Sedimentary environment identification and hydrocarbon source significance of black shale of the Ordovician Meitan Formation at Banqiao section in Zunyi,Guizhou
HUANG Tianhai1,2,3, XIAO Di1,2,3, TANG Hao1,2,3, LI Shuangjian4, ZHENG Jianfeng5, ZHOU Li1,2,3, TAN Xiucheng1,2,3
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500, China; 2 Research Branch of Southwest Petroleum University,Key Laboratory of Carbonate Reservoirs,CNPC,Chengdu 610500, China; 3 Sichuan Natural Gas Geology Key Laboratories,Southwest Petroleum University,Chengdu 610500, China; 4 Petroleum Exploration and Production Research Institute,SINOPEC,Beijing 100083, China; 5 PetroChina Hangzhou Research Institute of Geology,Hangzhou 310023, China
Abstract:The Lower Ordovician Meitan Formation in the Upper Yangtze area of South China is characterized as the thick mud shale deposits,in which the black shale is well developed. However,there is a great controversy on its sedimentary environment. Taking the Banqiao section of Zunyi as an example,this paper focuses on the comprehensive study on the sedimentary characteristics and geochemistry of the black shale and the associated rocks,especially the relative water depth,sedimentary hydrodynamics and physical and chemical properties of palaeo-seawater during the deposition of black shale of Meitan Formation. The results show that: (1)The black shale of Meitan Formation is characterized as the dark color and well-developed horizontal bedding,without macroscopically paleontological fossils. The interlayer of bioclastic limestone and calcareous siltstone with different thickness developed,indicating that the black shale of Meitan Formation was not the sedimentary product of deep-water environment,but deposited in the low-energy shallow muddy lagoon environment in the mixed platform. (2)The bioclastic limestone that is interbedded with the black shale section mostly develops the inverse grain structure with the fine grain at the bottom and the coarse grain at the top,and iron oxides can be seen at the top,while the calcareous siltstone,interbedded with black shale,mostly develops wave cross bedding and biological drilling,showing shallow water deposition characteristics. (3)The average values of V/(V+Ni),Th/U,V/Cr and Ni/Co of black shale are 0.71,5.52,1.07 and 2.04,respectively,indicating the hypooxidation-oxidation environment. The Sr/Ba ratio ranges from 0.11 to 2.20,with an average value of 0.55,indicating the fresh water-brackish water environment;(4)Macroscopically,obvious erosion surface can be seen in some sections of bioclastic limestone,and karst development can be seen through microscopic observation. At the same time,the REE distribution pattern tends to be horizontal,and the ∑ REE value is higher and Y/Ho is lower,showing the exposed karst environment. (5)TOC values of black shale ranged from 0.09% to 1.05%,with an average value of 0.39%. TOC values of original black shale ranged from 0.28% to 3.16%,with an average value of 1.25. The average value of RO is 2.095,and the organic matter is mainly sapropelic. Based on the above analysis,it shows that the black shale of Meitan Formation in Banqiao section of Zunyi is a set of effective hydrocarbon source rocks formed in a shallow water and suboxidation-oxidation environment and high paleoproductivity is the main reason for the organic matter enrichment. The research results provides strong evidence for identifying the sedimentary environment and hydrocarbon generation potential of black shale rocks series in Meitan formation in southern Sichuan,and also provides a new example for the identification of shallow-water sedimentary environment conditions of black shale.
HUANG Tianhai,XIAO Di,TANG Hao et al. Sedimentary environment identification and hydrocarbon source significance of black shale of the Ordovician Meitan Formation at Banqiao section in Zunyi,Guizhou[J]. JOPC, 2022, 24(6): 1193-1209.
