Quantitative characterization of ichnological parameters for indicating palaeo-ocean redox conditions: a case study of the end-Permian mass extinction in South China
DING Yi1,2, ZHANG Lijun3
1 College of Environment and Life Sciences,Weinan Normal University,Shaanxi Weinan 714099,China; 2 Geology Department,Northwest University,Xi'an 710069,China; 3 Institute of Resources and Environment,Henan Polytechnic University, Key Laboratory of Biogenic Traces and Sedimentary Minerals of Henan Province,Henan Jiaozuo 454003,China
Abstract:Major biotic and environmental events in Earth history are often accompanied by palaeo-ocean redox condition changes,as biogenetic sedimentary structures in situ,trace fossils play a significant role in reconstructing palaeo-ocean redox conditions. This study analyzes and summarizes the previous ichnological parameters,and suggests the ichnodiversity,bioturbation degree,burrow size,and key ichnotaxa can be quantitatively used to indicate the palaeo-ocean redox conditions. Additionally,Lopingian trace fossils and bioturbation structures in South China are systematically analysed in order to reconstruct the redox conditions during the end-Permian mass extinction. The quantitative ichnological parameters reveal that the ocean anoxic event occurs in late Wuchiapingian,and the ocean anoxia is not permanent in Changhsingian,instead,obvious periodic fluctuations between anoxic/dysoxic and oxic can be observed. The high-resolution quantitative ichnological proxies at Meishan section suggest that ocean anoxia occurs in the top of Bed 24e in the Changhsing Formation,appears to correlate with the biotic mass extinction. The above examples show that the application of ichnological parameters in the reconstruction of palaeo-ocean redox conditions has broad prospects.
DING Yi,ZHANG Lijun. Quantitative characterization of ichnological parameters for indicating palaeo-ocean redox conditions: a case study of the end-Permian mass extinction in South China[J]. JOPC, 2023, 25(2): 405-418.
[1] 丁奕. 2016. 华南二叠系乐平统遗迹化石研究. 中国科学院大学博士论文. [Ding Y.2016. The study of Lopingian trace fossils in South China. Doctoral dissertation of University of Chinese Academy of Sciences] [2] 樊秋爽,夏国清,李高杰,伊海生. 2022. 古海洋氧化还原条件分析方法与研究进展. 沉积学报, 40(5): 1151-1171. [Fan Q S,Xia G Q,Li G J,Yi H S.2022. Analytical methods and research progress of redox conditions in the paleo-ocean. Acta Sedimentologica Sinica, 40(5): 1151-1171] [3] 龚一鸣. 2004. 遗迹化石Chondrites的指相意义和阶层分布. 古生物学报, 43(1): 94-102. [Gong Y M.2004. Facies characteristics and tiering distributions of Chondrites. Acta Palaeontologica Sinica, 43(1): 94-102] [4] 龚一鸣,胡斌,卢宗盛,齐永安,张国成. 2009. 中国遗迹化石研究80年. 古生物学报, 48(3): 322-337. [Gong Y M,Hu B,Lu Z S,Qi Y A,Zhang G C.2009. Study of trace fossils in the past eighty years in China. Acta Palaeontologica Sinica, 48(3): 322-337] [5] 黄冰. 2008. 华南奥陶纪末大灭绝后腕足动物是否存在“小型化效应”? 古生物学报, 47(2): 203-213. [Huang B.2008. Does “Little effect”of Brachiopods exist in South China after the Late Ordovician mass extinction? Acta Palaeontologica Sinica, 47(2): 203-213] [6] 晋慧娟,李育慈,方国庆. 2003. 古代深海底质氧控的遗迹化石群落. 沉积学报, 21(1): 75-80. [Jin H J,Li Y C,Fang G Q.2003. Oxygen-dependent ichnocoenose in paleo-pelagic substrates. Acta Sedimentologica Sinica, 21(1): 75-80] [7] 罗茂,龚一鸣,张立军,殷亚飞. 2021. 遗迹化石: 探索生物与环境相互作用的重要信息载体. 