Sedimentary facies and depositional environment of Santonggoubei manganese deposit in eastern Kunlun of Qinghai Province
LIU Yongle1, LI Wen2,3, ZHAO Jingchun1, LI Youlu1, XIA Youhe1, ZHANG Daming1, DONG Zhiguo2, LI Wenjun2, ZHANG Lianchang2
1 The Third Institute of Qinghai Geological Prospecting,Xining 810029,China; 2 Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China; 3 School of Earth Sciences and Resources, China University of Geosciences(Beijing),Beijing 100083,China
Abstract:The Santonggoubei manganese deposit is a recently found marine sedimentary manganese deposit in south tectonic zone of the eastern Kunlun orogen. Preliminary studies indicate that this manganese deposit is hosted in siliceous and fine-grained clastic rocks of the Ordovician-Silurian Nachitai Group. To date,the Santonggoubei deposit is only moderately studied with respect to sedimentary facies and depositional environment. Based on field investigations of regional geology and deposit geology,combined with sedimentological measurement of outcrop sections,petrographic observations and geochemical analysis,the authors suggest that the Santonggoubei manganese deposit formed on a passive continental margin. The main ore belts(from Ⅰ to Ⅲ)formed in the marginal facies of the southern deep-water basin,which was characterized by siliceous rocks,siliceous mudstone,and carbonaceous mudstone,intercalated with argillaceous siltstone;the marginal facies was in contact with slope sandstone and shelf sandstone-siltstone. The Ⅳ-Ⅴ mineralization belt was distributed in the restricted depression of the shelf facies,which was characterized by argillaceous siltstone,siliceous mudstone,and siliceous rocks. The Mn ore-bearing succession was overlain by shelf siltstone-fine sandstone and carbonate rocks. Overall,the palaeogeographic environments of the Santonggoubei manganese deposit were marine shelf depression and the margin of the deep-water basin. Geochemical analysis demonstrates that the formation of the main ore belt was closely related to the oxic-rich conditions of the basin waters. The precipitation mechanism of manganese is related to the episodic intrusions of shallow,oxygen-rich waters into the edge of deep-water basin.
LIU Yongle,LI Wen,ZHAO Jingchun et al. Sedimentary facies and depositional environment of Santonggoubei manganese deposit in eastern Kunlun of Qinghai Province[J]. JOPC, 2023, 25(3): 671-683.
[1] 董志国,张连昌,王长乐,张帮禄,彭自栋,朱明田,冯京,谢月桥. 2020. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题. 矿床地质, 39(2): 237-255. [Dong Z G,Zhang L C,Wang C L,Zhang B L, Peng Z D, Zhu M T, Xie Y Q. 2020. Progress and problems in understanding sedimentary manganese carbonate metallogenesis. Mineral Deposits, 39(2): 237-255] [2] 杜远生,周琦,余文超,王萍,袁良军,齐靓,郭华,徐源. 2015. Rodinia超大陆裂解、Sturtian冰期事件和扬子地块东南缘大规模锰成矿作用. 地质科技情报, 34(6): 1-7. [Du Y S,Zhou Q,Yu W C,Wang P,Yuan L J,Qi L,Guo H,Xu Y. 2015. Linking the Cryogenian manganese metallogenic process in the southeast margin of Yangtze block to break-up of Rodinia super continent and Sturtian glaciation geological. Science and Technology Information, 34(6): 1-7] [3] 付勇,徐志刚,裴浩翔,江冉. 2014. 中国锰矿成矿规律初探. 地质学报, 88(12): 2192-2207. [Fu Y,Xu Z G,Pei H X,Jiang R. 2014. Study on metallogenic regularity of manganese ore deposits in China. Acta Geologica Sinica, 88(12): 2192-2207] [4] 郭崑明,何安全,白国龙,严永邦,严鸿. 2018. 洪水河—清水河沉积变质型铁矿地质特征及矿床成因分析. 中国锰业, 36(3): 67-69. [Guo K M,He A Q,Bai G L,Yan Y B, Yan H. 2018. Geological characteristics and genetic analysis of sedimentary metamorphic iron ore deposits in Hongshuihe-qingshuihe. China Manganese Industry, 36(3): 67-69] [5] 李佐强. 2021. 东昆仑三通沟北地区中—新元古界万宝沟群锰矿成因分析. 成都理工大学硕士学位论文. [Li Z Q. 2021. Genesis of manganese deposit of Meso-Neoproterozoic Wanbaogou Group in Santonggoubei Area,East Kunlun. Masteral dissertation of Chengdu University of Technology] [6] 刘永乐,赵静纯,李文,张爱奎,夏友河,孙非非,张建平, 张连昌. 2022. 