[1] 常华进,储雪蕾,冯连君,黄晶,张启锐. 2009. 氧化—还原敏感微量元素对古海洋沉积环境的指示意义. 地质论评, 55(1): 91-99. [Chang H J,Chu X Q,Feng L J,Huang J,Zhang Q R. 2009. Redox sensitive trace elements as paleoenvironments proxies. Geological Review, 55(1): 91-99] [2] 陈洪德,郭彤楼,侯明才,林良彪,李智武,徐胜林,钟怡江,王约,张成弓,陈安清. 2012. 中国南方中上扬子区叠合盆地沉积充填过程与物质分布规律. 成都理工大学. [Chen H D,Guo T L,Hou M C,Lin L B,Li Z W,Xu S L,Zhong Y J,Wang Y,Zhang C G,Chen A Q. 2012. Sedimentary filling process and material distribution of superimposed basins in middle and upper Yangtze region,South China. Chengdu University of Technology] [3] 陈建平,梁狄刚,张水昌,邓春萍,赵喆,张蒂嘉. 2012. 中国古生界海相烃源岩生烃潜力评价标准与方法. 地质学报, 86(7): 1132-1142. [Chen J P,Liang D G,Zhang S C,Deng C P,Zhao Z,Zhang D J. 2012. Evaluation criterion and methods of the hydrocarbon generation potential for China's Paleozoic marine source rocks. Acta Geologica Sinica, 86(7): 1132-1142] [4] 丰国秀,陈盛吉. 1988. 岩石中沥青反射率与镜质体反射率之间的关系. 天然气工业, 8(3): 20-25. [Feng G X,Chen S J. 1988. Relationship between bitumen reflectance and vitrinite reflectance in rocks. Natural Gas Industry, 8(3): 20-25] [5] 胡华蕊,邢凤存,侯明才,段金宝,张殿伟. 2019. 上扬子奥陶纪层序岩相古地理重建及油气勘探启示. 地球科学, 44(3): 798-809. [Hu H R,Xing F C,Hou M C,Duan J B,Zhang D W. 2019. Ordovician sequence and lithofacies palaeogeography reconstruction in upper Yangtze region and its implications for oil and gas exploration. Earth Science, 44(3): 798-809] [6] 黄福喜,陈洪德,侯明才,钟怡江,李洁. 2011. 中上扬子克拉通加里东期(寒武—志留纪)沉积层序充填过程与演化模式. 岩石学报, 27(8): 2299-2317. [Huang F X,Chen H D,Hou M C,Zhong Y J,Li J. 2011. Filling process and evolutionary model of sedimentary sequence of Middle-Upper Yangtze craton in Caledonian(Cambrian-Silurian). Acta Petrologica Sinica, 27(8): 2299-2317] [7] 黄军平,李相博,何文祥,林俊峰,徐耀辉,包洪平,王洪波,章贵松,完颜容,王雅婷. 2020. 鄂尔多斯盆地南缘下寒武统高丰度烃源岩发育特征与油气勘探方向. 海相油气地质, 25(4): 319-326. [Huang J P,Li X B,He W X,Lin J X,Xu Y H,Bao H P,Wang H B,Zhang G S,Wanyan R,Wang Y T. 2020. Development characteristics of high abundance source rocks of the lower Cambrian and direction of oil and gas exploration in southern margin of Ordos Basin. Marine Origin Petroleum Geology, 25(4): 319-326] [8] 金值民,谭秀成,唐浩,沈安江,乔占峰,郑剑锋,李飞,张世轩,陈雷,周成刚. 2020. 浅水超覆沉积富有机质细粒沉积物沉积环境与岩石学特征: 以塔里木盆地西北部寒武系玉尔吐斯组为例. 石油勘探与开发, 47(3): 476-489. [Jing Z M,Tan X C,Tang H,Shen A J,Qiao Z F,Zheng J F,Li F,Zhang S X,Chen L,Zhou C G. 2020. Sedimentary environment and petrological features of organic-rich fine sediments in shallow water overlapping deposits: a case study of Cambrian Yuertus Formation in northwestern Tarim Basin,NW China. Petroleum Exploration and Development, 47(3): 476-489] [9] 李成凤,肖继风. 1988. 用微量元素研究胜利油田东营盆地沙河街组的古盐度. 沉积学报, 6(4): 100-107. [Li C F,Xiao J F. 1988. The application of trace element to the study on paleosalinities of Shahejie Formation in Dongying Basin of Shengli Oilfield. Acta Sedimentologica Sinica, 6(4): 100-107] [10] 李皎,何登发,梅庆华. 2015. 四川盆地及邻区奥陶纪构造-沉积环境与原型盆地演化. 石油学报, 36(4): 427-445. [Li J,He D F,Mei Q H. 2015. Tectonic-depositional environment and proto-type basins evolution of the Ordovician in Sichuan Basin and adjacent areas. Acta Petrolei Sinica, 36(4): 427-445] [11] 李启剑,李越,Steve Kershaw,张园园,邓小杰. 2010. 