[1] 白瑾,黄学元,戴凤岩,吴昌华. 1993. 中国早前寒武纪地壳演化. 北京: 地质出版社,36-38,199-203.
[Bai J,Huang X Y,Dai F Y,Wu C H.1993. The Precambrian Evolution of China. Beijing: Geological Publishing House,36-38, 199-203]
[2] 陈洪德,侯明才,陈安清,时志强,邢凤存,黄可可,刘欣春. 2017. 中国古地理学研究进展与关键科学问题. 沉积学报, 35(5): 888-901.
[Chen H D,Hou M C,Chen A Q,Shi Z Q,Xing F C,Huang K K,Liu X C.2017. Advances and the major scientific issues of the paleogeography in China. Acta Sedimentologica Sinica, 35(5): 888-901]
[3] 陈晋镳,张惠民,朱世兴,赵震,王振刚. 1980. 蓟县震旦亚界的研究. 见: 王曰仑. 中国震旦亚界研究. 天津: 天津科学技术出版社,56-114.
[Chen J B,Zhang H M,Zhu S X,Zhao Z,Wang Z G.1980. Research on Sinian Suberathem of Jixian,Tianjin. In: Wang Y L(ed). Research on Precambrian Geology. Tianjing: Tianjin Science and Technology Press,56-114]
[4] 陈衍景,杨秋剑,邓健,季海章,富士谷,周小平,林清. 1996. 地球演化的重要转折: 2300 Ma时地质环境灾变的揭示及其意义. 地质地球化学, (3): 106-124
[Chen Y J,Yang Q J,Deng J,Ji H Z,Fu S G,Zhou X P,Lin Q.1996. Important turning point: proclaim of the Earth's 2300 Ma geo-environment catastrophe and significance. Geology and Geochemistry, (3): 106-124]
[5] 崔克信. 1986. 中国自然地理: 古地理(下册). 北京: 科学出版社.
[Cui K X.1986. Physical Geography of China: Palaeogeography(volume two). Beijing: Science Press]
[6] 冯增昭. 2003. 我国古地理学的形成、发展、问题和共识. 古地理学报, 5(2): 129-141.
[Feng Z Z.2003. Origin,development,problems and common viewpoint of palaeogeography of China. Journal of Palaeogeography(Chinese Edition), 5(2): 129-141]
[7] 冯增昭. 2016. 论古地理图. 古地理学报, 18(3): 285-314.
[Feng Z Z.2016. On palaeogeographic map. Journal of Palaeogeography(Chinese Edition), 18(3): 285-314]
[8] 冯增昭,王英华,李尚武,夏云龙,刘焕杰,刘泽均,汪贵翔,高振中. 1988. 下扬子地区中下三叠统青龙群岩相古地理研究. 云南昆明: 云南科技出版社,1-197.
[Feng Z Z,Wang Y H,Li S W,Xia Y L,Liu H J,Liu Z J,Wang G X,Gao Z Z.1988. Study on Lithofacies Palaeogeography of Qinglong Group of Lower-Middle Triassic in the Lower Yangtze Region. Yunnan Kunming: Yunnan Science and Technology Press,1-197]
[9] 冯增昭,王英华,张吉森,左文岐,张秀莲,洪国良,陈继新,吴胜和,陈玉田,迟元苓,杨承运. 1990. 华北地台早古生代岩相古地理. 北京: 地质出版社,1-270.
[Feng Z Z,Wang Y H,Zhang J S,Zuo W Q,Zhang X L,Hong G L,Chen J X,Wu S H,Chen Y T,Chi Y L,Yang C Y.1990. Lithofacies Palaeogeography of Early Paleozoic of North China Platform. Beijing: Geological Publishing House,1-270]
[10] 高林志,张传恒,史晓颖,宋彪,王自强,刘耀明. 2008. 华北古陆下马岭组归属中元古界的锆石 SHRIMP 年龄新证据. 中国科学: 地球科学, 53(21): 2617-2623.
[Gao L Z,Zhang C H,Shi X Y,Song B,Wang Z Q,Liu Y M.2008. A new evidence for zircon, SHRIMP age belonging to the Mesoproterozoic Xiamaling Formation in North China. Science in China: Earth Science, 53(21): 2617-2623]
[11] 何登发,李德生,王成善,刘少峰,陈槚俊. 2020. 活动论构造古地理的研究现状、思路与方法. 古地理学报, 22(1): 1-28.
[He D F,Li D S,Wang C S,Liu S F,Chen J J.2020. Status,thinking,and methodology of studying on the mobile tectono-palaeogeography. Journal of Palaeogeography(Chinese Edition), 22(1): 1-28]
[12] 贾承造. 2017. 论非常规油气对经典石油天然气地质学理论的突破及意义. 石油勘探与开发, 44(1): 1-11.
[Jia C Z.2017. Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory. Petroleum Exploration & Development, 44(1): 1-11]
[13] 李怀坤,李惠民,陆松年. 1995. 长城系团山子组火山岩颗粒锆石U-Pb年龄及其地质意义. 地球化学, 24(10): 43-47.
[Li H K,Li H M,Lu S N.1995. Grain zircon U-Pb ages for volcanic rocks from Tuanshanzi formation of Changcheng System and their geological implications. Geochimica, 24(10): 43-47]
[14] 李三忠,郭玲莉,戴黎明,张臻,赵淑娟,赵国春,张国伟. 2015. 前寒武纪地球动力学(Ⅴ): 板块构造起源. 地学前缘,22(6): 65-76.
