Abstract:A set of deep-water gravity flow deposits with sand-mud couples are developed in the Ordovician Lashizhong Formation in the western margin of the Ordos Basin,and the gravity flow complex channel is developed in the lower part. Based on field measurement,microscopic observation and grain size analysis,the sedimentary characteristics,process and main controlling factor of complex channel are discussed,and finally the sedimentary models were established. The results show that: (1)Five lithofacies and three lithofacies associations are developed in the study area,namely massive bedding calcirudite lithofacies(Cm),graded bedding fine-siltstone lithofacies(Sg),parallel bedding sandstone lithofacies(Sp),cross bedding siltstone lithofacies(Sc) and horizontal bedding(mud)shale lithofacies(Sh),indicating debris flow deposits(Cm),turbidites(Sg,Sp,Sc) and deep-water autochthonous deposits(Sh). (2)According to the morphology,lithofacies association and grain size of single channel,the complex channel is divided into four stages,reflecting a gradually decreased gravity flow energy. (3)The multi-stage filling and evolution of complex channel are closely related to relative sea-level change,sediment supply,regional tectonic activities and gravity flow size and energy change. (4)The gravity flow sedimentation in the study area is a complex channel sedimentary system formed in a slope-basin environment. This study can improve the understanding of gravity flow channel in the study area and provide reference for oil and gas exploration.
TAN Mengting,LI Hua,HE Youbin et al. Characteristics and evolution of complex channel in the Ordovician Lashizhong Formation in western margin of Ordos Basin[J]. JOPC, 2023, 25(1): 119-132.
[1] 蔡露露,王雅宁,王颖,董朔朋,朱石磊,廖计华,赵钊,薛冬. 2016. 西非深水沉积类型特征及油气勘探意义. 石油学报, 37(S1): 131-142. [Cai L L,Wang Y N,Wang Y,Dong S P,Zhu S L,Liao J H,Zhao Z,Xue D. 2016. Type features and hydrocarbon exploration significance of deepwater sedimentary in West Africa. Acta Petrolei Sinica, 37(S1): 131-142] [2] 陈华,林畅松,张忠民,张德民,朱奕璇,吴高奎,李茗,徐海,郭荣涛. 2021. 西非下刚果—刚果扇盆地A区块中新统深水水道体系沉积特征及演化. 石油实验地质, 43(3): 476-486. [Chen H,Lin C S,Zhang Z M,Zhang D M,Zhu Y X,Wu G K,Li M,Xu H,Guo R T. 2021. Depositional characteristics and evolution of Miocene deep-water channel systems in block A of Lower Congo Fan Basin,West Africa. Petroleum Geology & Experiment, 43(3): 476-486] [3] 陈亮,赵千慧,王英民,李爱山,陈宇航. 2020. 深水水道沉积单元及演化分析. 海洋地质前沿, 36(3): 12-19. [Chen L,Zhao Q H,Wang Y M,Li A S,Chen Y H. 2020. Depositional elements of deepwater channels and their evolution. Marine Geology Frontiers, 36(3): 12-19] [4] 传婷婷. 2013. 鄂尔多斯盆地西缘奥陶系沉积特征及构造意义. 中国地质大学(北京)硕士论文:43-45. [Chuan T T. 2013. The sedimentary features and tectonic implications of Ordovician in the western margin of Ordos Basin. Masteral dissertation of China University of Petroleum: 43-45] [5] 段瑞凯,张旭,郭富欣,陈国宁,胡光义,邹婧芸. 2022. 