Sedimentary processes and genetic mechanisms of the Late Triassic fine-grained gravity flows in Zhuoni area of West Qinling orogenic belt
SUN Haonan1, TAN Mingxuan1, FU Yilin1, CUI Haonan1,2, CHEN Mianpei1
1 College of Oceanography,Hohai University,Nanjing 210098,China; 2 Qingdao Institute of Marine Geology of China Geological Survey,Shandong Qingdao 266071,China
Abstract:Fine-grained gravity flow deposists have some important implications for palaeogeography and palaeoclimate. The genetic mechanism and distribution of fine-grained sediments are crucial to palaeoenvironment reconstruction and stable carbon cyde, but their deposits processes are more complicated than that of coarse-grained gravity flow sediments. Detailed outcrop study shows that fine-grained gravity flow deposits are mainly devebpem in the Upper Triassic Kache Formation in the Zhuoni area of the West Qinling orogenic belt. Fine-grained gravity flow deposits of the Kache Formation in the study area can be divided into four lithofacies,corresponding to two deep-water sedimentary processes(i.e. fine-grained turbidity current and fine-grained hyperpycnal flow). Among them,fine-grained hyperpycnite is dominated by siltstone and argillaceous siltstone with suspended load(single-stage sedimentary thickness is 0.05-0.60 m),current ripple and argillaceous transitional ripple(type I)or current ripple and hummocky cross-stratification(type Ⅱ)appear alternately in the vertical direction,showing the overlapping characteristics of multi-stage positive rhythm and composite rhythm in the vertical direction. Fine-grained turbidites are also developed in the study area(single-stage sedimentary thickness is 0.05-0.2 m),which is generally characterized by Ta,Te or Ta,Tc of Bouma sequence. The two important sedimentary processes developed in the study area constitute a complex gravity flow sedimentary system,which has important implications for the sedimentology of fine-grained gravity flows in the shallow-water narrow continental shelf-upper slope of active continental margin of the Zhuoni area in the West Qinling orogenic belt.
SUN Haonan,TAN Mingxuan,FU Yilin et al. Sedimentary processes and genetic mechanisms of the Late Triassic fine-grained gravity flows in Zhuoni area of West Qinling orogenic belt[J]. JOPC, 2023, 25(6): 1315-1329.
[1] 杜远生. 1995. 秦岭造山带泥盆纪古海洋研究. 地球科学, 20(6): 617-623. [Du Y S. 1995. Devonian paleocean of the Qinling orogenic belt. Earth Science, 20(6): 617-623] [2] 冯益民,曹宣铎,张二朋,胡云绪,潘晓萍,杨军录,贾群子,李文明. 2003. 西秦岭造山带的演化、构造格局和性质. 西北地质, 36(1): 1-10. [Feng Y M,Cao X D,Zhang E P,Hu Y X,Pan X P,Yang J L,Jia Q Z,Li W M. 2003. Tectonic evolution framework and nature of the West Qinling orogenic belt. Northwestern Geology, 36(1): 1-10] [3] 黄文奥,赵晓明,谭程鹏,葛家旺,冯双奇,李晨曦,陆文明. 2020. 西秦岭直合隆地区三叠系深水水道沉积模式分析. 沉积学报, 38(5): 1061-1075. [Huang W A,Zhao X M,Tan C P,Ge J W,Feng S Q,Li C X,Lu W M. 2020. Sedimentary model analysis of Triassic deep-water channels in Zhihelong,West Qinling Mountains. Acta Sedimentologica Sinica, 38(5): 1061-1075] [4] 晋慧娟,李育慈. 1995. 西秦岭二叠纪—三叠纪遗迹化石及其环境意义. 地质科学, 30(4): 321-328. [Jin H J,Li Y C. 1995. Trace fossils and their environmental significance of Permian-Triassic,Western Qinling mountains. Chinese Journal of Geology, 30(4): 321-328] [5] 孟庆任,渠洪杰,胡健民. 2007. 西秦岭和松潘地体三叠系深水沉积. 中国科学(D辑: 地球科学),37(S1): 209-223. [Meng Q R,Qu H J,Hu J M. 2007. Triassic deep-water sediments of the West Qinling and Songpan terrane. Science China: Earth Sciences,37(S1): 209-223] [6] 李永军,赵仁夫,刘志武,董俊刚. 2003. 