[Li S Z,Guo L L,Dai L M,Zhang Z,Zhao S J,Zhao G C,Zhang G W.2015. Precambrian geodynamics(V): origin of palte tectonics. Geoscience Frontiers, 22(6): 65-76]
[15] 刘鸿允. 1955a. 中国古地理图. 北京: 科学出版社,1-50.
[Liu H Y.1955a. Map of Paleogeography of China. Beijing: Science Press,1-50]
[16] 刘鸿允. 1955b. 中国震旦系. 北京: 科学出版社,301-334.
[Liu H Y . 1955b. Sinian Period in China. Beijing: Science Press,301-334]
[17] 柳永清,高林志,刘燕学,宋彪,王宗秀. 2005. 徐淮地区新元古代初期镁铁质岩浆的锆石 U-Pb定年. 科学通报, 50(22): 2514-2521.
[Liu Y Q,Gao L Z,Liu Y X,Song B,Wang Z X.2005. Zircon U-Pb dating for the earliest Neoproterozoic mafic magmatism in the southern margin of the North China Block. Chinese Science Bulletin, 51(19): 2375-2382]
[18] 刘少峰,王成善. 2016. 构造古地理重建与动力地形. 地学前缘, 23(6): 61-79.
[Liu S F,Wang C S.2016. Reconstruction of tectono-paleogeography and dynamic topography. Earth Science Frontiers, 23(6): 61-79]
[19] 钱祥麟,李江海,程素华. 2005. 前寒武纪大陆地壳地质构造演化研究进展与问题. 高校地质学报, 11(2): 145-153.
[Qian X L,Li J H,Cheng S H.2005. A review on Precambrian tectonic evolution of continental crust. Geological Journal of China Universities, 11(2): 145-153]
[20] 乔秀夫,高林志,张传恒. 2007. 中朝板块中、新元古界年代地层柱与构造环境新思考. 地质通报, 26(5): 503-509.
[Qiao X F,Gao L Z,Zhang C H.2007. New idea of the Meso- and Neoproterozoic chronostratigraphic chart and tectonic environment in Sino-Korean Plate. Geological Bulletin of China, 26(5): 503-509]
[21] 邵东波,包洪平,魏柳斌. 2019. 鄂尔多斯地区奥陶纪构造古地理演化与沉积充填特征. 古地理学报, 21(4): 537-556.
[Shao D B,Bao H P,Wei L B.2019. Tectonic palaeogeography evolution and sedimentary filling characteristics of the Ordovician in the Ordos area. Journal of Palaeogeography(Chinese Edition), 21(4): 537-556]
[22] 邵龙义,王学天,李雅楠. 2019. 深时源-汇系统古地理重建方法评述. 古地理学报, 21(1): 67-81.
[Shao L Y,Wang X Y,Li Y N.2019. Review on palaeogeographic reconstruction of deep-time source-to-sink systems. Journal of Palaeogeography(Chinese Edition), 21(1): 67-81]
[23] 沈其韩. 1992. 中国早前寒武纪麻粒岩. 地球科学进展, 7(1): 95-96.
[Shen Q H.1992. Early Precambrian granulites of China. Advances in Earth Science, 7(1): 95-96]
[24] 沈其韩,耿元生,宋会侠. 2016. 全球冥古宙的研究进展和存在问题. 地质学报, 90(9): 2083-2098.
[Shen Q H,Geng Y S,Song H X.2016. Progress and problems in the Hadean research of the globe. Acta Geologica Sinica, 90(9): 2083-2098]
[25] 苏文博. 2014.2012年全球前寒武纪新年表与中国中元古代年代地层学研究. 地学前缘, 21(2): 119-138.
[Su W B.2014. A review of the revised Precambrian time scale(GTS2012)and the research of the Mesoproterozoic chronostratigraphy of China. Earth Science Frontiers, 21(2): 119-138]
[26] 孙枢. 2005a. 中国沉积学的今后发展: 若干思考与建议. 地学前缘, 12(2): 3-10.
[Sun S.2005a. Sedimentology in China: perspectives and suggestions. Earth Science Frontiers, 12(2): 3-10]
[27] 孙枢. 2005b. 活动论古地理研究进展述评. 矿物岩石地球化学通报,24(增刊): 355-356.
[Sun S.2005b. Progress review of mobilism palaeogeography construction.Bulletin of Mineralogy,Petrology and Geochemistry,24(supp. ): 355-356]
[28] 万渝生,董春艳,颉颃强,谢士稳,刘守偈,白文倩,马铭株,刘敦一. 2018. 鞍山—本溪地区鞍山群含BIF 表壳岩形成时代新证据: 锆石 SHRIMP U-Pb 定年. 地球科学, 43(1): 57-81.
[Wan Y S,Dong C Y,Xie H Q,Xie S Y,Liu S J,Bai W Q,Ma M Z,Liu D Y.2018. Formation age of BIF-bearing Anshan Group supracrustal rocks in Anshan-Benxi Area: new evidence from SHRIMP U-Pb zircon dating. Earth Science, 43(1): 57-81]
[29] 万渝生,颉颃强,王惠初,李鹏川,初航,肖志斌,董春艳,刘守偈,李源,郝光明,刘敦一. 2021a. 冀东地区~3.8 Ga TTG岩石发现. 地质学报, 95(5): 1321-1333.