深水复合朵体内部沉积结构及其叠置模式: 以尼日尔三角洲盆地Akpo油田中新统D油组为例. 岩性油气藏, 34(5): 110-120. [Duan R K,Zhang X,Guo F X,Chen G N,Hu G Y,Zou J Y. 2022. Internal sedimentary structure and patterns of deep-water lobe complex: a case study of Miocene Zone D in Akpo oilfield,Niger Delta Basin. Lithologic Reservoirs, 34(5): 110-120] [6] 费安玮. 2001. 鄂尔多斯盆地拉什仲组遗迹化石组合与古环境. 高校地质学报, 7(3): 278-287. [Fei A W. 2001. Study of trace fossil assemblage and paleoenvironment of Middle Ordovician Lashizhong Formation,Ordos Basin. Geological Journal of China Universities, 7(3): 278-287] [7] 晋慧娟,孙明良,李育慈. 2005. 内蒙古桌子山中奥陶统的“特殊”浊积岩系. 沉积学报, 23(1): 34-40. [Jin H J,Sun M L,Li Y C. 2005. The “special”turbidite measure of the middle Ordovician series in Zhuozishan area,inner Mongolia. Acta Sedimentologica Sinica, 23(1): 34-40] [8] 郭彦如,赵振宇,付金华,徐旺林,史晓颖,孙六一,高建荣,张延玲,张月巧,刘俊榜,刘虹. 2012. 鄂尔多斯盆地奥陶纪层序岩相古地理. 石油学报, 33(S2): 95-109. [Guo Y R,Zhao Z Y,Fu J H,Xu W L,Shi X Y,Sun L Y,Gao J R,Zhang Y L,Zhang Y Q,Liu J B,Liu H. 2012. Lithofacies paleogeography under sequence stratigraphic framework of Ordovician in Ordos Basin. Acta Petrolei Sinica, 33(S2): 95-109] [9] 郭彦如,赵振宇,徐旺林,史晓颖,高建荣,包洪平,刘俊榜,张延玲,张月巧. 2014. 鄂尔多斯盆地奥陶系层序地层格架. 沉积学报, 32(1): 44-60. [Guo Y R,Zhao Z Y,Xu W L,Shi X Y,Gao J R,Bao H P,Liu J B,Zhang Y L,Zhang Y Q. 2014. Sequence stratigraphy of the Ordovician system in the Ordos Basin. Acta Sedimentologica Sinica, 32(1): 44-60] [10] 李华,何幼斌. 2020. 深水重力流水道沉积研究进展. 古地理学报, 22(1): 161-174. [Li H,He Y B. 2020. Research progress on deepwater gravity flow channel deposit. Journal of Palaeogeography(Chinese Edition), 22(1): 161-174] [11] 李华,何幼斌,冯斌,郝烃,苏帅亦,张灿,王季欣. 2018. 鄂尔多斯盆地西缘奥陶系拉什仲组深水水道沉积类型及演化. 地球科学, 43(6): 2149-2159. [Li H,He Y B,Feng B,Hao T,Su S Y,Zhang C,Wang J X. 2018. Type and evolution of deep-water channel deposits of Ordovician Lashizhong Formation in western margin of Ordos Basin. Earth Science, 43(6): 2149-2159] [12] 李华,何幼斌,谈梦婷,冯斌,葛稳稳,孙玉玺,于星. 2022. 深水重力流水道—朵叶体系形成演化及储层分布: 以鄂尔多斯盆地西缘奥陶系拉什仲组露头为例. 石油与天然气地质, 43(4): 917-928. [Li H,He Y B,Tan M T,Feng B,Ge W W,Sun Y X,Yu X. 2020. Evolution of reservoir distribution with deep-water gravity flow channel-lobe systerm: a case study of the Ordovician Lashenzhong Formation outcrop at western margin of Ordos Basin. Oil & Gas Geology, 43(4): 917-928] [13] 李磊,闫瑞,李宁涛,杨蕾,张锦飞,刘阳,牛旭业,孙宇锋. 2015. 西非Rio Muni盆地深水水道特征与成因. 现代地质, 29(1): 80-88. [Li L,Yan R,Li N T,Yang L,Zhang J F,Liu Y,Niu X Y,Sun Y F. 2015. Characteristics and origin of deep-water channels in Rio Muni Basin,West Africa. Geoscience, 29(1): 80-88] [14] 李全,吴伟,康洪全,任世君,逄林安,杨婷,蔡露露,刘小龙. 2019. 西非下刚果盆地深水水道沉积特征及控制因素. 石油与天然气地质, 40(4): 917-929. [Li Q,Wu W,Kang H Q,Ren S J,Pang L A,Yang T,Cai L L,Liu X L. 2019. Characteristics and controlling factors of deep-water channel sedimentation in Lower Congo Basin,West Africa. Oil & Gas Geology, 40(4): 917-929] [15] 李向东,陈海燕,陈洪达. 2019. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积. 地球科学进展, 34(12): 1301-1315. [Li X D,Chen H Y,Chen H D. 2019. Deep-water combined-flow deposits of the Upper Ordovician Lashizhong Formation in Zhuozishan area,western margin of Ordos Basin. Advances in Earth Science, 34(12): 1301-1305] [16] 李向东,陈海燕. 2020a. 深水环境下古水流方向分析和阻塞浊流沉积的识别: 以鄂尔多斯盆地桌子山地区上奥陶统拉什仲组为例. 石油学报, 41(11): 1348-1365. [Li X D,Chen H Y. 2020a. Analysis of palaeocurrent direction and identification of ponded turbidity currents deposits in deep-water environment: a case study of the Upper Ordovician Lashizhong Formationin Zhuozishan area,Ordos Basin. Acta Petrolei Sinica, 41(11): 1348-1365] [17] 李向东,陈海燕. 2020b. 鄂尔多斯盆地西缘上奥陶统拉什仲组深水等深流沉积. 地球科学, 45(4): 1266-1280. [Li X D,Chen H Y. 2020b. Deep-water contour currents deposits of Upper Ordovician Lashizhong Formation in western margin of Ordos Basin. Earth Science, 45(4): 1266-1280] [18] 李向东,魏泽昳,陈洪达. 2022. 鄂尔多斯盆地西缘上奥陶统拉什仲组内波、内潮汐沉积成因分析. 地质学报, 18(3): 1-17. [Li X D,Wei Z Y,Chen H D. 2022. Genetic analysis of internal-wave and internal-tide deposits in Upper Ordovician Lashizhong Formation,western Ordos Basin. Acta Geologica Sinica, 18(3): 1-17] [19] 孙辉,范国章,邵大力,左国平,刘少治,王红平,马宏霞,许小勇,鲁银涛,闫春. 2021. 深水局部限制型水道复合体沉积特征及其对储层性质的影响: 以东非鲁武马盆地始新统为例. 石油与天然气地质, 42(6): 1440-1450. [Sun H,Fan G Z,Shao D L,Zuo G P,Liu S Z,Wang H P,Ma H X,Xu X Y,Lu Y T,Yan C. 2021. Depositional characteristics of locally restricted channel complex in deep water and its influence on reservoir properties: a case study of the Eocene series,Rovuma Basin. Oil & Gas Geology, 42(6): 1440-1450] [20] 田荣恒,鲜本忠,晁储志,刘建平,张国栋,王俊辉,陈鹏. 2021. 重力流水道沉积特征与沉积模式: 以鄂尔多斯盆地瑶曲铁路桥剖面三叠系延长组为例. 古地理学报, 23(5): 967-982. [Tian R H,Xian B Z,Chao S Z,Liu J P,Zhang G D,Wang J H,Chen P. 2021. Sedimentary characteristics and model of lacustrine gravity flow channel: a case study of the Triassic Yanchang Formation of Yaopu railway-bridge section in Ordos Basin. Journal of Palaeogeography(Chinese Edition), 23(5): 967-982] [21] 肖彬. 2014. 深水水道沉积体系及成因机制研究. 长江大学博士论文: 16-35. [Xiao B. 2014. Sedimentary system and formation mechanism of deep-water channel complex. Doctoral dissertation of Yangtze University: 16-35] [22] 肖彬,何幼斌,罗进雄,苑伯超. 2013. 内蒙古桌子山中奥陶统拉什仲组岩石特征及沉积环境. 科技导报, 31(34): 45-51. [Xiao B,He Y B,Luo J X,Yuan B C. 2013. Petrological characteristics and sedimentary environment of the Middle Ordovician Lashizhong Formation at Zhuozishan area,Inner Mongolia Autonomous Region. Science & Technology Review, 31(34): 45-51] [23] 肖彬,何幼斌,罗进雄,苑伯超. 2014. 内蒙古桌子山中奥陶统拉什仲组深水水道沉积. 地质论评, 60(2): 321-331. [Xiao B,He Y B,Luo J X,Yuan B C. 2014. Submarine channel complex deposits of the Middle Ordovician Lashizhong Formation in Zhuozishan area,Inner Mongolia. Geological Review, 60(2): 321-331] [24] 许淑梅,冯怀伟,李三忠,李萌. 2016. 贺兰山及周边地区加里东运动研究. 岩石学报, 32(7): 2137-2150. [Xu S M,Feng H W,Li S Z,Li M. 2016. Study on caledonian movement in Helanshan and its surrounding area. Acta Petrologica Sinica, 32(7): 2137-2150] [25] 王光绪,吴伟,林畅松,叶雅萌,李全,刘惟庆,冯阵东,赵晓明. 2022. 