黔北凤岗硐卡拉奥陶系湄潭组中灰岩: 典型的暖水相. 微体古生物学报, 27(2): 150-158. [Li Q J,Li Y,Kershaw S,Zhang Y Y,Deng X J. 2010. “Middle member limestone”of the Ordovican Meitan Formation in Dongkala,Fenggang,northern Guizhou,SW China: typical warm marine facies. Acta Micropalaeontologica Sinica, 27(2): 150-158] [12] 刘若冰,田景春,魏志宏,张明文,钟水清,张光华,王碧. 2006. 川东南地区震旦系—志留系下组合有效烃源岩综合研究. 天然气地球科学,(6): 824-828. [Liu R B,Tian J C,Wei Z H,Zhang M W,Zhong S Q,Zhang G H,Wang B. 2006. Comprehensive research of effective hydrocarbon source rock of lower strata Sinian to Silurian system in southeast area of Sichuan Province. Natural Gas Geoscience,(6): 824-828] [13] 刘伟,洪海涛,徐安娜,姜华,石书缘. 2017. 四川盆地奥陶系岩相古地理与勘探潜力. 海相油气地质, 22(4): 1-10. [Liu W,Hong H T,Xu A N,Jiang H,Shi S Y. 2017. Lithofacies paleogeography and exploration potential of Ordovician in Sichuan Basin. Marine Origin Petroleum Geology, 22(4): 1-10] [14] 陆扬博,马义权,王雨轩,陆永潮. 2017. 上扬子地区五峰组—龙马溪组主要地质事件及岩相沉积响应. 地球科学, 42(7): 1169-1184. [Lu Y B,Ma Y Q,Wang Y X,Lu Y C. 2017. The sedimentary response to the major geological events and lithofacies characteristics Wufeng Formation-Longmaxi Formation in the upper Yangtze area. Earth Science, 42(7): 1169-1184] [15] 庞雄奇,李倩文,陈践发,黎茂稳,庞宏. 2014. 含油气盆地深部高过成熟烃源岩古TOC恢复方法及其应用. 古地理学报, 16(6): 769-789. [Pang X Q,Li Q W,Chen J F,Li M W,Pang H. 2014. Recovery method of original TOC and its application in source rocks at high mature-over mature stage in deep petroliferous basins. Journal of Palaeogeography(Chinese Edition), 16(6): 769-789] [16] 王东安,陈瑞君. 1996. 扬子地台不同时代层状硅岩的硅同位素结果的讨论. 沉积学报, 14(2): 84-90. [Wang D A,Chen R J. 1996. Discussion on silicon isotope of bedded siliceous rocks of different ages in Yangtze platform. Acta Sedimentologica Sinica,14(2): 84-90] [17] 王敏芳,黄传炎,徐志诚,程锦翔,杨赏. 2006. 综述沉积环境中古盐度的恢复. 新疆石油天然气, 2(1): 9-10. [Wang M F,Huang C Y,Xu Z C,Chen J X,Yang S. 2006. Review on paleosalinity recovery in sedimentary environment. Xinjiang Oil & Gas, 2(1): 9-10] [18] 魏巍,Thomas J A,陆永潮,刘惠民,张守鹏,张靖宇,杜远生. 2021. 古盐度指标与渤海湾盆地古近系海侵事件初探. 沉积学报, 39(3): 571-592. [Wei W,Thomas J A,Lu Y C,Liu H M,Zhang S P,Zhang J Y,Du Y S. 2021. Paleosalinity proxies and marine incursions into the Paleogene Bohai Bay Basin lake system,northeastern China. Acta Sedimentologica Sinica, 39(3): 571-592] [19] 熊小辉,肖加飞. 2011. 沉积环境的地球化学示踪. 地球与环境, 39(3): 405-414. [Xiong X H,Xiao J F. 2011. Geochemical indicators of sedimentary environments: a summary. Earth and Environment, 39(3): 405-414] [20] 杨跃明,黄东,杨光,李育聪,戴鸿明,白蓉. 2019. 四川盆地侏罗系大安寨段湖相页岩油气形成地质条件及勘探方向. 天然气勘探与开发, 42(2): 1-12. [Yang Y M,Huang D,Yang G,Li Y C,Dai H M, Bai R. 2019. Geological conditions to form lacustrine facies shale oil and gas of Jurassic Daanzhai Member in Sichuan Basin and exploration directions. Natural Gas Exploration and Development, 42(2): 1-12] [21] 张殿伟,郝运轻,张荣强,孙炜,高平,李甘璐. 2020a. 四川盆地湄潭组生烃潜力分析及勘探意义. 沉积学报, 38(3): 635-647. [Zhang D W,Hao Y Q,Zhang R Q,Sun W,Gao P,Li G L. 2020a. Hydrocarbon potential analysis and exploration significance of the Meitan Formation,Sichuan Basin. Acta Sedimentologica Sinica, 38(3): 635-647] [22] 张殿伟,何治亮,李甘璐. 2020b. 