[Wan Y S,Xie H Q,Wang H C,Li P C,Chu H,Xiao Z B,Dong C Y,Liu S J,Li Y,Hao G M,Liu D Y.2021a. Discovery of~3.8 Ga TTG rocks in eastern Hebei,North China Craton. Acta Geologica Sinica, 95(5): 1321-1333]
[30] 万渝生,颉颃强,王惠初,刘守偈,初航,肖志斌,李源,郝光明,李鹏川,董春艳,刘敦一. 2021b. 冀东地区始太古代早期—冥古宙锆石发现. 地质学报, 95(2): 277-291.
[Wan Y S,Xie H Q,Wang H C,Liu S J,Chu H,Xiao Z B,Li Y,Hao G M,Li P C,Dong C Y,Liu D Y.2021b. Discovery of early Eoarchean-Hadean zircons in eastern Hebei,North China Craton. Acta Geologica Sinica, 95(2): 277-291]
[31] 王成善,郑和荣,冉波,刘本培,李祥辉,李亚林,孙红军,陈建平,胡修棉. 2010. 活动古地理重建的实践与思考: 以青藏特提斯为例. 沉积学报, 28(5): 849-860.
[Wang C S,Zheng H R,Ran B,Liu B P,Li X H,Li Y L,Sun H J,Chen J P,Hu X M.2010. On paleogeographic reonstruction: an example for application in Tibetan Tethys. Acta Sedimentologica Sinica, 28(5): 849-860]
[32] 王洪亮,陈亮,孙勇,柳小明,徐学义,陈隽璐,张红,第五春荣. 2007. 北秦岭西段奥陶纪火山岩中发现近4.1 Ga的捕虏锆石. 科学通报, 52(14): 1685-1693.
[Wang H L,Chen L,Sun Y,Liu X M,Xu X Y,Chen J L,Zhang H,Diwu C R.2007.4.1 Ga xenocrystal zircon from Ordovician volcanic rocks in western part of North Qinling Orogenic Belt. Chinese Science Bulletin,52(14): 1685-1693]
[33] 王鸿祯. 1985. 中国古地理图集. 北京: 地图出版社.
[Wang H Z.1985. Atlas of the Palaeogeography of China.Beijing: Cartographic Publishing House]
[34] 王鸿桢,杨式溥,朱鸿. 1990. 中国及邻区古生代生物古地理及全球古大陆再造. 湖北武汉: 中国地质大学出版社.
[Wang H Z,Yang S P,Zhu H.1990. Tectonopalaeogeography and Palaeobiogeography of China and Adjacent Regions.Hubei Wuhan: China University of Geosciences Press]
[35] 王晓梅,张水昌,何坤,王华建,米敬奎,苏劲,叶云涛. 2021. 最小含氧带和硫化环境控制14亿年前有机质生烃能力. 科学通报, 66(23): 3005-3017. doi: 10.1360/TB-2020-0851.
[Wang X M,Zhang S C,He K,Wang H J,Mi J K,Su J,Ye Y T.2021. OMZ and euxinic sulfidic environments dominating hydrocarbon generation poential of organic matter 1.4 billion years ago. Chin Sci Bull, 66(23): 3005-3017. doi: 10.1360/TB-2020-0851]
[36] 魏春景. 2018. 冀东地区新太古代麻粒岩相变质作用及其大地构造意义. 岩石学报, 34(4): 895-912.
[Wei C J.2018. Neoarchean granulite facies metamorphism and its tectonic implications from the East Hebei terrane. Acta Petrologica Sinica, 34(4): 895-912]
[37] 邢裕盛,尹崇玉,高林志. 1999. 震旦系的范畴、时限及内部划分. 现代地质, 13(2): 202-204.
[Xing Y S,Yin C Y,Gao L Z.1999. The boundary and subdivision of the Sinian System. Geoscience, 13(2): 202-204]
[38] 徐仲元,刘正宏,杨振升. 2002. 内蒙古大青山地区孔兹岩系的地层结构. 吉林大学学报(地球学版), 32(4): 313-318.
[Xu Z Y,Liu Z H,Yang Z S.2002. The strata texture of Khondalite in Daqingshan area,Inner Mongolia. Journal of Jilin University(Earth Science Edition), 32(4): 313-318]
[39] 杨振升,徐仲元,刘正宏,黄道玲. 2008. 高级变质区地质调查与综合研究方法. 北京: 地质出版社,194-210.
[Yang Z S,Xu Z Y,Liu Z H,Huang D L.2008. Comprehensive Geological Survey and Research Methods of Advanced Metamorphic Area. Beijing: Geological Publishing House,194-210]
[40] 尹崇玉,柳永清,高林志,王自强,唐烽,刘鹏举. 2007. 震旦(伊迪卡拉)纪早期磷酸盐化生物群—瓮安生物群特征及其环境演化. 北京: 地质出版社,1-132.
[Yin C Y,Liu Y Q,Gao L Z,Wang Z Q,Tang F,Liu P J.2007. Phosphatized Biota in Early Sinian(Ediacaran)-Weng' an Biota and Its Environment. Beijing: Geological Publishing House,1-132]
[41] 翟明国,张艳斌,李秋立,邹屹,何海龙,单厚香,刘博,颜朝磊,刘鹏. 2021. 克拉通、下地壳与大陆岩石圈: 庆贺沈其韩先生百年华诞. 岩石学报, 38(1): 1-23.
