,Liu K,Xiang P F,Zhao C Y,Hu P.2018. The characteristics and sedimentary model of storm deposits in the Lower Devonian strata of Beichuan. Geology in China, 45(5): 1049-1061] [32] 严钦尚. 1984. 论滨岸和浅海的风暴沉积. 海洋与湖沼, 15(1): 14-20. [Yan Q S.1984. Overview of the storm-generated deposits on nearshore zone and open shelf. Oceanologica et Limnologia Sinica, 15(1): 14-20] [33] 张昊,李凤杰,沈凡,陈政安,倪子尧. 2019. 四川盆地龙门山区甘溪石沟里泥盆系养马坝组风暴沉积特征及其地质意义. 古地理学报, 21(3): 441-450. [Zhang H,Li F J,Shen F,Chen Z A,Ni Z Y.2019. Storm deposits characteristics and its geological significance in the Devonian Yangmaba Formation from Shigouli section,Longmenshan area,Sichuan Basin. Journal of Palaeogeography(Chinese Edition), 21(3): 441-450] [34] 张哲,杜远生,毛治超,李瑞,原小杰. 2008. 湘东南桂阳莲塘上泥盆系风暴岩特征及其古地理、古气候意义. 沉积学报, 26(3): 369-375. [Zhang Z,Du Y S,Mao Z C,Li R,Yuan X J.2008. The Upper Devonian tempestites from Liantang,Guiyang,Southeastern Hunan Province and its palaeogeographic and palaeoclimatic significance. Acta Sedimentologica Sinica, 26(3): 369-375] [35] Aigner T.1979. Schill-tempestite im Oberen Muschelkalk(Trias,SW-Deutschland). Neues Jahrbuchfur Geologic und Paläontologie,Abhandlungen, 157: 326-343. [36] Aigner T.1982. Calcareous tempestites: storm-dominated stratification in Upper Muschelkalk limestones(Middle Trias,SW-Germany). In: Einsele G,Seilacher A(eds). Cyclic and Event Stratification. Springer-Verlag,Berlin: 180-198. [37] Aigner T.1985. Storm Depositional Systems: Dynamic Stratigraphy in Modern and Ancient Shallow-marine Sequences. Lecture Notes in Earth Sciences. Springer-Verlag,Berlin: 1-174. [38] Allen J R L.1982. Sedimentary Structures: Their Character and Physical Basis. Elsevier,Amsterdam: 471-506. [39] Ball M M,Shinn E A,Stockman K W.1967. The geologic effects of Hurricane Donna in South Florida. The Journal of Geology, 75(5): 583-597. [40] Boucot A J,Scotese C R,Chen X,Morley R J.2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. Tulsa: Society for Sedimentary Geology,53-78. [41] Brandt D S,Elias R J.1989. Temporal variations in tempestite thickness may be a geologic record of atmospheric CO2. Geology, 17(10): 951-952. [42] Chen S F,Wilson C J L.1996. Emplacement of the Longmen Shan Thrust-Nappe Belt along the eastern margin of the Tibetan Plateau. Journal of Structural Geology, 18(4): 413-430. [43] Copper P.2002. Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeography,Palaeoclimatology,Palaeoecology, 181(1-3): 27-65. [44] Di Celma C,Pitts A,Jablonská D,Haynes J T.2020. Backset lamination produced by supercritical backwash flows at the beachface-shoreface transition of a storm-dominated gravelly beach(Middle Pleistocene,central Italy). Marine and Petroleum Geology, 112: 103987. [45] Dott R H Jr,Bourgeois J.1982. Hummocky stratification: significance of its variable bedding sequences. Geological Society of America Bulletin, 93(8): 663-680. [46] Duke W L.1985. Hummocky cross-stratification,tropical hurricanes,and intense winter storms. Sedimentology, 32(2): 167-194. [47] Duke W L,Arnott R W C,Cheel R J.1991. Shelf sandstones and hummocky cross-stratification: new insights on a stormy debate. Geology, 19(6): 625-628. [48] Favera J C D.1985. Devonian storm-and tide-dominated shelf deposits,Parnaiba Basin,Brazil(abstract). AAPG Bulletin, 66: 562. [49] House M R.2002. Strength,timing,setting and cause of Mid-Paleozoic extinctions. Palaeogeography,Palaeoclimatology,Palaeoecology, 181(1-3): 5-25. [50] Huang C,Gong Y M.2016. Timing and patterns of the Frasnian-Famennian event: evidences from high-resolution