四川盆地奥陶系油气地球化学特征及成藏模式. 天然气地球科学, 31(3): 428-435. [Zhang D W,He Z L,Li G L. 2020b. Geochemistry and accumulation model of Ordovician hydrocarbon in Sichuan Basin. Natural Gas Geoscience, 31(3): 428-435] [23] 赵建华,金之钧,林畅松,刘光祥,刘可禹,刘忠宝,张钰莹. 2019. 上扬子地区下寒武统筇竹寺组页岩沉积环境. 石油与天然气地质, 40(4): 701-715. [Zhao J H,Jin Z J,Lin C S,Liu G X,Liu K Y,Liu Z B,Zhang Y Y. 2019. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region. Oil & Gas Geology, 40(4): 701-715] [24] 周传祎. 2008. 川东南—黔中及其周边地区烃源岩品质与环境控制因素研究. 中国地质大学(北京)硕士论文. [Zhou C W. 2008. Study on the quality of source rock and factor of sedimentary environment in lower assemblage in Chuandongnan-Qianzhong and nearby area. Masteral thesis of China University of Geosciences(Beijing)] [25] 周昊,陈雷,李雪松,陈鑫,王文倩,杨莉,郭鸣黎. 2021. 川南长宁地区五峰组和龙马溪组页岩储层差异性分析. 断块油气田, 28(3): 289-294. [Zhou H,Chen L,Li X S,Chen X,Wang W Q,Yang L,Guo M L. 2021. Difference analysis of shale reservoirs of Wufeng Formation and Longmaxi Formation in Changning area,southern Sichuan. Fault-Block Oil & Gas Field, 28(3): 289-294] [26] Bau M,Dulski P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations,Transvaal Supergroup,South Africa. Precambrian Research, 79: 37-55. [27] Bejugam P,Nayak G N. 2019. Tracing source-sink processes and productivity from trace metals(Ba,Zn,Pb,Cd)of the surface sediments off Mahanadi to Pennar,western Bay of Bengal. Environmental Earth Sciences, 78: 107-118. [28] Chen C,Mu C L,Zhou K K,Liang W,Ge X Y,Wang X P,Zheng B S. 2016. The geochemical characteristics and factors controlling the organic matter accumulation of the late Ordovician-Early Silurian black shale in the upper Yangtze Basin,South China. Marine and Petroleum Geology, 76: 159-175. [29] Chen L,Jiang S,Chen P,Chen X H,Zhang B M,Zhang G T,Lin W B,Lu Y C. 2021. Relative sea-level changes and organic matter enrichment in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi Formations in the Central Yangtze area,China. Marine and Petroleum Geology, 124: 667-682. [30] Chen X,Zhang Y D,Fan J X,Tang L,Sun H Q. 2010. The graptolite stratigraphy in South Jiangxi and Guangxi Movement. Science in China(Series D), 40(12): 4621-1631. [31] Hu T,Pang X Q,Jiang S,Wang Q F,Zheng X W,Ding X G,Zhao Y,Zhu C X,Li H. 2018. Oil content evaluation of lacustrine organic-rich shale with strong heterogeneity: a case study of the middle Permian Lucaogou Formation in Jimusaer Sag,Junggar Basin,NW China. Fuel, 221: 196-205. [32] Jones B,Manning A C. 1994. Comparison of geochemical in dicesused for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(2): 111-129. [33] Kimura H,Watanabe Y. 2001. Oceanic anoxia at the Precambrian Cambrian boundary. Geology, 29(11): 995-998. [34] Langhorne B S,Juergen S,Ryan D W. 2019. Shallow-water onlap model for the deposition of Devonian black shales in New York,USA. Geology, 47(3): 279-283. [35] Liu Z X,Yan D T,Du X B,Li S J. 2021. Organic matter accumulation of the early Cambrian black shales on the flank of Micangshan-Hannan