[Zhai M G,Zhang Y B,Li Q L,Zou Y,He H L,Shan H X,Liu B,Yan C L,Liu P.2021. Cratonization,lower crust and continental lithosphere. Acta Petrologica Sinica, 38(1): 1-23. doi: 10.18654/1000-0569/2021.01.01]
[42] 翟明国,赵磊,祝禧艳,焦淑娟,周艳艳,周李岗. 2020. 早期大陆与板块构造启动—前沿热点介绍与展望. 岩石学报, 37(8): 2249-2275.
[Zhai M G,Zhao L,Zhu X Y,Jiao S J,Zhou Y Y,Zhou L G.2020. Review and overview for the frontier hotspot: early continents and start of plate tectonics. Acta Petrologica Sinica, 37(8): 2249-2275]
[43] 翟明国,胡波,彭澎,赵太平. 2014. 华北中—新元古代的岩浆作用与多期裂谷事件. 地学前缘, 21(1): 100-119.
[Zhai M G,Hu B,Peng P,Zhao T P.2014. Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC. Earth Science Frontiers, 21(1): 100-119]
[44] 翟明国. 2006. 新太古代全球克拉通事件与太古宙-元古宙分界的地质涵义. 大地构造与成矿, 30(4): 419-421.
[Zhai M G.2006. Geological significance of the Neoarchean global Cratonization event and the boundary between Archean and Proterozoic. Geotectonica et Metallogenia, 30(4): 419-421]
[45] 翟明国. 2012. 华北克拉通的形成以及早期板块构造. 地质学报, 86(9): 1335-1349.
[Zhai M G.2012. Evolution of the North China Craton and early plate tectonics. Acta Geoligica Sinica, 86(9): 1335-1349]
[46] 翟明国. 2019. 华北克拉通构造演化. 地质力学学报, 25(5): 722-745.
[Zhai M G.2019. Tectonic evolution of the North China Craton. Journal of Geomechanics, 25(5): 722-745]
[47] 翟明国. 2021. 鄂尔多斯地块是破解华北早期大陆形成演化和构造体制谜团的钥匙. 科学通报, 66(26): 3441-3461.
[Zhai M G.2021. Ordos Block(Basin)is a key to understand early continental evolution and tectonic regime of the North China Craton. Chin Sci Bull, 66(26): 3441-3461]
[48] 翟明国. 2022. 论孔兹岩: 地球上特殊地质过程的记录. 地质学报, doi: 10.19762/j.cnki.dizhixuebao.2022249.
[Zhai M G.2022. Khondalite revisited: record of special geological processes on Earth. Acta Geologica Sinica, doi: 10.19762/j.cnki.dizhixuebao.2022249]
[49] 翟明国. 2011. 克拉通化与华北陆块的形成. 中国科学(D), 41(8): 1037-1046.
[Zhai M G.2011. Cratonization and the Ancient North China Continent: a summary and review. Science China-Earth Science, 54: 1110-1120]
[50] 翟明国,彭澎. 2007. 华北克拉通古元古代构造事件. 岩石学报, 23(11): 2665-2682.
[Zhai M G,Peng P.2007. Paleoproterozoic events in North China Craton. Acta Petrologica Sinica, 23(11): 2665-2682]
[51] 张连昌,彭自栋,翟明国,佟小雪,朱明田,王长乐. 2020. 华北克拉通北缘新太古代清原绿岩带BIF与VMS共生矿床的构造背景及成因联系. 地球科学, 45(1): 1-16.
[Zhang L C,Peng Z D,Zhai M G,Tong X X,Zhu M T,Wang C L.2020. Tectonic setting and genetic relationship between BIF and VMS-in the Qingyuan Neoarchean Greenstone Belt,Northern North China Craton. Earth Sciences, 45(1): 1-16]
[52] 张拴宏,赵越. 2018. 华北克拉通北部13.3~13.0亿年基性大火成岩省与稀土-铌成矿事件. 地学前缘, 25(5): 34-50.
[Zhang S H,Zhao Y.2018. The 1.33-1.30 Ga mafic large igneous province event and REE-Nb metallogenic event in the northern North China. Earth Science Frontiers, 25(5): 34-50]
[53] 章清文,刘耘. 2020. 早期地球的热管构造: 来自木卫一的启示. 岩石学报, 36(12): 3853-3870.
[Zhang Q W,Liu Y.2020. Possible heat-pipe tectonics of the early Earth: insights from Jupiter's moon Io. Acta Petrologica Sinica, 36(12): 3853-3870]
[54] 赵国春,张国伟. 2021. 大陆的起源. 地质学报, 95(1): 1-19.
[Zhao G C,Zhang G W.2021. Origin of continents. Acta Geologica Sinica, 95(1): 1-19]
[55] 赵太平,庞岚尹,仇一凡,祝禧艳,王世炎,耿元生. 2019. 古/中元古代界线: 1.8 Ga. 岩石学报, 35(8): 2281-2298.
[Zhao T P,Pang L Y,Qiu Y F,Zhu X Y,Wang S Y,Geng Y S.2019. The Paleo-Mesoproterozoic boundary: 1.8 Ga. Acta Petrologica Sinica, 35(8): 2281-2298]
[56] 赵振华. 2010. 条带状铁建造(BIF)与地球大氧化事件. 地学前缘, 17(2): 1-11.