西秦岭三叠纪沉积盆地演化. 中国地质, 30(3): 268-273. [Li Y J,Zhao R F,Liu Z W,Dong J G. 2003. Triassic sedimentation and basin evolution in Western Qinling. Geology of China, 30(3): 268-273] [7] 梁国冰. 2019. 西秦岭临潭地区三叠纪地层地质特征与物源分析. 长安大学硕士学位论文. [Liang G B. 2019. Geological characteristics and source analysis of the Triassic strata in the Lintan area,Western Qinling. Masteral dissertation of Chang'an University] [8] 李林,曲永强,孟庆任,武国利. 2011. 重力流沉积: 理论研究与野外识别. 沉积学报, 29(4): 677-688. [Li L,Qu Y Q,Meng Q R,Wu G L. 2011. Gravity flow sedimentation: theoretical studies and field identification. Acta Sedimentologica Sinica, 29(4): 677-688] [9] 李晋僧. 1994. 秦岭显生宙古海盆沉积和演化史. 北京: 地质出版社. [Li J S. 1994. Sedimentary and Evolutionary History of the Paleozoic Qinling Basin. Beijing: Geological Publishing House] [10] 李志扬. 2021. 陆棚海泥岩的岩相特征及沉积过程: 以晚白垩世北美西部内陆海道为例. 沉积学报, 39(1): 168-180. [Li Z Y. 2021. Facies characteristics and depositional processes of shelf mudstones: examples from the Late Cretaceous western interior seaway of North America. Acta Sedimentologica Sinica, 39(1): 168-180] [11] 邱振,邹才能. 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1-29. [Qiu Z,Zou C N. 2020. Unconventional petroleum sedimentology: connotation and prospect. Acta Sedimentologica Sinica, 38(1): 1-29] [12] 孙福宁,杨仁超,李冬月. 2016. 异重流沉积研究进展. 沉积学报, 34(3): 452-462. [Sun F N,Yang R C,Li D Y. 2016. Research progresses on hyperpycnal flow deposits. Acta Sedimentologica Sinica, 34(3): 452-462] [13] 谈明轩,朱筱敏,朱世发. 2015. 异重流沉积过程和沉积特征研究. 高校地质学报, 21(1): 94-104. [Tan M X,Zhu X M,Zhu S F. 2015. Research on sedimentary process and characteristics of hyperpycnal flows. Geological Journal of China Universities, 21(1): 94-104] [14] 王志鹏. 2009. 松潘—阿坝和西秦岭三叠系砂岩组分特征及其构造意义. 成都理工大学学报(自然科学版), 36(5): 465-474. [Wang Z P. 2009. Triassic sandstone compositions in the northern Songpan-Ganzi fold belt and West Qinling-China: implication for tectonic setting. Journal of Chengdu University of Technology(Science & Technology Edition), 36(5): 465-474] [15] 殷鸿福,杨逢清,黄其胜. 1992. 秦岭及邻区三叠系. 武汉: 中国地质大学出版社. [Yin H F,Yang F Q,Huang Q S. 1992. Triassic system in Qinling Mountains and adjacent areas. Wuhan: China University of Geosciences Press] [16] 杨仁超,尹伟,樊爱萍,韩作振,A J(Tom) van Loon. 2017. 鄂尔多斯盆地南部三叠系延长组湖相重力流沉积细粒岩及其油气地质意义. 古地理学报, 19(5): 791-806. [Yang R C,Yin W,Fan A P,Han Z Z,A J(Tom)van Loon. 2017. Fine-grained,lacustrine gravity-flow deposits and their hydrocarbon significance in the Triassic Yanchang Formation in southern Ordos Basin. Journal of Palaeogeography(Chinese Edition), 19(5): 791-806] [17] 于兴河,李顺利,孙洪伟. 2022. 碎屑岩沉积从源到汇的“物—坡”耦合效应. 古地理学报, 24(6): 1037-1057. [Yu X H,Li S L,Sun H W. 2022. Coupling effect of “mass-slope”from source to sink in clastic rock deposition. Journal of Palaeogeography(Chinese Edition), 24(6): 1037-1057] [18] 张国伟. 1988. 华北地块南部早前寒武纪地壳的组成及其演化和秦岭造山带的形成及其演化. 西北大学学报(自然科学版),18(1): 21-23. [Zhang G W. 1988. Composition and evolution of the Early Precambrian crust in southern North China Block and formation and evolution of the Qinling orogenic belt. Journal of Northwest University(Natural Science Edition),18(1): 21-23] [19] 张国伟,张本仁,袁学诚. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社. [Zhang G W,Zhang B R,Yuan X C. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press] [20] 张国伟,程顺有,郭安林,董云鹏,赖绍聪,姚安平. 2004. 秦岭—大别中央造山系南缘勉略古缝合带的再认识: 兼论中国大陆主体的拼合. 