新西兰Taranaki盆地第四系深水水道迁移规律与沉积模式. 中国石油大学学报(自然科学版), 46(3): 13-24. [Wang G X,Wu W,Lin C S,Ye Y M,Li Q,Liu W Q,Feng Z D,Zhao X M. 2022. Migration rules and depositional model of Quaternary deep-water channel in Taranaki Basin,New Zealand. Journal of China University of Petroleum(Edition of Natural Science), 46(3): 13-24] [26] 王鹏伟,李华,陈诚,刘映君. 2020. 深水重力流沉积类型与储集性能研究: 以鄂尔多斯盆地西缘奥陶系拉什仲组为例. 海洋地质前沿, 36(1): 59-66. [Wang P W,Li H,Chen C,Liu Y J. 2020. Types of deep-water gravity flow deposits and related reservoirs: a case from the Lashizhong Formation of Ordovician on the western margin of Ordos Basin. Marine Geology Frontiers, 36(1): 59-66] [27] 吴东旭,周进高,吴兴宁,丁振纯,于洲,王少依,李维岭,王淑敏. 2018. 鄂尔多斯盆地西缘早中奥陶世岩相古地理研究. 高校地质学报, 24(5): 747-760. [Wu D X,Zhou J G,Wu X N,Ding Z C,Yu Z,Wang S Y,Li W L,Wang S M. 2018. Lithofacies and paleogeography of the Early-Middle Ordovician in western Ordos Basin. Geological Journal of China Universities, 24(5): 747-760] [28] 吴兴宁,孙六一,于洲,任军峰,丁振纯,黄正良. 2015. 鄂尔多斯盆地西部奥陶纪岩相古地理特征. 岩性油气藏, 27(6): 87-96. [Wu X N,Sun L Y,Yu Z,Ren J F,Ding Z C,Huang Z L. 2015. Lithofacies paleogeography of Ordovician in western Ordos Basin. Lithologic Reservoirs, 27(6): 87-96] [29] 王振涛,周洪瑞,王训练,张永生,景秀春,邢恩袁. 2015. 鄂尔多斯盆地西、南缘奥陶纪地质事件群耦合作用. 地质学报, 89(11): 1990-2004. [Wang Z T,Zhou H R,Wang X L,Zhang Y S,Jing X C,Xing E Y. 2015. Ordovician geological events group in the west and south Ordos Basin. Aata Geologica Sinica, 89(11): 1990-2004] [30] 王振涛,周洪瑞,王训练,景秀春,张永生,袁路鹏,沈智军. 2016. 鄂尔多斯盆地西缘北部奥陶纪盆地原型: 来自贺兰山和桌子山地区奥陶系的沉积响应. 地质论评, 62(4): 1041-1061. [Wang Z T,Zhou H R,Wang X L,Jing X C,Zhang Y S,Yuan L P,Shen Z J. 2016. The Ordovician Basin prototype in the northwest Ordos Basin: constraint from the Ordovician sedimentary respond in the Helan-Zhuozi Mountains. Geological Review, 62(4): 1041-1061] [31] 张文彪,段太忠,刘志强,刘彦锋,杨志成,徐睿. 2017. 深水浊积水道沉积构型模式及沉积演化: 以西非M油田为例. 地球科学, 42(2): 273-285. [Zhang W B,Duan T Z,Liu Z Q,Liu Y F,Yang Z C,Xu R. 2017. Architecture model and sedimentary evolution of deepwater turbidity channel: a case study of M oilfield in West Africa. Earth Science, 42(2): 273-285] [32] 张旭,卜范青,段瑞凯,杨希濮,陈筱,郜益华. 2021. 尼日尔三角洲盆地深水区E油田重力流水道复合体沉积特征与内部期次解剖. 海相油气地质, 26(2): 170-178. [Zhang X,Bu F Q,Duan R K,Yang X P,Chen X,Gao Y H. 2021. Sedimentary characteristics and internal phase anatomy of gravity flow channel complex of E Oilfield in deep water area of Niger Delta Basin. Marine Origin Petroleum Geology, 26(2): 170-178] [33] 赵晓明,刘丽,谭程鹏,范廷恩,胡光义,张迎春,张文彪,宋来明. 2018. 海底水道体系沉积构型样式及控制因素: 以尼日尔三角洲盆地陆坡区为例. 古地理学报, 20(5): 825-840. [Zhao X M,Liu L,Tan C P,Fan T E,Hu G Y,Zhang Y C,Zhang W B,Song L M. 2018. Styles of submarine-channel architecture and its controlling factors: a case study from the Niger Delta Basin slope. Journal of Palaeogeography(Chinese Edition), 20(5): 825-840] [34] 赵晓明,刘飞,葛家旺,冯潇飞,Bouchakour M,张喜,张文彪,杨宝泉,杨莉. 2022. 