[Zhao Z H.2010. Banded Iron Formations(BIF)and Great Oxyfen Event. Earth Science Frontiers, 17(2): 1-11]
[57] 赵宗溥,等. 1993. 中朝准地台前寒武纪地壳演化. 北京: 科学出版社,389-390.
[Zhao Z P, et al.1993. Precambrian Evolution of the Sino-Korean Paraplatform. Beijing: Science Press,389-390]
[58] 郑和荣,胡宗全. 2010. 中国前中生代构造岩相古地理图集. 北京: 地质出版社.
[Zheng H R,Hu Z Q.2010. Chinese pre Mesozoic Tectonic Lithofacies Paleogeography Atlas.Beijing: Geological Publishing House]
[59] 钟焱,陈雅丽,翟明国,马旭东. 2016. 华北克拉通西部古元古代孔兹岩系的地层对比、岩相古地理特征及其地质意义. 岩石学报, 32(3): 713-726.
[Zhong Y,Chen Y L,Zhai M G,Ma X D.2016. Stratigraphic correlation and lithofacies paleogeography of khondalite series in the western North China Craton. Acta Petrologica Sinica, 32(3): 713-726]
[60] 周洪瑞,王自强,崔新省,雷振宇,董文明,沈亚. 1999. 华北地台南部中新元古界层序地层研究. 北京: 地质出版社,5-14.
[Zhou H R,Wang Z Q,Cui X S,Lei Z Y,Dong W M,Shen Y.1999. Meso-Neoproterozoic Study on Sequence Stratigraphy in Southern North China Platform. Beijing: Geological Publishing House,5-14]
[61] Abbott D,Burgess L,Longhi J,Smith W H F.1994. An empirical thermal history of the Earth's upper mantle. Journal of Geophysical Research, 99: 13835-13850.
[62] Anbar A D,Duan Y,Lyons T W,Arnold G L,Kendall B,Creaser R A,Kaufman A J,Gordon G W,Scott C,Garvin J,Buick R.2007. A whiff of oxygen before the Great Oxidation Event?Science, 317: 1903-1906.
[63] Anderson D L.2001. Top-down tectonics. Science, 293: 2016-2018.
[64] Arth J G,Barker F,Peterman Z E,Frideman I.1978. Geochemistry of the gabbro-diorite-tonalite-trondhjemite suite of south-west Finland and its implications for the origin of tonalitic and trondhjemitic magmas. Journal of Petrology, 19: 289-316.
[65] Arth J G,Hanson G N.1975. Geochemistry and origin of the Early Precambrian crust of north-eastern Minnesota. Geochimica et Cosmochimica Acta, 39: 325-362.
[66] Baratoux D,Toplis M J,Monnereau M,Gasnault O.2011. Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature, 472(7343): 338-341.
[67] Barker F,Arth J G.1976. Gencration of trondhjemitic-tonalitic liquids and Archaean bimodal Trondhjemitcs-basalt suites. Geology, 4: 596-600.
[68] Barker F.1979. Trondhjemites,Dacites,and Related Rocks. Amsterdam: Elsevier,1-659.
[69] Bèdard J H.2018. Stagnant lids and mantle overturns: implication for Archean tectonics,magma genesis,crustal growth,mantle evolution,and the start of plate tectonics. Geoscience Frontiers, 9: 19-49.
[70] Bindeman I N,Eiler J M,Yogodzinski G M.2005. Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth and Planetary Science Letters, 235: 480-496.
[71] Boyd F R,Gurney J J,Richardson S H.1985. Evidence for a 150-200 km thick Archaean lithosphere from diamond inclusion thermobarometry. Nature, 315: 387-389.
[72] Boyet M,Carlson R W.2005. Nd-142 evidence for early(4.53 Ga) global differentiation of the silicate Earth. Science, 309: 576-581.
[73] Brown M,Johnson T,Gardiner N J.2020. Plate tectonics and the Archean Earth. Annual Reviews of Earth and Planetary Sciences, 48: 12.1-12.30.
[74] Caro G,Bourdon B,Birck J L,Moorbath S.2003. Sm-146-Nd-142 evidence from Isua metamorphosed sediments for early differentiation of the Earth's mantle. Nature, 423: 428-432.
[75] Cawood P A.2020. Earth matters: a tempo to our planet's evolution. Geology, https://doi.org/10.1130/focus052020.1.
[76] Chen Y J,Tang H S.2016. The Great Oxygen Event and its records in North China Craton. In: Zhai M G,Zhao Y,Zhao T P(eds). Main Tectonic Events and Metallogeny of the North China Craton. Berlin Heidelberg: Springer-Verlag,281-303.
[77] Condie K C.1981. Archaean Greenstone Belts. Amsterdam: Elsevier,1-434.
[78] Condie K C,Kröner A.2008. When did plate tectonics begin?evidence from the geologic record. Geological Society of America Special Paper, 440: 281-294.
[79] Condie K C,Kröner A.2013. The building blocks of continental crust: evidence for a major change in the tectonic setting of continental growth at the end of the Archean. Gondwana Research, 23: 394-402.
[80] Condie K C.2004. Precambrian superplume event. In: Eriksson P G,Altermann W,Nelson D R,Mueller W U,Catuneanu O(eds). The Precambrian Earth Tempos and Events. Development in Precambrian Geology-12. Amsterdam: Elsevier,163-172.