地质通报,23(Z2): 846-853. [Zhang G W,Cheng S Y,Guo A L,Dong Y P,Lai S C,Yao A P. 2004. Mianlue paleo-suture on the southern margin of the central orogenic system in Qinling-Dabie: with a discussion of the assembly of the main part of the continent of China. Geological Bulletin of China,23(Z2): 846-853] [21] 朱筱敏. 2008. 沉积岩石学. 北京: 石油工业出版社. [Zhu X M. 2008. Sedimentary Petrology. Beijing: Petroleum Industry Press] [22] 朱筱敏,李顺利,潘荣,谈明轩,陈贺贺,王星星,陈锋,张梦瑜,侯冰洁,董艳蕾. 2016. 沉积学研究热点与进展: 第32届国际沉积学会议综述. 古地理学报, 18(5): 699-716. [Zhu X M,Li S L,Pan R,Tan M X,Chen H H,Wang X X,Chen F,Zhang M Y,Hou B J,Dong Y L. 2016. Current hot topics and advances of sedimentology: a summary from 32nd IAS Meeting of Sedimentology. Journal of Palaeogeography(Chinese Edition), 18(5): 699-716] [23] 邹才能,杨智,朱如凯,张国生,侯连华,吴松涛,陶士振,袁选俊,董大忠,王玉满,王岚,黄金亮,王淑芳. 2015. 中国非常规油气勘探开发与理论技术进展. 地质学报, 89(6): 979-1007. [Zou C N,Yang Z,Zhu R k,Zhang G S,Hou L H,Wu S T,Tao S Z,Yuan X J,Dong D Z,Wang Y M,Wang L,Huang J L,Wang S F. 2015. Progress in China's unconventional oil & gas exploration and development and theoretical technologies. Acta Geologica Sinica, 89(6): 979-1007] [24] 邹才能,冯有良,杨智,蒋文琦,潘松圻,张天舒,王小妮,朱吉昌,李嘉蕊. 2022. 湖盆细粒重力流沉积作用过程及甜点层发育机制是什么?地球科学, 47(10): 3864-3866. [Zou C N,Feng Y L,Yang Z,Jiang W Q,Pan S X,Zhang T S,Wang X N,Zhu J C,Li J R. 2022. What are the lacustrine fine-grained gravity flow sedimentation process and the genetic mechanism of sweet sections for shale oil? Earth Science, 47(10): 3864-3866] [25] Aplin A C,Macquaker J H S. 2011. Mudstone diversity: origin and implications for source,seal,and reservoir properties in petroleum systems. AAPG Bulletin, 95(12): 2031-2059. [26] Arthur M A,Sageman B B. 1994. Marine black shales: depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 23(22): 499-551. [27] Baas J H,Best J L. 2002. Turbulence modulation in clay-rich sediment-laden flows and some implications for sediment deposition. Journal of Sedimentary Research, 72(3): 336-340. [28] Baas J H, Best J L, Peakall J, Wang M. 2009. A phase diagram for turbulent, transitional, and laminar clay suspension flows. Journal of Sedimentary Research, 79(4): 162-183. [29] Baas J H,Best J L,Peakall J. 2011. Depositional processes,bedform development and hybrid bed formation in rapidly decelerated cohesive(mud-sand)sediment flows. Sedimentology, 58(7): 1953-1987. [30] Baas J H,Best J L,Peakall J. 2016a. Predicting bedforms and primary current stratification in cohesive mixtures of mud and sand. Journal of the Geological Society, 173(1): 12-45. [31] Baas J H,Best J L,Peakall J. 2016b. Comparing the transitional behaviour of kaolinite and bentonite suspension flows. Earth Surface Processes and Landforms, 41(13): 1911-1921. [32] Baas J H,Best J,Peakall J. 2021. Rapid gravity flow transformation revealed in a single climbing ripple. Geology, 49(5): 493-497. [33] Baker M L,Baas J H2020. Mixed sand-mud bedforms produced by transient turbulent flows in the fringe of submarine fans: indicators of flow transformation. Sedimentology, 67(5): 2645-2671. [34] Bates C C. 1953. Rational theory of delta formation. AAPG Bulletin, 37(9): 2119-2162. [35] Basilici G,de Luca P H V,Poiré D G. 2012. Hummocky cross-stratification-like structures and combined-flow ripples in the Punta Negra Formation(Lower-Middle Devonian,Argentine Precordillera): a turbiditic deep-water or storm-dominated prodelta inner-shelf system. Sedimentary Geology, 267-268: 73-92. [36] Bhattacharjee S. 1970. Ripple-drift Cross-lamination in Turbidites of the Ordovician Cloridorme