深水水道沉积构型单元分级与结构样式. 沉积学报,1-19. DOI: 10.14027/j.issn.1000-0550.2022.048. [Zhao X M,Liu F,Ge J W,Fan X F,Bouchakour M,Zhang X,Zhang W B,Yang B Q,Yang L. 2022. Sedimentary architecture unit classification and structural style of deep-water channels. Acta Sedimentologica Sinica,1-19. DOI: 10.14027/j.issn.1000-0550.2022.048] [35] Alpak F O,Barton M D,Naruk S J. 2013. The impact of fine-scale turbidite channel architecture on deep-water reservoir performance. AAPG Bulletin, 97(2): 251-284. [36] Antobreh A A,Krastel S. 2006. Morphology,seismic characteristics and development of Cap Timiris Canyon,offshore Mauritania: a newly discovered canyon preserved-off a major arid climatic region. Marine and Petroleum Geology, 23(1): 37-59. [37] Ashiru O R,Qin Y,Wu S. 2020. Structural controls on submarine channel morphology,evolution,and architecture,offshore western Niger delta. Marine and Petroleum Geology, 118:104413. [38] Bouma A H. 2001. Fine-grained submarine fans as possible recorders of long-and short-term climatic changes. Global and Planetary Change, 28(1-4): 85-91. [39] Fildani A,Hubbard S M,Covault J A,Maier k L,Romans B W,Traer M,Rowland J C. 2013. Erosion at inception of deep-sea channels. Marine and Petroleum Geology, 41: 48-61. [40] Folk R L,Ward W C. 1957. Brazos river bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology,(27): 3. [41] Fonnesu M,Palermo D,Galbiati M,Marchesini M,Bonamini E,Bendias D. 2020. A new world-class deep-water play-type,deposited by the syndepositional interaction of turbidity flows and bottom currents: the giant Eocene Coral Field in northern Mozambique. Marine and Petroleum Geology, 111: 179-201. [42] Kneller B. 2003. The influence of flow parameters on turbidite slope channel architecture. Marine and Petroleum Geology, 20: 901-910. [43] McHargue T,Pyrcz M J,Sullivan M D,Clark J D,Fildani A,Romans B W,Covault J A,Levy M,Posamentier H W,Drinkwater N J. 2011. Architecture of turbidite channel systems on the continental slope: patterns and predictions. Marine and Petroleum Geology, 28(3): 728-743. [44] Mayall M,Jones E,Casey M. 2006. Turbidite channel reservoirs: key elements in facies prediction and effective development. Marine and Petroleum Geology, 23(8): 821-841. [45] Li H,Zhao H Y,Xu Y X,He Y B. 2021. Characteristics of debrites,turbidites,and contourites in the Upper Ordovician Pingliang Formation along southwestern margin of the Ordos Basin,western China. Arabian Journal of Geosciences, 14(17): 2-15. [46] Harris P T,Whiteway T. 2011. Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins. Marine Geology, 285(1-4): 69-86. [47] Zhang J J,Wu S H,Hu G Y,Fan T E,Yu B,Lin P,Jiang S N. 2018. Sea-level control on the submarine fan architecture in a deepwater sequence of the Niger Delta Basin. Marine and Petroleum Geology, 94: 179-197.