[81] Condie K C.2005. TTGs and adakites: are they both slab melts?Lithos, 80: 33-44.
[82] Cope J C W,Ingham J K,Rawson P F.1992. Atlas of Palaeogeography and Lithofacies. Geological Society Memoir, 13: 1-155.
[83] Csontosa L,Vörös A.2004. Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1): 1-56.
[84] Davidson S K,North C P.2009. Geomorphological regional curves for prediction of drainage area and screening modern analogues for rivers in the rock record. Journal of Sedimentary Research, 79: 773-792.
[85] Deng Z,Chaussidon M,Guitreau M,Puchtel I S,Dauphas,Moynier F.2019. An oceanic subduction origin for Archaean granitoids revealed by silicon isotopes. Nature Geoscience, https://doi.org/10.1038/s41561-019-0407-6.
[86] Dhuime B,Wuestefeld A,Hawkesworth C J.2015. Emergence of modern continental crust about 3 billion years ago. Nature Geoscience, 8: 552-555.
[87] Diwu C R,Sun Y,Wilde S A,Wang H L,Dong Z C,Zhang H,Wang Q.2013. New evidence for~4.45 Ga terrestrial crust from zircon xenocrysts in Ordovician ignimbrite in the North Qinling Orogenic Belt,China. Gondwana Research, 23: 1484-1490.
[88] Drummond M S,Defant M J.1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: archean to modern comparisons. Journal of Geophysical Research-Solid Earth, 95: 21503-21521.
[89] Foley S F.2008. A trace element perspective on Archean crust formation and on the presence or absence of Archean subduction. In: Condie K C,Pease V(eds). When Did Plate Tectonics Begin on Planet Earth?Geological Society of America(Special Paper), 440: 31-50.
[90] Frisch W,Meschede M,Blakey R.2011. Plate Tectonics. Springer: 212.
[91] Ge R,Zhu W,Wilde S A,Wu H.2018. Remnants of Eoarchean continental crust derived from a subducted proto-arc. Science Advances, 4(2): eaao3159. DOI: 10.1126/sciadv.aao3159.
[92] Ge S S,Zhai M G,Li T S,Peng P,Santosh M,Shan H X,Zuo P F.2015. Zircon U-Pb geochronology and geochemistry of meta-volcanic rocks from northern Hebei in the North China Craton: implications for Late Neoarchean tectonic evolution. Journal of Asian Earth Sciences, 111: 948-965.
[93] Geng Y S,Du L L,Ren L D.2012. Growth and reworking of the early Precambrian continental crust in the North China Craton: constraints from zircon Hf isotopes. Gondwana Research, 21: 517-529.
[94] Gerya T,Stöckhert B.2006. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins. Int. J. Earth Sci., 95: 250-274.
[95] Greber N D,Dauphas N,Bekker A,Ptá<inline-graphic xlink:href="1671-1505-24-5-825/img_12.jpg"/>ek M P,Bindeman I N,Hofmann A.2017. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science, 357: 1271-1274.
[96] Guitreau M,Blichert-Toft J,Martin H.2012. Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust. Earth and Planetary Science Letters, 337-338: 211-223.
[97] Harrison T M.2009. The Hadean crust: evidence from>4 Ga Zircons. Annual Review of Earth and Planetary Sciences, 37(1): 479-505.
[98] Harrison T M,McCulloch M T,Blichert-Toft J,Albarede F,Holden P,Mojzsis S J.2006. Further Hf isotope evidence for Hadean continental crust. Geochimica et Cosmochimica Acta, 70(18)-Supplement: A234.
[99] Hartmann W K.1975. Lunar “cataclysm”: a misconception. Icarus, 15: 410-428.
[100] Hawkesworth C,Cawood P A,Dhuime B.2020. The evolution of the continental crust and the onset of plate tectonics. Frontiers of Earth Sciences, doi: 10.3389/feart.2020.00326.
[101] Herzberg C, Condie K, Korenaga J.2010. Thermal history of the Earth and its petrological expression. Earth and Planetary Science Letters, 292: 79-88.
[102] Huston D L,Logan G A.2004. Barite,BIFs and Bugs: evidence for the evolution of the Earth's early atmosphere. Earth and Planetary Science Letters, 220: 41-55.
[103] Jahn B M.1990. Early Precambrian basic rocks of China. In: Hall R P,Hughes D J(eds). Early Precambrian Basic Magmatism. Blackie: Glasgow,294-316.
[104] Jahn B M,Zhang Z Q.1984. Archean granulite gneisses from eastern Hebei Province,China: rare earth geochemistry and tectonic implications. Contributions to Mineralogy and Petrology, 85: 224-243.
[105] Jia X L,Zhai M G,Xiao W J,Sun Y,Ratheesh-Kumar R T,Yang H,Zhou K F,Wu J L.2019. Late Neoarchean to early Paleoproterozoic tectonic evolution of the southern North China Craton: evidence from geochemistry,zircon geochronology and Hf isotopes of felsic gneisses from the Taihua complex. Precambrian Research, 326: 222-239.
[106] Jordan T H.1975. The continental tectosphere. Review of Geophysics and Space Physics, 13: 1-12.
[107] Kamber B S,Ewart A,Collerson K D.2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archean crustal growth models. Contributions to Mineralogy and Petrology, 144: 38-56.
