Abstract:The Xifeng phosphate deposit is an important component of the Ediacaran Doushantuo phosphate deposits in Guizhou Province,Southwest China,which is characterized by a thick ore layer,a high quality,a developed fault system,and rich and unique stromatolites. We reveal that the Xifeng phosphorite rocks were formed in the foreshore and shoreface environments under the combined conditions of hot water,biological and normal seawater sedimentation. The Doushantuo Formation underwent a palaeoclimate shift from a warm and humid climate to a dry and hot climate,and to a hot and humid climate,related to transgression,regression,and transgression,respectively. Therefore,the metallogenic process of the Xifeng phosphate deposits also underwent three stages of mineralization related to the transgression,regression and transgression again. The lower ore layer formed during the early transgression stage of the Doushantuo Period,whereas the upper ore layer formed in the subsequent regression and transgression stages. The two ore layers are separated by dolomite on the margin of the palaeo-continent of central Guizhou. When the second transgression crossed the foreshore position of the first transgression,only the upper ore layer formed,namely the Kaiyang and Xifeng phosphorus deposits. The Wengfu phosphate deposit has two layers of ore bodies,corresponding to the foreshore and shoreface zone that experienced three stages of mineralization. The location elevation of Wengfu phosphate deposit during mineralization is significantly lower than the Xifeng phosphate deposit,and the Xifeng phosphate deposit was slightly lower than the Kaiyang phosphate deposit. During mineralization prediction and prospecting exploration of the phosphate deposits in the Doushantuo Period,the dynamic foreshore and shoreface environment in central Guizhou and its vicinity,similar to the Xifeng phosphorus deposit,is the prospecting target area. Meanwhile,using the characteristics of two intersecting ore layers formed by “three-stage mineralization”,mineralization prediction surrounding the known deposits,mineralized points and foreshore and shoreface zones can be efficiently performed.
CAO Shengtao,XIE Hong,ZHENG Lulin et al. Study on metallogenic environment,mineralization and metallogenic model of the Xifeng phosphate deposits in central Guizhou Province,China[J]. JOPC, 2022, 24(4): 785-801.
[1] 陈多福,陈光谦,陈先沛. 2002. 贵州瓮福新元古代陡山沱期磷矿床铅同位素特征及来源探讨. 地球化学, 31(1): 49-54. [Chen D F,Chen G Q,Chen X P.2002. Lead isotope geochemistry of Wengfu phosphorite deposits of Doushantuo Age of Neoproterozoic and its application. Geochimica, 31(1): 49-54] [2] 陈国勇,杜远生,张亚冠,陈庆刚,范玉梅,王泽鹏,谭华. 2015. 黔中地区震旦纪含磷岩系时空变化及沉积模式. 地质科技情报, 34(6): 17-25. [Chen G Y,Du Y S,Zhang Y G,Chen Q G,Fan Y M,Wang Z P,Tan H.2015. Spatial and temporal variation and mineralization model of the Sinian Phosphorus-bearing sequences in central Guizhou Province. Bulletin of Geological Science and Technology, 34(6): 17-25] [3] 陈建强,周洪瑞,王训练. 2004. 沉积学与古地理学教程. 北京: 地质出版社, 1-278. [Chen J Q,Zhou H R,Wang X L.2004. Sedimentation and Ancient Geography Tutorial. Beijing: Geological Publishing House, 1-278] [4] 陈其英,陈孟莪,李菊英. 2000. 沉积磷灰石形成中的生物有机质因素. 地质科学, 35(3): 316-324. [Chen Q Y,Chen M E,Li J Y.2000. Microbial-organic effects on formation of the sedimentary apatite. Chinese Journal of Geology(Scientia Geologica Sinica), 35(3): 316-324] [5] 程建,郑伦举. 2020. 