Spatial and temporal evolution of Lingnan Beach in Qingdao of Shandong Province and its influencing factors
Wu Chuang1,2, Zhang Xiao-Dong1,2, Xu Shu-Mei1,2, Hu Ri-Jun1,2, Jiang Sheng-Hui1,2, Yang Zuo-Sheng1,2
1 Key Lab of Submarine Geosciences and Prospecting Techniques,MOE,Ocean University of China,Shandong Qingdao 266100,China; 2 College of Marine Geosciences,Ocean University of China,Shandong Qingdao 266100,China
Abstract:Comprehensively and accurately assessing the spatial and temporal evolution of beaches is the premise of beach erosion protection. Comprehensively and accurately assessing the spatial and temporal evolution of beaches based on satellite imagery is of great significance to the erosion protection of beaches which lack long-term continuous measured data.In this paper,880 satellite images of Lingnan Beach from 1984 to 2021 were synthesized and downloaded from Google Earth Engine;the dry/wet line and waterline positions on transects were extracted using a method focusing on beach transects.Combined with simulated tidal heights,the beach profile morphology was analyzed. The beach slope,mean high and low tide lines were calculated,and the spatial and temporal evolution of Lingnan Beach was studied by using above multiple indicators. Combined with historical data,the main factors affecting the evolution of Lingnan Beach were analyzed,and the errors of the satellite-derived beach shorelines were evaluated using the measured data of the beach.The results show that the application of a large number of satellite images improves the temporal resolution,accuracy and reliability of the results. In 1984-2021,part of Lingnan Beach have experienced periodic rapid erosion with a rate of 5.2~60 m/a and a total amount of 30~78 m,lasting for about 0.5~11 years. The rapid erosion was mainly caused by human factors such as dredging sand,reconstruction and abandonment of aquaculture farms,while storm surges played a secondary role. Apart from rapid erosion periods,there was widespread slow erosion at Lingnan Beach,and the erosion rate was mostly less than 2 m/a,resulting from the relative sea level rise and the significant reduction of river discharged sediments into the sea.
Wu Chuang,Zhang Xiao-Dong,Xu Shu-Mei et al. Spatial and temporal evolution of Lingnan Beach in Qingdao of Shandong Province and its influencing factors[J]. JOPC, 2022, 24(1): 152-163.
[1]蔡锋,苏贤泽,曹惠美,夏东兴. 2005. 华南砂质海滩的动力地貌分析. 海洋学报, 27(2): 106-114. [Cai F,Su X Z,Cao H M,Xia D X.2005. Analysis on morphodynamics of sandy beaches in South China. Acta Oceanologica Sinica, 27(2): 106-114] [2]蔡锋,苏贤泽,刘建辉,李兵,雷刚. 2008. 全球气候变化背景下中国海岸侵蚀问题及防范对策. 自然科学进展, 18(10): 1093-1103. [Cai F,Su X Z,Liu J H,Li B,Lei G.2008. Problems and countermeasures of Chinas coastal erosion under the background of global climate change. Progress in Natural Science, 18(10): 1093-1103] [3]陈子燊. 2000. 海滩剖面时空变化过程分析. 海洋通报, 19(2): 42-48. [Chen Z S.2000. Analysis on spatial and temporal process of beach profile variations. Marine Science Bulletin, 19(2): 42-48] [4]陈子燊,于吉涛,罗智丰. 2010. 近岸过程与海岸侵蚀机制研究进展. 海洋科学进展, 28(2): 250-256. [Chen Z S,Yu J T,Luo Z F.2010. Progresses on study of nearshore processes and coastal erosion mechanisms. Advances in Marine Science, 28(2): 250-256] [5]崔承琦,李家丰. 1987. 灵山湾及其附近沿岸地貌层序与海岸特征. 海洋湖沼通报,(3): 47-51. [Cui C Q,Li J F.1987. The coastal geomorphological s.png and types of Lingshan Bye and its neighbour regions of Shandong Province. Transactions of Oceanology and Limology, (3): 47-51] [6]高伟,李萍,高珊,田梓文,李兵,刘杰,徐元芹. 2020. 台风“利奇马”对山东省海阳市海滩演化过程的影响. 海洋学报, 42(11): 88-99. [Gao W,Li P,Gao S,Tian Z W,Li B,Liu J,Xu Y Q.2020. Response process of the Haiyang Beach evolution to Typhoon Lekima in Shandong Province. Acta Oceanologica Sinica, 42(11): 88-99] [7]国家信息中心. 