[108] Kankanamge D G J,Moore W B.2016. Heat transport in the Hadean mantle: from heat pipes to plates. Geophysical Research Letters, 43(7): 3208-3214.
[109] Kankanamge D G J,Moore W B.2019. A parameterization for volcanic heat flux in heat pipe planets. Journal of Geophysical Research: Planets, 124(1): 114-127.
[110] Kapyaho A,Manttari I,Huhma H.2006. Growth of Archaean crust in the Kuhmodistrict,eastern Finland: U-Pb and Sm-Nd isotope constraints on plutonic rocks. Precambrian Research, 146: 95-119.
[111] Karhu J A,Holland H D.1996. Carbon isotopes and the rise of atmospheric oxygen. Geology, 24: 867-870.
[112] Kemp A I S,Wilde S A,Hawkesworth C J,Coath C D,Nemchin A,Pidgeon R T,Vervoort J D,DuFrane S A.2010. Hadean crustal evolution revisited: new constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett, 296: 45-56.
[113] Khurana K K,Jia X Z,Kivelson M G,Nimmo F,Schubert G,Russell C T.2011. Evidence of a global magma ocean in Io's interior. Science, 332(6034): 1186-1189.
[114] King S D.2005. Archean cratons and mantle dynamics. Earth and Planetary Science Letters, 234: 1-14.
[115] Kleinhanns I C,Kramers J D,Kamber B S.2003. Importance of water for Archean granitoid petrology: a comparative study of TTG and potassic granitoids from Barberton Mountain Land,South Africa. Contributions to Mineralogy and Petrology, 145: 377-389.
[116] Konhauser K,Pecoits E,Lalonde S V,Papineau D,Nisbet E G,Barley M E,Arndt N T,Zahnle K,Kamber B S.2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 458: 750-753.
[117] Kusky T M,Zhai M G.2012. The Neoarchean ophiolite in the North China Craton: Early Precambrian plate tectonics and scientifc debate. Journal of Earth Science, 23: 277-284.
[118] Kusky T M,Windley B F,Safonova I,Wakita K,Wakabayashi J,Santosh M.2013. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: a record of 3.8 billion years of sea floor spreading,subduction,and accretion. Gondwana Research, 24: 501-547. https://doi.org/10.1016/j.gr.2013.01.004.
[119] Lin S F.2005. Synchronous vertical and horizontal tectonism in the Neoarchean: Kinematic evidence from a synclinal keel in the northwestern Superior craton,Canada. Precambrian Research, 139: 181-194.
[120] Lin S F,Parks J,Heaman L M,Simonetti A,Corkery M T.2013. Diapirism and sagduction as a mechanism for deposition and burial of “Timiskaming-type”sedimentary sequences,Superior Province: evidence from detrital zircon geochronology and implications for the Borden Lake conglomerate in the exposed middle to lower crust in the Kapuskasing uplift. Precambrian Research, 238: 148-157.
[121] Liou P,Guo J H.2019. Deciphering the Mesoarchean to Neoarchean history of crustal growth and recycling in the Caochang region of the Eastern Hebei Province,North China Craton using combined zircon U-Pb and Lu-Hf isotope analysis. Lithos, 334-335: 281-294.
[122] Liou P,Guo J H,Mitchell Ross N,Spencer C J,Li X H,Zhai M G,Evans N J,Li Y G,ley J. McDonald B J,Jin M J.2022. Zircons underestimate mantle depletion of early Earth. Geochimica et Cosmochimica Acta, 67(3): 236-239.
[123] Liu F,Guo J H,Lu X P.2009. Crustal growth at~2.5 Ga in the North China Craton: evidence from whole-rock Nd and zircon Hf isotopes in the Huai'an gneiss terrane. Chinese Science Bulletin, 54: 4704-4713.
[124] Liu D Y,Nutman A P W,Compston W,Wu J S,Shen Q H.1992. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20: 339-342.
[125] Liu P,Guo J H,Huang B Y,Fan WB.2019b. 2.9 Ga magmatism in Eastern Hebei,North China Craton. Precambrian Research,326: 222-239.
[126] Liu S W,Fu J H,Lu Y J,Wang M J,Hu F Y,Gao L.2019a. Precambrian Hongqiyingzi Complex at the northern margin of the North China Craton: its zircon U-Pb-Hf systematics,geochemistry and constraints on crustal evolution. Precambrian Research, 326: 58-83.
[127] Lü B,Zhai M G,Li T S,Peng P.2012. Ziron U-Pb ages and geochemistry of the Qinglong volcano-sedimentary rock series in Eastern Hebei: implication for~2500 Ma intra-continental rifting in the North China Craton. Precambrian Research, 208-211: 145-160.
[128] Martin H.1987. Petrogenesis of Archaean trondhjemites,tonalites and granodiorites from eastern Finland: major and trace element geochemistry. Journal of Petrology, 28: 921-953.
[129] Martin H.1994. The Archean grey gneisses and the genesis of the continental crust. In: Condie K C(ed). Archean crustal evolution. Amsterdam: Elsevier,205-259.
[130] Martin H,Moyen J F.2002. Secular changes in TTG composition as markers of the progressive cooling of the Earth. Geology, 30: 319-322.
[131] Martin H,Smithies R H,Rapp R,Moyen J F,Champion D.2005. An overview of adakite,tonalite-trondhjemite-granodiorite(TTG),and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79: 1-24.