Formation, Gaspe, Quebec. Hamilton, Canada, McMaster University: 281. [37] Craig M J,Baas J H,Amos K J,Strachan L J,Manning A J,Paterson D M,Hope J A,Nodder S D and Baker M L. 2020. Biomediation of submarine sediment gravity flow dynamics. Geology, 48(1): 72-76. [38] Dou L,Best J,Bao Z. 2021. The sedimentary architecture of hyperpycnites produced by transient turbulent flows in a shallow lacustrine environment. Sedimentary Geology, 17(411): 105804. [39] Harms J C. 1975. Stratification and sequence in prograding shoreline deposits. SEPM Short Course, 13(2): 311. [40] Haughton P,Davis C,McCaffrey W, Barker S. 2009. Hybrid sediment gravity flow deposits: classification,origin and significance. Marine and Petroleum Geology, 21(26): 1900-1918. [41] Haughton P,Barker S P,McCaffrey W D. 2003. ‘Linked’ debrites in sand-rich turbidite systems-origin and significance. Sedimentology, 50(3): 459-482. [42] Hizzett J L,Hughes Clarke J E,Sumner E J,Cartigny,M J B,Talling P J,Clare M A. 2018. Which triggers produce the most erosive,frequent,and longest runout turbidity currents on deltas? Geophysical Research Letters, 45(2): 855-863. [43] Jobe Z R,Lowe D R,Morris W R. 2012. Climbing-ripple successions in turbidite systems: depositional environments,sedimentation rates and accumulation times. Sedimentology, 59(3): 867-898. [44] Kane I A,Ponten A S M,Wagonergdal B, Eggenhuisen J T, Hodgson D M, Spychala Y T. 2017. The stratigraphic record and processes of turbidity current transformation across deep-marine lobes. Sedimentology, 64(5): 1236-1273. [45] Li H X, Wang M Y, Zhang M H, Wignall P B, Rigo M, Chen Y L, Wu X L, Ouyang Z M, Wu B J, Yi Z Y, Zhang Z T, Lai X L. 2021. First Records of Late Triassic Conodont Fauna and δ13C carb from the Dengdengqiao Section,Dangchang County,Gansu Province,Northwestern China. Journal of Earth Science, 32(3): 646-656. [46] Li N, Deng J, Groves D I, Han R. 2019. Controls on the distribution of invisible and visible gold in the orogenic gold deposits of the Yangshan Gold Belt, West Qinling Orogen, China. Minerals, 9(2): 92. [47] Lowe D R. 1982 Sediment gravity flows: Ⅱ. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentology(Society of Economic Paleontologists and Mineralogists), 52(6): 279-297. [48] Macquaker J H S,Bentley S J,Bohacs K M. 2010. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: reappraising sediment transport processes operating in ancient mudstone successions. Geology, 38(10): 947-950. [49] Mutti E. 2019. Thin-bedded plumites: an overlooked deep-water deposit. Journal of Mediterranean Earth Sciences, 9(11): 1-20. [50] Mulder T,Syvitski J P M. 1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans. The Journal of Geology, 103(3): 285-299. [51] Mulder T, Syvitski J P M, Migeon S, Faugères J C, Savoye B. 2003. Marine hyperpycnal flows: initiation,behavior and related deposits: a review. Marine and Petroleum Geology, 33(20): 861-882. [52] Pickering K,Stow D,Watson M. 1986. Deep-water facies,processes and models: a review and classification scheme for modern and ancient sediments. Earth-Science Reviews, 23(2): 75-174. [53] Pierce C S,Haughton P D W,Shannon P M, Pulham A J, Barker S P, Martinsen O J. 2018. Variable character and diverse origin of hybrid event beds in a sandy submarine fan system,Pennsylvanian Ross Sandstone Formation,western Ireland. Sedimentology, 65(3): 952-992. [54] Shanmugam G. 2013. New perspectives on deep-water sandstones: implications. Petroleum Exploration