2019. 潮汐表第1册:鸭绿江口至长江口. 北京: 海洋出版社,534. [National Marine Data and Information Service. 2019. Tide Tables Vol.1: From the Yalu River Mouth to the Changjiang River Mouth. Beijing: China Ocean Press,534] [8]侯西勇,毋亭,侯婉,陈晴,王远东,于良巨. 2016.20世纪 40年代初以来中国大陆海岸线变化特征. 中国科学: 地球科学, 46: 1065-1075. doi:10.1360/N072015-00268. [Hou X Y,Wu T,Hou W,Chen Q,Wang Y D,Yu L J.2016. Characteristics of coastline changes in mainland China since the early 1940s. Science China Earth Sciences, 59: 1791-1802. doi:10.1007/s11430-016-5317-5] [9]黄祖明,戴志军,黎树式,黄鹄,冯炳斌. 2021. 中强潮海滩剖面冲淤过程研究: 以北海银滩为例. 海洋地质与第四纪地质, 41(4): 36-47. [Huang Z M,Dai Z J,Li S S,Huang H,Feng B B.2021. Erosion and accretion of a meso-macro-tidal beach profile: a case from the Yintan Beach of Beihai. Marine Geology & Quaternary Geology, 41(4): 36-47] [10]匡翠萍,赵钒,顾杰,汤俐. 2019. 狭长小型河口冲淤特征与演变机制. 同济大学学报(自然科学版), 47(10): 1437-1445. [Kuang C P,Zhao F,Gu J,Tang L.2019. Scouring and silting characteristics and bed evolution mechanism in narrow Small Estuary. Journal of the Tongji University(Natural Science), 47(10): 1437-1445] [11]李广雪,宫立新,杨继超,丁咚,李兵,曹立华,王永红,刘玲. 2013. 山东滨海沙滩侵蚀状态与保护对策. 海洋地质与第四纪地质, 33(5): 35-46. [Li G X,Gong L X,Yang J C,Ding D,Li B,Cao L H,Wang Y H,Liu L.2013. Erosion state and protection countermeasures of coastal sand beach in Shandong Province. Marine Geology & Quaternary Geology, 33(5): 35-46] [12]黎树式,戴志军,葛振鹏,庞文鸿,魏稳,梅雪霏,黄鹄. 2017. 强潮海滩响应威马逊台风作用动力沉积过程研究: 以北海银滩为例. 海洋工程, 35(3): 89-98. [Li S S,Dai Z J,Ge Z P,Pang W H,Wei W,Mei X F,Huang H.2017. Sediment dynamic processes of macro-tidal beach in response to Typhoon Rammasun action: a case study of Yintan,Beihai. The Ocean Engineering, 35(3): 89-98] [13]王文海,吴桑云,陈雪英. 1994. 山东省9216号强热带气旋风暴期间的海岸侵蚀灾害. 海洋地质与第四纪地质, 14(4): 71-78. [Wang W H,Wu S Y,Chen X Y.1994. Erosional disasters caused by storm surge during No.9216 strong tropical cyclone along Shandong coast. Marine Geology & Quaternary Geology, 14(4): 71-78] [14]王永红,孙静,褚智慧. 2017. 海滩质量评价体系建立和应用: 以山东半岛南部海滩为例. 海洋通报, 36(3): 260-267. [Wang Y H,Sun J,Chu Z H.2017. Building and application of quality evaluation system a beach: a case the South Shandong Province. Marine Science Bulletin,36(3),260-267] [15]徐方建,赵永芳,李传顺,孙根云,张康,田旭,王心怿. 2014. 青岛市灵山湾海水浴场沉积物分布特征与影响因素. 海洋通报, 33(2): 157-162. [Xu F J,Zhao Y F,Li C S,Sun G Y,Zhang K,Tian X,Wang X Y.2014. Characteristics of sediment distribution and influencing factors at the Lingshanwan bathing beach of Qing dao. Marine Science Bulletin, 33(2): 157-162] [16]杨鸣,夏东兴,谷东起,薛佐,丰爱平. 2005. 全球变化影响下青岛海岸带地理环境的演变. 海洋科学进展, 23(3): 45-52. [Yang M,Xia D X,Gu D Q,Xue Z,Feng A P.2005. Geographic environmental evolution in the Qingdao coastal area under the influence of global change. Advances in Marine Science, 23(3): 45-52] [17]张晓东,谢睿,范代读,杨作升,王虹敏,吴闯,姚雨涵. 2021. 长江入海泥沙锐减下河口最大无人沙岛的持续淤涨. 中国科学: 地球科学,51(11):1990-2000. doi: 10.1360/SSTe-2020-0298. [Zhang X D,Xie R,Fan D D,Yang Z S,Wang H M,Wu C,Yao Y H.2021. Sustained growth of the largest uninhabited alluvial island in the Changjiang Estuary under the drastic reduction of river discharged sediment. Science China Earth Sciences, 64(10): 1687-1697. https://doi.org/10.1007/s11430-020-9746-3] [18]张晓慧,盛春雁,邵滋和. 2006. 青岛沿海风暴潮分析. 海洋预报,23(S): 42-46. [Zhang X H,Sheng C Y,Shao Z H.2006. Analysis of storm surge at coastal area of Qingdao. Marine Forecasts,23(S): 42-46] [19]赵永芳,徐方建,刘清容,李安春,王心怿,吴锦祥,刘航宇,陈铭,李丽君. 2016. 青岛市灵山湾海水浴场表层沉积物粒度冬季变化特征及其原因. 海洋科学,40(3): 108-117. [Zhao Y F,Xu F J,Liu Q R,Li A C,Wang X Y,Wu J X,Liu H Y,Chen M,Li L J.2016. Variation in characteristics of surface sediment particle size and influencing factors in winter at the Lingshanwan Beach,Qingdao. Marine Sciences,40(3): 108-117] [20]庄振业,陈卫民,许卫东. 1989. 