古生物学报, 60(3): 347-356. [Luo M,Gong Y M,Zhang L J,Yin Y F.2021. Trace fossil: a significant agent for exploring organism-environment interactions. Acta Palaeontologica Sinica, 60(3): 347-356] [8] 马会珍,张立军,龚一鸣. 2010. 华南泥盆纪Chondrites的特征及其对古氧相的示踪. 地球科学进展, 25(9): 966-973. [Ma H Z,Zhang L J,Gong Y M.2010. Chondrites from the Devonian neritic Cruziana ichnofacies as indicators of palaeo-oxygenation facies in South China. Advances in Earth Science, 25(9): 966-973] [9] 戎嘉余,黄冰. 2014. 生物大灭绝研究三十年. 中国科学: 地球科学, 44(3): 377-404. [Rong J Y,Huang B.2014. Study of mass extinction over the past thirty years: a synopsis. Scientia Sinica Terrae, 44(3): 377-404] [10] 杨式溥,张建平,杨美芳. 2004. 中国遗迹化石. 北京: 科学出版社. [Yang S P,Zhang J P,Yang M F.2004. Trace Fossil in China. Beijing: Science Press] [11] 张静. 2015. 四川盆地东北部晚二叠世长兴期遗迹化石与环境研究. 西南石油大学硕士论文. [Zhang J.2015. Late Permian Changhsingian trace fossils in Northwest Sichuan Basin and their environmental implications. Masteral dissertation of Southwest Petroleum University] [12] 张立军,龚一鸣. 2011. 华南晚古生代Zoophycos时空分布及其控制因素. 科技导报, 29(31): 18-28. [Zhang L J,Gong Y M.2011. Spatiotemporal distribution and controlling factor of the Late Paleozoic Zoophycos in South China. Science & Technology Review, 29(31): 18-28] [13] 张明亮,郭伟,沈俊,刘凯,周炼,冯庆来,雷勇. 2017. 古海洋氧化还原地球化学指标研究新进展. 地质科技情报, 36(4): 95-106. [Zhang M L,Guo W,Shen J,Liu K,Zhou L,Feng Q L,Lei Y.2017. New progress on geochemical indicators of ancient ocean redox condition. Geological Science and Technology Information, 36(4): 95-106] [14] 郑锋利,平瑞,宋慧波,胡斌,刘顺喜. 2022. 华北西部地区太原组不同古氧相遗迹化石组合特征. 河南理工大学学报(自然科学版), 41(5): 58-67. [Zheng F L,Ping R,Song H B,Hu B,Liu S X.2022. Ichnoassemblage characteristics of different paleo-oxygenation facies in the Taiyuan Formation,western North China. Journal of Henan Polytechnic University(Natural Science), 41(5): 58-67] [15] Algeo T J,Kuwahara K,Sano H,Bates S,Lyons T,Elswick E,Linda H,Brooks E,Moser J,Maynard J B.2011. Spatial variation in sediment fluxes,redox conditions,and productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography,Palaeoclimatology,Palaeoecology, 308(1-2): 65-83. [16] Allison P A,Wignall P B,Brett C E.1995. Palaeo-oxygenation: effects and recognition. Geological Society,London,Special Publications, 83(1): 97-112. [17] Arnold G L,Anbar A D,Barling J,Lyons T W.2004. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 304(5667): 87-90. [18] Ausich W I,Bottjer D J.1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science, 216(4542): 173-174. [19] Baucon A,Bednarz M,Dufour S,Felletti F,Malgesini G,de Carvalho C N,Niklas K J,Wehrmann A,Batstone R,Bernardini F,Briguglio A,Cabella R,Cavalazzi B,Ferretti A,Zanzerl H,Mcllroy D.2020. Ethology of the trace fossil Chondrites: form,function and environment. Earth-Science Reviews, 202: 102989. [20] Bond D P,Wignall P B.2010. Pyrite framboid study of marine Permian-Triassic boundary sections: a complex anoxic event and its relationship to contemporaneous mass extinction. GSA Bulletin, 122(7-8): 1265-1279. [21] Bottjer D J,Ausich W I.1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology, 12(4): 400-420. [22] Brennecka G A,Herrmann A D,Algeo T J,Anbar A D.2011. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proceedings of the National Academy of Sciences, 108(43): 17631-17634. [23] Bromley R G,Ekdale A A.1984. Chondrites: a trace fossil indicator of anoxia in sediments. Science, 224(4651): 872-874. [24] Buatois L A,Mángano M.2013. Ichnodiversity and ichnodisparity: significance and caveats. Lethaia, 46(3): 281-292. [25] Cao C,Zheng Q.2009. Geological event sequences of the Permian-Triassic transition recorded in the microfacies in Meishan section. Science China Earth Sciences, 52(10): 1529-1536. [26] Cao C,Love G D,Hays L E,Wang W,Shen S,Summons R E.2009. Biogeochemical evidence for euxinic oceans and ecological disturbance presaging the end-Permian mass extinction event. Earth and Planetary Science Letters, 281: 188-201. [27] Chu D,Tong J,Song H,Benton M J,Song H,Yu J,Qiu X,Huang Y,Tian L.2015. Lilliput effect in freshwater ostracods during the Permian-Triassic extinction. Palaeogeography,Palaeoclimatology,Palaeoecology, 435: 38-52. [28] Clarkson M O,Wood R A,Poulton S W,Richoz S,Newton R J,Kasemann S A,Bowyer F,Krystyn L.2016. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery. Nature Communications, 7(1): 1-9. [29] Cotgreave P.1993. The relationship between body size and population abundance in animals. Trends in Ecology & Evolution, 8(7): 244-248. [30] Ding Y,Cao C Q,Zheng Q F.2016. Lopingian(Upper Permian)trace fossils from the northern Penglaitan Section,Laibin,Guangxi,South China and their environmental implications. Palaeoworld, 25(3): 377-387. [31] Ding Y,Duan Y,Wu Y,Cao C.2021. Trace fossils from the Permian Lopingian Talung Formation at the northern Penglaitan section of Laibin area,South China: ichnology,palaeoenvironment,and palaeoecology. Geological Journal, 56(12): 6117-6134. [32] Dorador J,Rodríguez-Tovar F J.2014. A novel application of digital image treatment by quantitative pixel analysis to trace fossil research in marine cores. Palaios, 29(10): 533-538. [33] Droser M L,Bottjer D J.1986. A semiquantitative field classification of ichnofabric. Journal of Sedimentary Research, 56(4): 558-559. [34] Ekdale A A,Mason T R.1988. Characteristic trace-fossil associations in oxygen-poor sedimentary environments. Geology, 16(8): 720-723. [35] Ekdale A A,Lewis D W.1991. The New Zealand Zoophycos revisited: morphology,ethology,and paleoecology. Ichnos: An International Journal of Plant & Animal, 1(3): 183-194. [36] Emmings J F,Poulton S W,Walsh J,Leeming K A,Ross I,Peters S E.2022. Pyrite mega-analysis reveals modes of anoxia through geological time. Science Advances, 8(11): eabj5687. [37] Fan J X,Shen S Z,Erwin D H,Sadler P M,MacLeod N,Cheng Q M,Hou X D,Yang J,Wang X D,Wang Y,Zhang H,Chen X,Li G X,Zhang Y C,Shi Y K,Yuan D X,Chen Q,Zhang L N,Li C,Zhao Y Y.2020. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367(6475): 272-277. [38] Fang Z,He X,Zhang G,Zhang X,Shen Y,Qin L.2021. Ocean redox changes from the latest Permian to Early Triassic recorded by chromium isotopes. Earth and Planetary Science Letters, 570: 117050. [39] Fernández-Martínez J,Rodríguez-Tovar F J,Piñuela L,Martínez-Ruiz F,García-Ramos J C.2021. Bottom-and pore-water oxygenation during the early Toarcian Oceanic Anoxic Event(T-OAE)in the Asturian Basin(N Spain): ichnological information to improve facies analysis. Sedimentary Geology, 419: 105909. [40] Forel M B,Crasquin S,Kershaw S,Feng Q L,Collin P Y.2009. Ostracods(Crustacea)and water oxygenation in the earliest Triassic of South China: implications for oceanic events at the end-Permian mass extinction. Australian Journal of Earth Sciences, 56(6): 815-823. [41] Grice K,Cao C,Love G D,Böttcher M E,Twitchett R J,Grosjean E,Summons R E,Turgeon S C,Dunning W,Jin Y.2005. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 307(5710): 706-709. [42] Harper D E,McKinney L D,Nance J M,Salzer R R.1991. Recovery responses of two benthic assemblages following an acute hypoxic event on the Texas continental shelf,northwestern Gulf of Mexico. Geological Society,London,Special Publications, 58(1): 49-64. [43] He T,Dal Corso J,Newton R J,Wignall P B,Mills B J,Todaro S,Stefano P,Turner E,Jamieson R A,Dunhill A M.2020. An enormous sulfur isotope excursion indicates marine anoxia during the end-Triassic mass extinction. Science Advances, 6(37): eabb6704. [44] Heard T G,Pickering K T.2008. Trace fossils as diagnostic indicators of deep-marine environments,Middle Eocene Ainsa-Jaca Basin,Spanish Pyrenees. Sedimentology, 55(4): 809-844. [45] Hotinski R M,Bice K L,Kump L R,Najjar R G,Arthur M A.2001. Ocean stagnation and end-Permian anoxia. Geology, 29(1): 7-10. [46] Huang Y,Chen Z Q,Wignall P B,Zhao L.2017. Latest Permian to Middle Triassic redox condition variations in ramp settings,South China: pyrite framboid evidence. GSA Bulletin, 129(1-2): 229-243. [47] Huang Y,Chen Z Q,Algeo T J,Zhao L,Baud A,Bhat G M,Zhang L,Guo Z.2019. Two-stage marine anoxia and biotic response during the Permian-Triassic transition in Kashmir,northern India: pyrite framboid evidence. Global and Planetary Change, 172: 124-139. [48] Isozaki Y.1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science, 276(5310): 235-238. [49] Jin Y,Huang S,Yue X,Du H,Shen P K.2018. Mo- and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. Acs Catalysis, 8(3): 2359-2363. [50] Kershaw S,Tang H,Li Y,Guo L.2018. Oxygenation in carbonate microbialites and associated facies after the end-Permian mass extinction: problems and potential solutions. Journal of Palaeogeography, 7(1): 32-47. [51] Kikuchi K,Naruse H,Kotake N.2018. Evaluation of ichnodiversity by image-resampling method to correct outcrop exposure bias. Palaios, 33(5): 204-217. [52] Kim J Y,Pickerill R.2003. Cretaceous nonmarine trace fossils from the Hasandong and Jinju Formations of the Namhae area,Kyongsangnamdo,southeast Korea. Ichnos, 9(1-2): 41-60. [53] Kipp M A,Tissot F L.2022. Inverse methods for consistent quantification of seafloor anoxia using uranium isotope data from marine sediments. Earth and Planetary Science Letters, 577: 117240. [54] Knaust D.2013. The ichnogenus Rhizocorallium: classification,trace makers,palaeoenvironments and evolution. Earth-Science Reviews, 126: 1-47. [55] Knaust D,Curran H A,Dronov A V.2012. Developments in Sedimentology. Amsterdam: Elsevier. [56] Kristensen E,Penha-Lopes G,Delefosse M,Valdemarsen T,Quintana C O,Banta G T.2012. What is bioturbation?The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series, 446: 285-302. [57] Lei L D,Shen J,Li C,Algeo T J,Chen Z Q,Feng Q L,Cheng M,Jin C S,Huang J H.2017. Controls on regional marine redox evolution during Permian-Triassic transition in South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 486: 17-32. [58] Lethiers F,Whatley R.1994. The use of