and Development, 40(3): 316-324. [55] Stanley K O. 1974. Morphology and hydraulic significance of climbing ripples with superimposed micro-ripple-drift cross-lamination in lower Quaternary lake silts, Nebraska. Journal of Sedimentary Research, 44(8): 472-483. [56] Stow D A V,Shanmugam G. 1980. Sequence of structures in fine-grained turbidites: comparison of recent deep-sea and ancient flysch sediments. Sedimentary Geology, 25(1): 23-42. [57] Sumner E J,Talling P J,Amy L A. 2009. Deposits of flows transitional between turbidity current and debris flow. Geology, 37(11): 991-994. [58] Sun Y W, Li X A, Liu Q Y, Zhang M D, Li P, Zhang R, Shi X A. 2020. In search of the inland carnian pluvial event: middle-upper triassic transition profile and U-Pb isotopic dating in the Yanchang Formation in Ordos Basin,China. Geological Journal, 55(7): 4905-4919. [59] Talling P J, Amy L A, Wynn R B, Peakall J, Robinson M. 2004. Beds comprising debrite sandwiched within co‐genetic turbidite: origin and widespread occurrence in distal depositional environments. Sedimentology, 51(1): 163-194. [60] Talling P J,Masson D G,Sumner E J,Malgesini G. 2012. Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology, 47(59): 1937-2003. [61] Talling P J. 2014. On the triggers,resulting flow types and frequencies of subaqueous sediment density flows in different settings. Marine Geology, 23(352): 155-182. [62] Tan M, Sun H, Fu Y. 2022. Hybrid event bed characteristics and its role in high-frequency facies change of the Upper Triassic submarine fan in the West Qinling area of NE Tibetan Plateau. Marine and Petroleum Geology, 146: 105937. [63] Tucker M E. 1982. The field description of sedimentary rocks. Milton Keynes: Open University Press. [64] Walker R G. 1978. Deep-water sandstone facies and ancient submarine fans: models for exploration for stratigraphic traps. AAPG Bulletin, 62(6): 932-966. [65] Weislogel A L,Graham S A,Chang E Z, Wooden J, Gehrels G, Yang H. 2006. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: sedimentary record of collision of the North and South China blocks. Geology, 34(2): 97-100. [66] Wilson R D,Schieber J. 2014. Muddy prodeltaic hyperpycnites in the lower Genesee Group of central New York,USA: implications for mud transport in epicontinental seas. Journal of Sedimentary Research, 84(10): 866-874. [67] Wilson R D,Schieber J. 2017. Association between wave-and current-aided hyperpycnites and flooding surfaces in shelfal mudstones: an integrated sedimentologic,sequence stratigraphic,and geochemical approach. Journal of Sedimentary Research, 87(11): 1143-1155. [68] Xian B Z,Wang J H,Gong C L,Yin Y,Chao C Z,Liu J P,Zhang G D,Yan Q. 2018. Classification and sedimentary characteristics of lacustrine hyperpycnal channels: triassic outcrops in the south Ordos Basin,central China. Sedimentary Geology, 31(368): 68-82. [69] Yang R C,Jin Z J,Wagoner Loon A J,Han Z Z,Fan A P. 2017. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin,central China: implications for unconventional petroleum development. AAPG Bulletin, 101(1): 95-117. [70] Zaki T A, Saha S. 2009. On shear sheltering and the structure of vortical modes in single and two-fluid boundary layers. Journal of Fluid Mechanics, 24(626): 111-147. [71] Zavala C,Arcuri M,Meglio H. 2011. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits. Sediment transfer from shelf to deep water-Revisiting the delivery system. AAPG Studies in Geology, 13(61): 31-51.