山东半岛若干平直砂岸近期强烈蚀退及其后果. 青岛海洋大学学报, 19(1): 90-98. [Zhuang Z Y,Chen W M,Xu W D.1989. Retrogression of straight sandy beaches in the Shandong peninsula and its results. Journal of Ocean University of Qingdao, 19(1): 90-98] [21]Boak E H,Turner I L.2005. Shoreline definition and detection: a review. Journal of Coastal Research, 214: 688-703. [22]Bruun P.1988. The Bruun rule of erosion by sea-level rise: a discussion of large-scale two-and three-dimensional usages. Journal of Coastal Research, 4: 627-648. [23]Jackson N L,Nordstrom K F.2020. Trends in research on beaches and dunes on sandy shores,1969-2019. Geomorphology, 366: 106737. [24]Luijendijk A,Hagenaars G,Ranasinghe R,Baart F,Donchyts G,Aarninkhof S.2018. The State of the Worlds Beaches. Scientific Reports, 8: 6641. [25]Masselink G,Puleo J.2006. Swash-zone morphodynamics. Continental Shelf Research,26(5): 661-680. [26]Matsumoto K,Takanezawa T,Ooe M.2000. Ocean tide model developed by assimilating TOPEX/POSEIDON altimetry data into hydrodynamical model: a global and a regional model around Japan. Journal of Oceanography, 56: 567-581. [27]Pardo-Pascual J E,Almonacid-Caballer J,Ruiz L A,Palomar-Vázquez J.2012. Automatic extraction of shorelines from Landsat TM and ETM+multi-temporal images with subpixel precision. Remote Sensing of Environment, 123(6): 1-11. [28]Pardo-Pascual J E,Sánchez-García E,Almonacid-Caballer J,Palomar-Vázquez J M,Santos E P,Fernández-Sarría A,Balaguer-Beser Á.2018. Assessing the accuracy of automatically extracted shorelines on microtidal beaches from Landsat 7,Landsat 8 and Sentinel-2 imagery. Remote Sensing, 10: 326. [29]Pagán J,Aragonés L,Tenza-Abril A,Pallarés P.2016. The influence of anthropic actions on the evolution of an urban beach: case study of Marineta Cassiana beach,Spain. Science of the Total Environment, 559: 242-255. [30]Puleo J A,Torres-Freyermuth A.2016. The second international workshop on swash-zone processes. Coastal Engineering, 115: 1-7. [31]Ranasinghe R.2016. Assessing climate change impacts on open sandy coasts: a review. Earth-Science Reviews, 160: 320-332. [32]Thieler E R,Himmelstoss E A,Zichichi J L,Ergun A.2009. Digital Shoreline Analysis System(DSAS)version 4.0: an ArcGIS extension for calculating shoreline change. US Geological Survey Open File Report 2008-1278. [33]Turner I L,Harley M D,Short A D,Simmons J A,Bracs M A,Phillips M S,Splinter K D.2016. A multi-decade dataset of monthly beach profile surveys and inshore wave forcing at Narrabeen,Australia. Sci. Data 3,160024. [34]Vos K,Harley M D,Splinter K D,Simmons J A,Turner I L.2019. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coastal Engineering,150(AUG): 160-174. [35]Vousdoukas M I,Ranasing He R,Mentaschi L,Plomaritis T A,Athanasiou P,Luijendijk A,Feyen L.2020. Sandy coastlines under threat of erosion. Nature Climate Change, 10(3): 260-263. [36]Zhang X D,Yang Z S,Zhang Y X,Ji Y,Wang H M,Lü K,Lu Z Y.2018. Spatial and temporal shoreline changes of the southern Yellow River(Huanghe)Delta in 1976-2016. Marine Geology, 395: 188-197. [37]Zhang X D,Lu K,Yin P,Zhu L H.2019. Current and future mudflat losses in the southern Huanghe Delta due to coastal hard structures and shoreline retreat. Coastal Engineering,152: 103530. [38]Zhang X D,Fan D D,Yang Z S,Xu S M,Chi W Q,Wang H M.2020. Sustained growth of river mouth bars in the vulnerable Changjiang Delta. Journal of Hydrology,590: 125450. [39]Zhang X D,Tan X W,Hu R J,Zhu L H,Wu C,Yang Z S.2021. Using a transect-focused approach to interpret satellite images and analyze shoreline evolution in Haiyang Beach,China. Marine Geology,438: 106526.