川南地区金页1井早寒武世烃源岩沉积地球化学特征. 石油与天然气地质, 41(4): 800-810. [Chen J,Zheng L J.2020. Sedimentary geochemical characteristics of the Early Cambrian source rocks in Well Jinye 1 in southern Sichuan Basin. Oil & Gas Geology, 41(4): 800-810] [6] 邓宏文,钱凯. 1993. 沉积地球化学与环境分析. 兰州: 甘肃科学技术出版社, 1-89. [Deng H W,Qian K.1993. Sedimentary Geochemistry and Environmental Analysis. Lanzhou: Gansu Science and Technology Press, 1-89] [7] 邓克勇,吴波,罗明学,罗春,龙建喜. 2015. 贵州开阳双山坪陡山沱组磷块岩地球化学特征及成因意义. 地质与勘探, 51(1): 123-132. [Deng K Y,Wu B,Luo M X,Luo C,Long J X.2015. Phosphate rock geochemistry of the Doushantuo Formation in Shuangshanping,Kaiyang of Guizhou Province and its genetic significance. Geology and Exploration, 51(1): 123-132] [8] 丁亚龙,谢宏. 2015. 贵州瓮安岚关灯影组磷块岩元素地球化学特征. 中国矿业, 24(8): 84-88. [Ding Y L,Xie H.2015. Research into the geochemical characteristics of phosphorites of Dengying Formation in the area of Weng'an county,Guizhou. China Mining Magazine, 24(8): 84-88] [9] 东野脉兴. 1996. 上升洋流与陆缘坻. 化工矿产地质, 18(3): 156-162. [Dongye M X.1996. Upwelling oceanic curuents & epicontnental CHI. Geology of Chemical Minerals, 18(3): 156-162] [10] 段太忠,曾允孚,高振中. 1988. 根据沉积历史分析华南古大陆边缘的构造演化. 石油与天然气地质, 9(4): 410-420. [Duan T Z,Zeng Y F,Gao Z Z.1988. Analysis of tectonic evolution of Paleo-continental margin in South China based on sedimentary history. Petroleum and Gas Geology, 9(4): 410-420] [11] 葛金国. 2017. 贵州息烽磷矿床地质特征及成因机制研究. 华北国土资源,(6): 51-54. [Ge J G.2017. Geological characteristics and genetic mechanism of Xifeng phosphate deposit in Guizhou. Huabei Land and Resources,(6): 51-54] [12] 郭庆军,杨卫东,刘丛强,Harald Strauss,王兴理,赵元龙. 2003. 贵州瓮安生物群和磷矿形成的沉积地球化学研究. 矿物岩石地球化学通报, 22(3): 202-208. [Guo Q J,Yang W D,Liu C Q,Harald S,Wang X L,Zhao Y L.2003. Sedimentary geochemistry research on the radiation of Weng'an Biota and the formation of the phosphorite ore deposit,Guizhou. Bulletin of Mineralogy, Petrology and Geochemistry, 22(3): 202-208] [13] 姜在兴. 2003. 沉积学. 北京: 石油工业出版社,1-540. [Jiang Z X.2003. Sedimology. Beijing: Petroleum Industry Press, 1-540] [14] 李磊,张亚冠,王泽鹏,叶连,谭代卫,王大福,郭磊. 2016. 贵州开阳地区磷块岩类型划分及沉积环境分析. 西部探矿工程, 28(7): 170-174. [Li L,Zhang Y G,Wang Z P,Ye L,Tan D W,Wang D F,Guo L.2016. Analysis of types of phosphorus total rock in Kaiyang area in Guizhou Province. West-China Exploration Engineering, 28(7): 170-174] [15] 廖善友. 1999. 贵州息烽磷矿的聚磷环境与富集机制. 贵州师范大学学报(自然科学版),(3): 59-63. [Liao S Y.1999. The environment and the mechanism of polyphosphorus assemblyin Xifeng County. Journal of Guizhou Normal University(Natural Science),(3): 59-63] [16] 刘建中,王泽鹏,杜远生,张亚冠,吴文明,陈国勇,付芝康,万大学,王大福,谭代卫. 2020. 贵州开阳以东震旦系陡山沱组磷矿富磷机制与“三位一体”预测找矿重大突破. 古地理学报, 22(5): 913-928. [Liu J Z,Wang Z P,Du Y S,Zhang Y G,Wu W M,Chen G Y,Fu Z K,Wan D X,Wang D F,Tan D W.2020. Enrichment mechanism of phosphorite deposits and significant breakthrough in “Triunity Model”for ore prospecting in the Sinian Doushantuo Formation of eastern Kaiyang. Journal of Palaeogeography(Chinese Edition), 22(5): 913-928] [17] 娄方炬. 2020. 贵州织金磷矿稀土富集机制研究. 贵州大学硕士学位论文: 1-62. [Lou F J.2020. Study on rare earth enrichment mechanism of Zhijin phosphate rock in Guizhou Province,Guizhou. Masteral dissertation of Guizhou University: 1-62] [18] 梅冥相. 2016. 地球历史中的巨型氧化作用事件: 了解古地理背景演变的重要线索. 