[132] Martin H,Moyen J F,Rapp R.2010. The sanukitoid series: magmatism at the Archaean-Proterozoic transition. Earth & Environmental Science Transactions of the Royal Society of Edinburgh, 100(1-2): 15-33.
[133] McEwen A S.2002. Active volcanism on Io. Science, 297(5590): 2220-2221.
[134] McEwen A S,Keszthelyi L,Spencer J R,Schubert G,Matson D L,Lopes-Gautier R,Klassen K P,Johnson T V,Head J W,Geissler P,Fagents S,Davies A G,Carr M H,Breneman H H,Belton M J S.1998. High-temperature silicate volcanism on Jupiter's moon Io. Science, 281: 87-90.
[135] Moore W B,Webb A A G.2013. Heat-pipe Earth. Nature, 501(7468): 501-505.
[136] Moyen J F.2011. The composite Archaean grey gneisses: petrological significance,and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos, 123: 21-36.
[137] Moyen J F,Martin H.2012. Forty years of TTG research. Lithos, 148: 312-336.
[138] Moyen J F,van Hunen J.2012. Short-termepisodicity of Archean plate tectonics. Geology, 40: 451-454.
[139] Moyen J F,Laurent O.2018. Archaean tectonic systems: a view from igneous rocks. Lithos, 302-303: 99-125.
[140] Næraa T,Schersten A,Rosing M T,Kemp A I S,Hoffmann J E,Kokfelt T F,Whitehouse M J.2012. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature, 485: 627-630.
[141] Nair R,Chacko T.2008. Role of oceanic plateaus in the initiation of subduction and origin of continental crust. Geology, 36: 583-586.
[142] Nance R D,Murphy J B,Santosh M. 2013. The supercontinent cycle: a retrospective essay. Gondwana Research, 2013. The supercontinent cycle: a retrospective essay. Gondwana Research,http://dx.doi.org/10.1016/j.gr.2012.12.026.
[143] Nesbitt R W,Jahn B M,Purvis A C.1982. Komatiites: an early Precambrian phenomenon. Journal of Volcanology and Geothermal Research, 14: 31-45.
[144] Nutman A P,Friend C R L,Kinny P D,McGregor V R.1993. Anatomy of an Early Archean gneiss complex: 3900 to 3600 Ma crustal evolution in southern West Greenland. Geology, 21: 415-418.
[145] Nutman A P, Friend C R L, Horie K, Hidaka H. 2007. The Itsaq gneiss complex of southern west Greenland and the construction of Eoarchaean crust at Convergent plate Boundaries. In: Kranendonk M J,van Smithies R H,Bennett V C(eds). Earth's Oldest Rocks. 29 PO Box 211 1000 AE Amsterdam,the Netherlands. Radarweg: Elsevier,187-218.
[146] O’Neil J,Maurice C,Steveson R K,Larocque J,Cloquet C,David J, Frencis D. 2007. The Geology of the 3.8 Ga Nuvvuagittuq(Porpoise Cove)Grrenstone Belt,Northeastern Superrior Province,Canada. In: Kranendonk M J,Smithies R H,Bennett V C(eds). Earth's Oldest Rocks. 29 PO Box 211 1000 AE Amsterdam,the Netherlands. Radarweg: Elsevier,219-250.
[147] O’Neill H S C.1991. The origin of the Moon and the early history of the Earth: a chemical model. Part 2: The Earth. Geochimica Cosmochimica Acta, 55: 1159-1172.
[148] O'Neill C, Zhang S. 2019. Modeling early Earth tectonics: the case for stagnant lid behaviour. In: Wagoner Kranendonk M J,Bennett V C,Hoffmann J E(eds).Earth's Oldest Rocks(2nd Edition). Amsterdam,Netherlands: Elsevier,65-80.
[149] Pearson D G.1999. The age of continental roots. Lithos, 48: 171-194.
[150] Pearson N J,Alard O,Griffin W L.2002. In situ measement of Re-Os isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry: analytical methods and preliminary results. Geochimica et Cosmochimica Acta, 66: 1037-1050.
[151] Peng R M,Zhai Y S,Wang J P,Liu Q.2010. Discovery of Neoproterozoic acid volcanic rock in the south-western section of Langshan,Inner Mongolia. Chin Sci Bull, 55(26): 2611-2620.
[152] Piper J D A.2013. A planetary perspective on Earth evolution: lid tectonics before plate tectonics. Tectonophysics, 589: 44-56.
[153] Pollack H N.1986. Cratonization and thermal evolution of the mantle. Earth and Planetary Science Letters, 80: 175-182.
[154] Pouclet A,Tchameni R,Mezger K.2007. Archaean crustal accretion at the northern border of the Congo Craton(South Cameroon). The charnockite-TTG link. Bulletin de la Societe Geologique de France, 178: 331-342.
[155] Rapp R P,Watson E B,Miller C F.1991. Partial melting of amphibolite/eclogite and the origin of Archaean trondhjemites and tonalities. Precambrian Research, 51: 1-25.
[156] Rogers J J W,Santosh M.2003. Supercontinents in Earth history. Gondwana Research, 6: 357-368.
[157] Rudnick R L,Fountain D M.1995. Nature and composition of the continental crust: a lower crustal perspective. Review of Geophysics, 33: 267-309.
[158] Rudnick R L.1995. Making continent crust. Nature, 378: 571-578.
[159] Schidlowski M.1988. A 3800-million-yea |