conodont biostratigraphy and event stratigraphy at the Yangdi section,Guangxi,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 448: 317-338. [51] Ito M,Ishigaki A,Nishikawa T,Saito T.2001. Temporal variation in the wavelength of hummocky cross-stratification: implications for storm intensity through Mesozoic and Cenozoic. Geology, 29(1): 87-89. [52] Jin J S,Harper D A T,Cocks L R M,McCausland P J A,Rasmussen C M Ø,Sheehan P M.2013. Precisely locating the Ordovician equator in Laurentia. Geology, 41(2): 107-110. [53] Joachimski M M,van Geldern R,Breisig S,Day W,Buggisch J.2004. Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian. International Journal of Earth Sciences, 93(4): 542-553. [54] Joachimski M M,Breisig S,Buggisch W,Talent J A.2009. Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth and Planetary Science Letters, 284(3-4): 599-609. [55] Johnson J G,Klapper G,Sandberg C A.1985. Devonian eustatic fluctuations in Euramerica. Geological Society of America Bulletin, 96(5): 567-587. [56] Kaźmierczak J,Goldring R.1978. Subtidal flat-pebble conglomerate from the Upper Devonian of Poland: a multiprovenant high-energy product. Geological Magazine, 115(5): 359-366. [57] Kelling G,Mullin P R.1975. Graded limestones and limestone-quartzite couplets: possible storm-deposits from the Moroccan Carboniferous. Sedimentary Geology, 13(3): 161-190. [58] Kreisa R D,Bambach R K.1982. The role of storm processes in generating shell beds in Paleozoic shelf environments. In: Einsele G,Seilacher A(eds). Cyclic and Event Stratification. Springer-Verlag,Berlin: 200-207. [59] Li H,Ma X P,Wei L M.2009. A Middle-Upper Devonian boundary section in the open platform,platform margin facies of Guilin,South China. Acta Geologica Sinica(English Edition), 83(3): 524-534. [60] Marsaglia K M,Klein G D.1983. The paleogeography of Paleozoic and Mesozoic storm depositional systems. The Journal of Geology, 91(2): 117-142. [61] Myrow P M,Lukens C,Lamb M P,Houck K,Strauss J.2008. Dynamics of a transgressive prodeltaic system: implications for geography and climate within a Pennsylvanian intracratonic basin,Colorado,U.S.A. Journal of Sedimentary Research, 78(8): 512-528. [62] Parrish J T,Peterson F.1988. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States: a comparison. Sedimentary Geology, 56(1): 261-282. [63] Quin J G.2011. Is most hummocky cross-stratification formed by large-scale ripples?Sedimentology, 58(6): 1414-1433. [64] Saunders M A,Lea A S.2008. Large contribution of sea surface warming to recent increase in Atlantic hurricane activity. Nature, 451(7178): 557-560. [65] Sun Y D,Joachimski M M,Wignall P B,Yan C,Chen Y,Jiang H,Wang L,Lai X L.2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338(6105): 366-370. [66] Taylor A,Goldring R,Gowland S.2003. Analysis and application of ichnofabrics. Earth-Science Reviews, 60(3): 227-259. [67] Walliser O.1996. Global events in the Devonian and Carboniferous. In: Walliser O(ed). Global Events and Event Stratigraphy in the Phanerozoic. Springer-Verlag,Berlin: 225-250. [68] Wendland W M.1977. Tropical storm frequencies related to sea surface temperatures. Journal of Applied Meteorology and Climatology, 16(5): 477-481. [69] Yang B,Dalrymple R W,Chun S.2006. The significance of hummocky cross-stratification(HCS)wavelengths: evidence from an open-coast tidal flat,South Korea. Journal of Sedimentary Research, 76(1): 2-8. [70] Ziegler W,Sandberg C.1990. The Late Devonian standard conodont zonation. Courier Forsehungsinstitut Senekenebrg, 121: 1-113.