Ostracoda to reconstruct the oxygen levels of Late Palaeozoic oceans. Marine Micropaleontology, 24(1): 57-69. [59] Li C,Love G D,Lyons T W,Fike D A,Sessions A L,Chu X.2010. A stratified redox model for the Ediacaran Ocean. Science, 328(5974): 80-83. [60] Li C,Shi W,Cheng M,Jin C,Algeo T J.2020. The redox structure of Ediacaran and early Cambrian oceans and its controls. Chinese Science Bulletin, 65(24): 2141-2149. [61] Li G,Wang Y,Shi G R,Liao W,Yu L.2016. Fluctuations of redox conditions across the Permian-Triassic boundary: new evidence from the GSSP section in Meishan of South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 448: 48-58. [62] Liao Z,Hu W,Cao J,Wang X,Fu X.2020. Oceanic anoxia through the late Permian Changhsingian Stage in the Lower Yangtze region,South China: evidence from sulfur isotopes and trace elements. Chemical Geology, 532: 119371. [63] Liu H,Wang Y,Yuan A,Yang H,Song H,Zhang S.2010. Ostracod fauna across the Permian-Triassic boundary at Chongyang,Hubei Province,and its implication for the process of the mass extinction. Science China Earth Sciences, 53(6): 810-817. [64] Luo M,Shi G R,Buatois L A,Chen Z Q.2020. Trace fossils as proxy for biotic recovery after the end-Permian mass extinction: a critical review. Earth Science Reviews, 203: 103059. [65] Marenco K N,Bottjer D J.2010. The intersection grid technique for quantifying the extent of bioturbation on bedding planes. Palaios, 25(7): 457-462. [66] Mekki F,Zhang L J,Vinn O,Toom U,Benyoucef M,Bendella M,Bouchemla E,Bensalah M,Adaci M.2019. Middle Jurassic Zoophycos and Chondrites from the mélah formation of saharan atlas,Algeria. Estonian Journal of Earth Sciences, 68(4): 190-198. [67] Meysman F J,Middelburg J J,Heip C H.2006. Bioturbation: a fresh look at Darwin's last idea. Trends in Ecology & Evolution, 21(12): 688-695. [68] Newby S M,Owens J D,Schoepfer S D,Algeo T J.2021. Transient ocean oxygenation at end-Permian mass extinction onset shown by thallium isotopes. Nature Geoscience, 14(9): 678-683. [69] Pimentel-Galvan M,Lau K V,Maher K,Mukerji T,Lehrmann D J,Altiner D,Payne J L.2022. Duration and intensity of end-Permian marine anoxia. Geochemistry,Geophysics,Geosystems, 23(1): e2021GC010130. [70] Rhoads D C,Morse J W.1971. Evolutionary and ecologic significance of oxygen-deficient marine basins. Lethaia, 4(4): 413-428. [71] Rodríguez-Tovar F J,Uchman A.2010. Ichnofabric evidence for the lack of bottom anoxia during the Lower Toarcian oceanic anoxic event in the Fuente de la Vidriera section,Betic Cordillera,Spain. Palaios, 25(9): 576-587. [72] Rodríguez-Tovar F J.2021. Ichnology of the Toarcian Oceanic Anoxic Event: an underestimated tool to assess palaeoenvironmental interpretations. Earth-Science Reviews, 216: 103579. [73] Savrda C E,Bottjer D J,Gorsline D S.1984. Development of a comprehensive oxygen-deficient marine biofacies model: evidence from Santa Monica,San Pedro,and Santa Barbara Basins,California Continental Borderland. AAPG Bulletin, 68(9): 1179-1192. [74] Savrda C E,Bottjer D J.1986. Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology, 14(1): 3-6. [75] Savrda C E,Bottjer D J.1989. Trace-fossil model for reconstructing oxygenation histories of ancient marine bottom waters: application to Upper Cretaceous Niobrara Formation,Colorado. Palaeogeography,Palaeoclimatology,Palaeoecology, 74: 49-74. [76] Savrda C E,Bottjer D J.1991. Oxygen-related biofacies in marine strata: an overview and update. Geological Society,London,Special Publications, 58(1): 201-219. [77] Schlacher T A,Lucrezi S,Peterson C H,Connolly R M,Olds A D,Althaus F,Hyndes G,Maslo B,Gilby B,Leon J X,Weston M A,Lastra M,Williams A,Schoeman D S.2016. Estimating animal populations and body sizes from burrows: marine ecologists have their heads buried in the sand. Journal of Sea Research, 112: 55-64. [78] Semenza G L.2007. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochemical Journal, 405(1): 1-9. [79] Seilacher A.1967. Bathymetry of trace fossils. Marine Geology, 5: 413-428. [80] Seilacher A.1974. Flysch trace fossils: evolution of behavioral diversity in the deep-sea. Neues Jahrbuch für Geologie und Paläontologie,Monatshefte, 4: 233-245. [81] Sepkoski Jr J J,Bambach R K,Raup D M,Valentine J W.1981 Phanerozoic marine diversity and the fossil record. Nature, 293(5832): 435-437. [82] Smith C R,Levin L A,Hoover D J,McMurtry G,Gage J D.2000. Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 47: 227-257. [83] Song H,Tong J,Chen Z Q.2011. Evolutionary dynamics of the Permian-Triassic foraminifer size: evidence for Lilliput effect in the end-Permian mass extinction and its aftermath. Palaeogeography,Palaeoclimatology,Palaeoecology, 308: 98-110. [84] Song H,Wignall P B,Chu D,Tong J,Sun Y,Song H,He W,Tian L.2014. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Scientific Reports, 4(1): 1-7. [85] Song H,Song H,Algeo T J,Tong J,Romaniello S J,Zhu Y,Chu D L,Gong Y M,Anbar A D.2017. Uranium and carbon isotopes document global-ocean redox-productivity relationships linked to cooling during the Frasnian-Famennian mass extinction. Geology, 45(10): 887-890. [86] Sperling E A,Wolock C J,Morgan A S,Gill B C,Kunzmann M,Halverson G P,Macdonald F A,Knoll A H,Johnston D T.2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523(7561): 451-454. [87] Stanley S M.2016. Estimates of the magnitudes of major marine mass extinctions in earth history. Proceedings of the National Academy of Sciences, 113(42): E6325-E6334. [88] Takahashi S,Hori R S,Yamakita S,Aita Y,Takemura A,Ikehara M,Xiong Y J,Poulton S W,Wignall P B,Itai T,Campbell H J,Spörli B K.2021. Progressive development of ocean anoxia in the end-Permian pelagic Panthalassa. Global and Planetary Change, 207: 103650. [89] Taylor A M,Goldring R.1993. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150(1): 141-148. [90] Twitchett R J,Barras C G.2004. Trace fossils in the aftermath of mass extinction events. Geological Society,London,Special Publications, 228(1): 397-418. [91] Uchman A.2004. Phanerozoic history of deep-sea trace fossils. Geological Society,London,Special Publications, 228(1): 125-139. [92] Wang D,Ling H F,Struck U,Zhu X K,Zhu M,He T,Yang B,Gamper A,Shields G A.2018. Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition. Nature Communications, 9(1): 1-8. [93] Watkins R,Coorough P J.1997. Silurian Thalassinoides in an offshore carbonate community,Wisconsin,USA. Palaeogeography,Palaeoclimatology,Palaeoecology, 129: 109-117. [94] Wignall P B.1994. Blake shale. Oxford: Oxford Science Publication. [95] Xiang L,Schepfer S D,Zhang H,Yuan D X,Cao C Q,Zheng Q F,Henderson C M,Shen S Z.2016. Oceanic redox evolution across the end-Permian mass extinction at Shangsi,South China. Palaeogeography,Palaeoclimatology,Palaeoecology,448(SI): 59-71. [96] Xiang L,Zhang H,Schoepfer S D,Cao C Q,Zheng Q F,Yuan D X,Cai Y F,Shen S Z.2020. Oceanic redox evolution around the end-Permian mass extinction at Meishan,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 544: 109626. [97] Xiang L,Schoepfer S D,Yuan D X,Zheng Q F,Zhang H.2022. Oceanic redox evolution across the end-Permian mass extinction at Penglaitan section,South China. Palaeoworld, 31(1): 93-102. [98] Yin H F,Zhang K X,Tong J N,Yang Z Y,Wang S B.2001. The global stratotype section and point(GSSP)of the Permian-Triassic boundary. Episodes Journal of International Geoscience, 24(2): 102-114. [99] Yuan D X,Shen S Z,Henderson C M,Chen J,Zhang H,Feng H Z.2014. Revised conodont-based integrated high-resolution timescale for the Changhsingian Stage and end-Permian extinction interval at the Meishan sections,South China. Lithos, 204: 220-245. [100] Zhao X M,Tong J N.2010. Two episodic changes of trace fossils through the Permian-Triassic transition in the Meishan cores,Zhejiang Province. Science China Earth Science, 53(12): 1885-1893. [101] Zhang J P,Li C,Fang X,Li W J,Deng Y Y,Tu C Y,Algeo T J,Lyons T W,Zhang Y D.2022. Progressive expansion of seafloor anoxia in the Middle to Late Ordovician Yangtze Sea: implications for concurrent decline of invertebrate diversity. Earth and Planetary Science Letters, 598: 117858. [102] Zhang L J.2014. Lower Devonian tempestites in western Yangtze,South China: insight from Zoophycos ichnofabrics. Geological Journal, 49(2): 177-187. [103] Zhang L J,Fan R Y,Gong Y M.2015a. Zoophycos macroevolution since 541 Ma. Scientific Reports, 5(1): 1-10. [104] Zhang L J,Shi G R,Gong Y M.2015b. An ethological interpretation of Zoophycos based on Permian records from South China and southeastern Australia. Palaios, 30(5): 408-423. [105] Zhang L J,Zhao Z.2016. Complex behavioural patterns and ethological analysis of the trace fossil Zoophycos: evidence from the Lower Devonian of South China. Lethaia, 49(2): 275-284. [106] Zhang L J,Buatois L A,Mángano M G,Gong Y M,Feng Q L,Qi Y A,Luo M,Zhang X.2018. Uppermost Permian trace fossils along a shelf to slope transect in South China and their implications for oceanic redox evolution and extinction pattern. Global and Planetary Change, 167: 74-86. [107] Zhang L J,Zhang X,Buatois L A,Mángano M G,Shi G R,Gong Y M,Qi Y A.2020. Periodic fluctuations of marine oxygen content during the latest Permian. Global and Planetary Change, 195: 103326. [108] Zhang X,Sigman D M,Morel F M,Kraepiel A M.2014. Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. Proceedings of the National Academy of Sciences, 111(13): 4782-4787. [109] Zheng Q F,Cao C Q,Zhang M Y.2013. Sedimentary features of the Permian-Triassic boundary sequence of the Meishan section in Changxing County,Zhejiang Province. Science China Earth Sciences, 56: 956-969. [110] Zheng Q F,Zhang H,Yuan D X,Wang Y,Wang W Q,Cao C Q,Shen S Z.2022. High-resolution sedimentology,ichnology,and benthic marine redox conditions from Late Permian to the earliest Triassic at Shangsi,South China: local,regional,and global signals and driving mechanisms. Earth-Science Reviews, 225: 103898.