uplift,northern upper Yangtze Block,South China. Journal of Petroleum Science and Engineering, 200: 1-11. [36] Lucas D M,Michał R,Leszek M,Agnieszka P,Sabiela M,Michał Z,Marcelo A C,Antonio C S F,Breno L W. 2017. Benthic anoxia,intermittent photic zone euxinia and elevated productivity during deposition of the lower Permian,post-glacial fossiliferous black shales of the Paraná Basin,Brazil. Global and Planetary Change, 158: 155-172. [37] Mohammed I Q,Farouk S,Baioumy H,Lotfy N M,Hadidy A H. 2020. Mineralogical and geochemical characteristics of the Paleozoic source rocks,Akkas gas field,western desert of Iraq: implications for their origin,maturation and Ordovician-Silurian transition. Marine and Petroleum Geology, 118: 1-18. [38] Nothdurft L D,Webb G E,Kamber B S. 2004. Rare earth element geochemistry of late Devonian reefal carbonates,Canning Basin,western Australia: confirmation of a seawater REE proxy in ancient limestones. Geochim Cosmochim, 68: 263-283. [39] Tribovillard N,Koched H,Baudin F,Thierry A,Marion D,Romain A,Jean-Noël F. 2019. Storm-induced concentration of sulfurized,marine-origin,organic matter as a possible mechanism in the formation of petroleum source-rock. Marine and Petroleum Geology, 109: 808-818. [40] Webb G E,Kamber B S. 2000. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim, 64: 1557-1565. [41] Webb G E,Nothdurft L D,Kamber B S,Zhao J X. 2009. Rare earth element geochemistry of Scleractinian coral skeleton during meteoric diagenesis: a sequence through neomorphism of aragonite to calcite. Sedimentology, 56(5): 1433-1463. [42] Wen G,Li J W,Albert H H,Alan E K,Cui B Z. 2020. Textures and compositions of clinopyroxene in a Fe skarn with implications for ore-fluid evolution and mineral-fluid REE partitioning. Geochimica et Cosmochimica Acta, 290: 104-123. [43] Wignall P B,Twitchett R J. 1996. Oceanic anoxia and the end Permian mass extinction. Science, 272(5265): 1155-1158. [44] Xi Z D,Tang S H. 2021. Geochemical characteristics and organic matter accumulation of Late Ordovician shale in the Upper Yangtze Platform,South China. Energy Reports, 7: 667-682. [45] Xiao D,Cao J,Luo B,Tan X C,Li Y. 2020. On the dolomite reservoirs formed by dissolution: differential eogenetic versus hydrothermal in the lower Permian Sichuan Basin,Southwestern China. AAPG Bulletin, 104(7): 1405-1438. [46] Yan D T,Li S J,Fu H J,Jasper D M,Zhou S D,Yang X R,Zhang B,Mangi H N. 2021. Mineralogy and geochemistry of lower Silurian black shales from the Yangtze platform,South China. International Journal of Coal Geology, 237: 1-18. [47] Zeng S Q,Wang J,Fu X G,Chen W B,Feng X L,Wang D,Song C Y,Wang Z W. 2015. Geochemical characteristics,redox conditions,and organic matter accumulation of marine oil shale from the Changliang Mountain area,northern Tibet,China. Marine and Petroleum Geology, 64: 203-221. [48] Zhao M Y,Zheng Y F. 2017. A geochemical framework for retrieving the linked depositional and diagenetic histories of marine carbonates. Earth and Planetary Science Letters, 460: 213-221.