青海东昆仑三通沟北沉积锰矿地质特征及形成时代探讨. 地质科学: https://kns.cnki.net/kcms/detail/11.1937.P.20221108.1414.002.html. [Liu Y L,Zhao J C,Li W,Zhang A K,Xia Y H, Sun F F,Zhang J P,Zhang L C. 2022. Geological characteristics and discussion on formation age of Santonggoubei sedimentary manganese deposit in eastern Kunlun of Qinghai. Scientia Geologica Sinica,https://kns.cnki.net/kcms/detail/11.1937.P.20221108.1414.002.html] [7] 罗灿辉. 1993. 在沉积锰矿找矿勘探工作中应加强岩相古地理研究. 中国锰业,11(6): 3-7. [Luo C H. 1993. Paleogeography of peotrofactes in the exploration of sedimentary manganese deposit. China manganese industry,11(6): 3-7] [8] 夏文杰,雷建喜. 1989. 贵州松桃地区早震旦世大塘坡期沉积环境及锰矿成因. 成都地质学院学报, 16(1): 67-77,128. [Xia W J,Lei J X. 1989. Sedimentary environment of the Datangpo perriod in early Sinian and genesis of the manganese ores in Songtao district,Guizhou Province. Journal of Chengdu College of Geology, 16(1): 67-77,128] [9] 许效松,黄慧琼,刘宝珺,王砚耕. 1991. 上扬子地块早震旦世大塘坡期锰矿成因和沉积学. 沉积学报, 9(1): 63-71. [Xu X S,Huang H Q,Liu B J,Wang Y G. 1991. The sedimentary and origin of early Sinian manganese Deposits form the Datangpo formation,South China. Acta Sedminentologica Sinica, 9(1): 63-71] [10] 徐林刚. 2020. 沉积型锰矿床的形成及其与古海洋环境的协同演化. 矿床地质, 39(6): 959-973. [Xu L G. 2020. Sedimentary manganese formation and its link with paleo-oceanic environment. Mineral Deposits, 39(6): 959-973] [11] 叶连俊. 1993. 叶连俊文集. 北京: 科学出版社. [Ye L J. 1993. Ye Lianjun' Collected Works. Beijing: Science Press] [12] 余文超,杜远生,周琦,王萍,齐靓,徐源,靳松,潘文,袁良军,谢小峰,杨炳南. 2020. 华南成冰纪“大塘坡式”锰矿沉积成矿作用与重大地质事件的耦合关系. 古地理学报, 22(5): 855-871. [Yu W C,Du Y S,Zhou Q,Wang P,Qi L,Xu Y,Jin S,Pan W,Yuan L J,Xie X F,Yang B N. 2020. Coupling between metallogenesis of the Cryogenian Datangpo-type manganese deposit in South China and major geological events. Journal of Palaeogeography(Chinese Edition), 22(5): 855-871] [13] 杨瑞东,高军波,程玛莉,魏怀瑞,许利群,文雪峰,魏晓. 2010. 贵州从江高增新元古代大塘坡组锰矿沉积地球化学特征. 地质学报, 84(12): 1781-1790. [Yang R D,Gao J B,Cheng M L,Wei H R,Xu L Q,Wen X F,Wei X. 2010. Sedimentary geochemistry of manganese deposit of the Neoproterozoic Datangpo formation in Guizhou Province,China. Acta Geologica Sinica, 84(12): 1781-1790] [14] 赵东旭. 1990. 震旦纪大塘坡期锰矿的内碎屑结构和重力流沉积. 地质科学, 25(2): 149-157. [Zhao D X. 1990. Intraclastic structures and gravity flow sedimentatiom of Rhodochrosite ore in Sinian Datangpo Formation. Scientia Geologica Sinica, 25(2): 149-157] [15] 张飞飞,闫斌,郭跃玲,朱祥坤,周琦,杨德智. 2013. 湖北古城锰矿的沉淀形式及其古环境意义. 地质学报, 87(2): 245-258. [Zhang F F,Yan B,Guo Y L,Zhu X K,Zhou Q,Yang D Z. 2013. Precipitation form of manganese ore deposits in Gucheng,Hubei Province,and its paleoenvironment implication. Acta Geologica Sinica,87(2): 245-258] [16] 张连昌,张帮禄,董志国,谢月桥,李文君,彭自栋,朱明田,王长乐. 2020. 西昆仑玛尔坎苏石炭纪大型锰矿带构造背景与成矿条件. 吉林大学学报(地球科学版), 50(5): 1340-1357. [Zhang L C,Zhang B L,Dong Z G. Xie Y Q,Li W J,Peng Z D,Zhu M t,Wang C L. 2020. Tectonic setting and metallogenetic conditions of Carboniferous Malkansu giant manganese belt in West Kunlun Orogen. Journal of Jilin University(Earth Science Edition), 50(5): 1340-1357] [17] 张连昌,董志国,张帮禄,李文君,彭自栋,王长乐,朱明田. 2022. 西昆仑“玛尔坎苏式”富锰矿主控因素及成矿模式. 地质学报, 96(9): 3195-3210. [Zhang L C,Dong Z G,Zhang B L,Li W J,Peng Z D,Wang C L,Zhu M T. 2022. Controlling factors and “Malkansu style”metallogenetic model of high grade manganese ore in West Kunlun orogen. Acta Geologica Sinica, 96(9): 3195-3210] [18] 赵静纯,代威,屈光菊,李有录. 2020. 青海都兰县三通沟北地区锰矿地质特征及找矿前景. 矿产勘查, 11(7): 1372-1378. [Zhao J C,Dai W,Qu G J,Li Y L. 2020. Geological characteristics and prospecting potentiality of north Santonggou manganese deposit in Dulan County,Qinghai Province. Mineral Exploration, 11(7): 1372-1378] [19] 周琦,杜远生,袁良军,张遂,余文超,杨胜堂,刘雨. 2016. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用. 