古地理学报18(3): 315-334. [Mei M X.2016. Great Oxidation Event in history of the Earth: an important clue for the further understanding of evolution of palaeogeographical background. Journal of Palaeogeography(Chinese Edition), 18(3): 315-334] [19] 全贵龙,林丽,密文天. 2020. 贵州瓮安白岩陡山沱组磷块岩特征及矿床成因. 成都理工大学学报(自然科学版), 7(4): 423-432. [Quan G L,Lin L,Mi W T.2020. Characteristics of Doushantuo Formation phosphorite and genesis of ore deposit in Weng'an,Guizhou Province,China. Journal of Chengdu University of Technology(Science & Technology Edition), 7(4): 423-432] [20] 施春华. 2005. 磷矿的形成与Rodinia超大陆裂解、生物爆发的关系. 贵阳: 中国科学院研究生院(地球化学研究所)博士学位论文: 1-118. [Shi C H.2005. Formation of phosphorite deposit,breakup of Rodinia supercontinent and biology explosion: a case study of Weng'an,Kaiyang and Zhijin phosphorite deposits of Guizhou Province. Doctoral dissertation of Institute of Geochemistry, Chinese Academy of Sciences(Guiyang): 1-118] [21] 涂光炽. 1998. 低温地球化学. 北京: 科学出版社, 1-266. [Tu G Z.1998. Cryogenic Geochemistry. Beijing: Science Press, 1-266] [22] 王剑. 1990. 缓坡及其构造背景: 以中国南方早寒武世龙王庙期扬子碳酸盐缓坡为例. 岩相古地理,(5): 13-22. [Wang J.1990. Cambrian ramps and their tectonic controls,with an example from the Longwangmiaoian(Early Cambrian)Yangzi carbonate ramp in South China. Lithofacies Palaeogeography,(5): 13-22] [23] 王剑,段太忠,谢渊,汪正江,郝明,刘伟. 2012. 扬子地块东南缘大地构造演化及其油气地质意义. 地质通报, 31(11): 1739-1749. [Wang J,Duan T Z,Xie Y,Wang Z J,Hao M,Liu W.2012. The tectonic evolution and its oil and gas prospect of southeast margin of Yangtze Block. Geological Bulletin of China, 31(11): 1739-1749] [24] 王泽鹏,张亚冠,杜远生,陈国勇,刘建中,徐园园,谭代卫,李磊,王大福,吴文明. 2016. 黔中开阳磷矿沉积区震旦纪陡山沱期定量岩相古地理重建. 古地理学报, 18(3): 399-410. [Wang Z P,Zhang Y G,Du Y S,Chen G Y,Liu J Z,Xu Y Y,Tan D W,Li L,Wang D F,Wu W M.2016. Reconstruction of quantitative lithofacies palaeogeography of the Sinian Doushantuo Age of phosphorite depositional zone in Kaiyang area,central Guizhou Province. Journal of Palaeogeography(Chinese Edition), 18(3): 399-410] [25] 王中刚,于学元. 1989. 稀土元素地球化学. 北京: 科学出版社, 1-535. [Wang Z G,Yu X Y.1989. Rare Earth Element Geochemistry. Beijing: Science Press, 1-535] [26] 王子玉,姚琬圭,陈晓明. 1989. 沉积磷酸盐法的古盐度意义. 沉积学报, 7(4): 113-119. [Wang Z Y,Yao W G,Chen X M.1989. Paleosalinity of sedimentary phosphate method(SPM)and its significance. Acta Sedimentologica Sinica, 7(4): 113-119] [27] 吴祥和,韩至钧,蔡继峰,肖永连. 1999. 贵州磷块岩. 北京: 地质出版社, 1-124. [Wu X H,Han Z J,Cai J F,Xiao Y L.1999. Guizhou Phosphorite. Beijing: Geological Publishing House, 1-124] [28] 吴文明,徐世林,杨瑞东,王泽鹏,刘建中,刘松,王大福,吴小红,万大学,潘启权,张丞. 2020. 黔中开阳地区南华系澄江组古环境演化及意义. 地质论评, 66(2): 276-288. [Wu W M,Xu S L,Yang R D,Wang Z P,Liu J Z,Liu S,Wang D F,Wu X H,Wan D X,Pan Q G,Zhang C.2020. Paleo-environmental evolution of the Chengjiang Formation,Nanhuan System,in Kaiyang area,Central Guizhou,and its significance. Geological Review, 66(2): 276-288] [29] 熊小辉,肖加飞. 2011. 沉积环境的地球化学示踪. 地球与环境, 39(3): 405-414. [Xiong X H,Xiao J F.2011. Geochemical indicators of the sedimentary environment: a summary. Earth and Environment. 39(3): 405-414] [30] 薛珂,张润宇. 2019. 中国磷矿资源分布及其成矿特征研究进展. 矿物学报, 39(1): 7-14. [Xue K,Zhang R Y.2019. Advances of researches on the distribution and metallogenic characteristics of phosphorous deposits in China. Acta Mineralogica Sinica, 39(1): 7-14] [31] 杨海英,肖加飞,李艳桃,和景阳. 2017. 黔中地区陡山沱期开阳、瓮安磷矿区成矿作用研究现状探讨. 地质找矿论丛, 32(4): 551-561. [Yang H Y,Xiao J F,Li Y T,He J Y.2017. Discuss on the present situation of mineralization research of Wong'an,Kaiyang Sinian Doushantuo Period phosphorite in Central Guizhou. Contributions to Geology and Mineral Resources Research, 32(4): 551-561] [32] 杨海英,肖加飞,胡瑞忠,夏勇,何洪茜. 2020. 黔中瓮安早震旦世磷块岩的形成环境及成因机制. 古地理学报, 22(5): 929-946. [Yang H Y,Xiao J F,Hu R Z,Xia Y,He H Q.2020. Formation environment and metallogenic mechanism of Weng'an phosphorite in the Early Sinian,Central Guizhou Province. Journal of Palaeogeography(Chinese Edition), 22(5): 929-946] [33] 杨卫东,肖金凯,陈丰. 1997. 滇黔磷块岩沉积学、地球化学与可持续开发战略. 北京: 地质出版社, 1-106. [Yang W D,Xiao J K,Chen F.1997. Sedimentology,Geochemistry and Sustainable Development Strategy of Phosphate Rocks in Yunnan and Guizhou. Beijing: Geological Publishing House, 1-106] [34] 叶连俊,陈其英,赵东旭. 1989. 中国磷块岩. 北京: 科学出版社, 1-339. [Ye L J,Chen Q Y,Zhao D X.1989. Chinese Phosphorite. Beijing: Geological Publishing House, 1-339] [35] 张伟,杨瑞东,毛铁,任海利,高军波,陈吉艳. 2015. 瓮安埃迪卡拉系灯影组叠层石磷块岩形成环境及成矿机制. 高校地质学报, 21(2): 186-195. [Zhang W,Yang R D,Mao T,Ren H L,Gao J B,Chen J Y.2015. Sedimentary environment and mineralization mechanism of the stromatolitic phosphorite in the Ediacaran Dengying Formation,Weng'an County of Guizhou Province,China. Geological Journal of China Universities, 21(2): 186-195] [36] 张亚冠,杜远生,陈国勇,刘建中,陈庆刚,赵征,王泽鹏,邓超. 2019. 富磷矿三阶段动态成矿模式: 黔中开阳式高品位磷矿成矿机制. 古地理学报, 21(2): 351-368. [Zhang Y G,Du Y S,Chen G Y,Liu J Z,Chen Q G,Zhao Z,Wang Z P,Deng C.2019. Three stages dynamic ineralization model of the phosphate-rich deposits: mineralization mechanism of the Kaiyang-type high-grade phosphorite in central Guizhou Province. Journal of Palaeogeography(Chinese Edition), 21(2): 351-368] [37] 张亚冠. 2019. 黔中地区震旦纪陡山沱组磷矿沉积地质与大规模成矿作用. 中国地质大学(武汉)博士论文: 1-162. [Zhang Y G.2019. Sedimentary geology of the phosphorite deposits and phosphogenic event from Ediacaran Doushantuo Formation in Central Guizhou Provinve. Doctoral dissertation of China University of Geosciences(Wuhan): 1-162] [38] 邹亮,韦刚健. 2009. 早中新世以来南海北部陆坡古生产力的碳酸盐和生物成因Ba元素记录. 地球化学, 38(1): 89-95. [Zou L,Wei G J.2009. Carbonate and biogenic Ba records of paleoproductivity since early Miocene in northern South China Sea. Geochimica, 38(1): 89-95] [39] Baturin G N.1989. The origin of marine phosphorites. International Geology Review, 31(4): 327-342. [40] Bau M,Möller P.1992. Rare earth element fractionation in metamorpho-genic hydrothermal calcite,magnesite and siderite.Mineralogy and Petrology, 45(3): 231-246. [41] Boström K,Kraemer T,Gartner S.1973. Proverance and accumulation rates of opaline silica,Al,Ti,Fe,Mn,Cu,Ni and Co in pacific pelagic sediments. Chemical Gcology, 11(2): 123-148. [42] Campbell I H,Squire R J.2010. The mountains that triggered the Late Neoproterozoic increase in oxygen: The Second Great Oxidation Event. Geochimica et Cosmochimica Acta, 74(15): 4187-4206. [43] Canfield D E,Poulton S W,Knoll A H,Narbonne G M,Ross G,Goldberg T,Strauss H.2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321(5891): 949-952. [44] Chen Z Y,Chen Z G,Zhang W G.1997. Quaternary stratigraphy and trace-element indices of the Yangtze delta,Eastern China,with specialreference to marine transgressions. Quaternary Research, 47(2): 181-191. [45] Compton J,Mallinson D,Glenn C,Filipelli G,Follmi K,Shields G,Zanin Y.2000. Variations in the global phosphorus cycle. Society for Sedimentary Geology, 66: 21-33. [46] Delaney M L.1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochemical Cycles, 12(4): 563-672. [47] Filippelli G M.2011. Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective. Chemosphere, 84(6): 759-766. [48] Gao Y P,Zhang X L,Zhang G J,Chen K F,Shen Y N.2018. Ediacaran negative C-isotopic excursions associated with phosphogenic events: evidence from South China. Precambrian Research, 307: 218-228. [49] Henderson P.1984. Rare Earth Element Geochemistry. Amsterdam: Elsevier Science Publishers, 1-510. [50] Jennifer L,Morford,Steven E.1999. The geochemistry of redox sensitive trace metals in sediments. Geochim.Cosmochim.Acta, 63(11-12): 1735-1750. [51] Kurt B.1983. Genesis of Ferromanganese Deposits-Diagnostic Criteria for Recent and Old Deposits. Hydrothermal Processes at Seafloor Spreading Centers. Springer US. Https://doi.org/10.1007/978-1-4899-0402-7_20. [52] Long J,Zhang S X,Luo K L,2020. Distribution of selenium and arsenic in differentiated multicellular eukaryotic fossils and their significance. Geoscience Frontiers, 11(3): 821-833. [53] Lyons T W,Reinhard C T,Planavsky N J.2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature, 506(7488): 307-315. [54] Marchig V,Gundlach H,Mller P,Schley F.1982. Some geochemical in-dicators for discrimination between diagenetic and hydrothermal met-alliferous sediments. Marine Geology, 50(3): 241-256. [55] Masuda A,Nakamura N,Tanaka T.1973. Fine structures of mutually normalized rare-earth patterns of chondrites. Geochimica et Cosmochimica Acta, 37(2): 239-248. [56] Mcarthur J M,Walsh J N.1984. Rare-earth geochemistry of phosphorites. Chemical Geology, 47(3-4): 191-220. [57] Nelson B.1967. Sedimentary phosphate method for estimating paleosalinites. Science, 158(3803): 917-920. [58] Papineau D.2010. Global biogeochemical changes at both ends of the Proterozoic: insights from phosphorites. Astrobiology, 10(2): 165-181. [59] Pufahl P K,Hiatt E E.2012. Oxygenation of the Earth's atmosphere-ocean system: a review of physical and chemical sedimentologic responses. Marine and Petroleum Geology, 32(1): 1-20. [60] Pufahl P K,Groat L A.2017. Sedimentary and igneous phosphate deposits: formation and exploration: an invited paper. Economic Geology, 112(3): 483-516. [61] Rona P A.1987. Criteria for recognition of hydrothermal mineral deposits in oceancrust. Economic Geology, 73(2): 135-160. [62] Rudnick R, Gao S.2003. Composition of the continental crust. In: Rudnick R(ed). Treatise on Geochemistry(3). Amsterdam: Elsevier, 1-64. [63] She Z B,Strother P,Papineau D.2014. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites Ⅱ: microbial diversity and C isotopes. Precambrian Research, 251(3): 62-79. [64] Shields-Zhou G,Och L.2011. The case for a Neoproterozoic Oxygenation Event: geochemical evidence and biological consequences. GSA Today, 21(3): 4-11. [65] Taylor S R,McLennan S M.1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publication,1-301. [66] Wang J,Li X H,Duan T Z,Liu D Y,Song B,Li Z X,Gao Y H.2003. Zircon SHRIMP U-Pb dating for the Cangshuipu volcanic rocks and its implications for the lower boundary age of the Nanhua strata in South China. Chinese Science Bulletin, 48(16): 1663-1669. [67] Wright J,Schrader H,Holser W T.1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica Et Cosmochimica Acta, 51(3): 631-644. [68] Zhao J H,Zhou M F,Yan D P,Zheng J P.2011. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny. Geology, 39(4): 299-302.