地球科学, 41(2): 177-188. [Zhou Q,Du Y S,Yuan L J,Zhang S,Yu W C,Yang S T,Liu Y. 2016. The structure of the Wuling rift basin and its control on the manganese deposit during the Nanhua Period in Guizhou-Hunan-Chongqing border area,South China. Earth Sciences, 41(2): 177-188] [20] Bau M,Koschinsky A. 2009. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochemical Journal, 43: 37-47. [21] Bau M,Schmidt K,Koschinsky A,Hein J, Kuhn T, Usui A. 2014. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chemical Geology, 381: 1-9. [22] Dahl T W,Hammarlund E U,Anbar A D,Bond D P,Gill B C,Gordon G W,Knoll A H,Nielsen A T,Schovsbo N H,Canfield D E. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proceedings of the National Academy of Sciences of the United States of America, 107(42): 17911-17915. [23] Dong Z G,Peng Z D,Wang C L,Zhang B L,Zhang L C,Li J,Zhang X,Li W J, Zhang L2022. Insight into the genesis of the Zhaosu Carboniferous Mn carbonate deposit(NW China): constraints from petrography,geochemistry,and C-Mo isotopes. Mineralium Deposita, 57: 1269-1289. [24] Fan D L,Ye J,Li J. 1999. Geology,mineralogy,and geochemistry of the Middle Proterozoic Wafangzi ferromanganese deposit,Liaoning Province,China. Ore Geology Reviews,115(1/2/3): 31-53. [25] Force E R,Cannon W F. 1988. Depositional model for shallow-marine manganese deposits around black shale basins. Economic Geology, 83(1): 93-117. [26] Frakes L,Bolton B R. 1984. Origin of manganese giants: sea-level change and Anoxic-Oxic history. Geology, 12(2): 83-86. [27] Frakes L A,Bolton B R. 1992. Effects of ocean chemistry,sea level,and climate on the formation of primary sedimentary manganese ore deposits. Economic Geology, 87(5): 1207-1217. [28] Huckriede H,Meischner D. 1996. Origin and environment of manganese-rich sediments within black-shale basins. Geochimica et Cosmochimica Acta, 60(8): 1399-1413. [29] Jones B,Manning D A C. 1994. Comparison of geochemical Indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1-4): 111-129. [30] Maynard J B. 2010. The chemistry of manganese ores through time: a signal of increasing diversity of earth-surface environments. Economic Geology, 105: 535-552. [31] Maynard J B. 2014. Manganiferous Sediments,Rocks,and Ores. In: MacKenzie F T(ed). Treatise of Geochemistry 2nd Edition. Sediments,Diagenesis,and Sedimentary Rocks. Elsevier,Amsterdam, 9: 327-349. [32] Murray R W. 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology, 90(3-4): 213-232. [33] Okita P M. 1992. Manganese carbonate mineralization in the Molango District,Mexico. Economic Geology, 87(5): 1345-1366. [34] Roy S. 2006. Sedimentary manganese metallogenesis in response to the evolution of the Earth system. Earth-Science Reviews, 77(4): 273-305. [35] Tostevin R,Shields G A,Tarbuck G M,He T C, Clarkson M O, Wood R A. 2016. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chemical Geology, 438: 146-162. [36] Tribovillard N,Algeo T J,Lyons T, Riboullean A. 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232(1-2): 12-32. [37] Wallace M W,Hood A V,Shuster A,Greig A, Planavsky N J, Reed C P. 2017. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth and Planetary Science Letters, 466: 12-19. [38] Wignall P B,Twitchett R J. 1996. Oceanic anoxia and the End Permian mass extinction. Science, 272(5265): 1155-1158. [39] Yu W C,Algeo T J,Du Y S,Maynard B,Guo H,Zhou Q,Peng T P,Wang P,Yuan L J. 2016. Genesis of Cryogenian Datangpo manganese deposit: hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 459: 321-337. [40] Zhang B L,Wang C L,Robbins L J,Zhang L C,Konhauser K O,Dong Z G,Li W J,Peng Z D,Zheng M T. 2020. Petrography and geochemistry of the Carboniferous Ortokarnash manganese deposit in western Kunlun Mountains, Xinjiang Province,China: implications for the depositional environment and the orgin of mineralization. Economic Geology, 115(7): 1559-1588.