Net primary productivity and its control of the Late Permian peatlands in southwestern China
Shao Longyi1, Wang Hao1, Large D J2
1 School of Geoscience and Survey Engineering,China University of Mining and Technology(Beijing),Beijing 100083 2 Faculty of Engineering,University of Nottingham,UK,NG72RD
Abstract Milankovitch theory is an important tool in constraining time in the palaeoenviorment analysis. In this study,the geophysical logs of the Late Permian No.17 Coal in Nuodong,Puan of Guizhou Province and No.10 Coal in Tianyou,Fuyuan of Yunnan Province are analyzed employing spectral analysis.The result shows that the mineral matter content(ash yield)of the coal was possibly influenced by 123ka(eccentricity),35.6 ka(obliquity)and 21.2 ka(precession)Milankovitch cycles.Using this timeframe,the Lopingian tropical peatland carbon accumulation rate is calculated to be 54.3~77.0 gC/(m2·a),which is expected to correspond to a NPP of 543~1540 gC/(m2·a). A comparison of NPP and temporal atmospheric composition among the Late Permian,Late Carboniferous and modern time indicates that the Late Permian NPP calculated is consistent with geochemical and palaeobotanical models,supporting a proposal that terrestrial productivity is mainly controlled by temporal atmospheric O2 and CO2 levels.
About author: Shao Longyi,born in 1964,graduated and obtained his Ph.D.degree from China University of Mining and Technology(Beijing)in 1989.Now he is a professor at the School of Geoscience and Survey Engineering of China University of Mining and Technology(Beijing),with main interests in sedimentology and coal geology.
Cite this article:
Shao Longyi,Wang Hao,Large D J. Net primary productivity and its control of the Late Permian peatlands in southwestern China[J]. JOURNAL OF PALAEOGEOGRAPHY, 2011, 13(5): 473-480.
Shao Longyi,Wang Hao,Large D J. Net primary productivity and its control of the Late Permian peatlands in southwestern China[J]. JOPC, 2011, 13(5): 473-480.
郭英廷.1990a.贵州西部晚二叠世古气候[J].中国煤田地质,2(3):18-20. 郭英廷.1990b.贵州西部晚二叠世含煤地层的植物古生态[J].煤炭学报,15:48-49. 李星学,沈光隆,田宝霖,等.1995.中国煤核植物群[M].见: 李星学(主编).中国地质时期植物群.广东广州:广州科技出版社,190-221. 罗忠,邵龙义,姚光华,等.2008.滇东黔西上二叠统含煤岩系泥岩粘土矿物组成及环境意义[J].古地理学报,10(3):297-304. 邵龙义,刘红梅,田宝霖,等.1998.上扬子地区晚二叠世沉积演化及聚煤[J].沉积学报,16(2): 55-60. 田宝霖,张连武.1980.贵州水城汪家寨矿区化石图册[M].北京:煤炭工业出版社,1-110. Allègre C J.2008.Isotope Geology[M].Cambridge: Cambridge University Press,1-512. Aselmann I,Crutzen V.1990.A Global Inventory of Wetland Distribution and Seasonality,Net Primary Productivity,and Estimated Methane Emissions[M].In: Bouwman A F(ed).Soils and the Greenhouse Effect.Chichester: John Wiley,441-449. Beerling D J,Woodward F Ⅰ.2001.Vegetation and the Terrestrial Carbon Cycle: Modelling the First 400 Million Years[M].Cambridge:Cambridge University Press,1-405. Berger A,Loutre M F,Dehant V.1989.Pre-Quaternary Milankovitch frequencies[J].Nature,342: 133-133. Berger A,Loutre M F,Laskar J.1992.Stability of the astronomical frequencies over the earths history for paleoclimate studies[J].Science,255: 560-566. Berner R A.2005.The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic[J].Geochimica et Cosmochimica Acta,69: 3211-3217. Berner R A.2006.Geocarbsulf: A combined model for Phanerozoic atmospheric O2 and CO2[J].Geochimica et Cosmochimica Acta,70: 5653-5664. Berner R A.2009.Phanerozoic atmospheric oxygen: New results using the geocarbsulf model[J]. American Journal of Science,309: 603-606. Cleal C J,Thomas B A.2005.Palaeozoic tropical rainforests and their effect on global climates: Is the past the key to the present?[J].Geobiology,3: 13-31. Clymo R S,Turunen J,Tolonen K.1998.Carbon accumulation in peatland[J].Oikos,81: 368-388. Diessel C,Boyd R,Wadsworth J, et al.2000.On balanced and unbalanced accommodation/peat accumulation ratios in the Cretaceous coals from Gates Formation,Western Canada,and their sequence-stratigraphic significance[J].International Journal of Coal Geology,43:143-186. Diessel C F K.1992.Coal-bearing Depositional System[M]. New York: Springer-Verlag,1-721. Fluteau F,Besse J,Broutin J, et al.2001.Extension of Cathaysian flora during the Permian: Climatic and paleogeographic constraints[J].Earth and Planetary Science Letters,193: 603-616. Frakes L,Francis J,Syktus J.1992. Climate Modes of the Phanerozoic[M].New York: Cambridge University Press,1-274. Ghil M,Allen M R,Dettinger M D, et al. 2002,Advanced spectral methods for climatic time series[J].Reviews of Geophysics,40: 1-41. Greb S F,DiMichele W A,Gastaldo R A.2006.Evolution and Importance of Wetlands in Earth History[M].In: Greb S F,diMichele W A(eds).Wetlands Through Time.Volume Geological Society of America Special Publication 399, Boulder:1-40. Hilton J,Cleal C J.2007.The relationship between Euramerican and Cathaysian tropical floras in the Late Palaeozoic: Palaeobiogeographical and palaeogeographical implications[J].Earth-Science Reviews,85:85-116. ICS.2009.International Stratigraphic Chart[M].International Commission on Stratigraphy. Large D J.2007.A 1.16Ma record of carbon accumulation in western European peatland during the Oligocene from the Ballymoney lignite,Northern Ireland[J].Journal of the Geological Society,164: 1233-1240. Large D J,Jones T F,Briggs J, et al.2004.Orbital tuning and correlation of 1.7 my of continuous carbon storage in an early Miocene peatland[J].Geology,32: 873-876. Large D J,Jones T F,Somerfield C, et al.2003.High-resolution terrestrial record of orbital climate forcing in coal[J].Geology,31: 303-306. Moore P D.1987. Ecological and hydrological aspects of peat formation[J].Geological Society,London,Special Publications,32: 7-15. Nadon G C.1998.Magnitude and timing of peat-to-coal compaction[J].Geology,26: 727-730. Neue H U,Gaunt J L,Wang Z P, et al.1997.Carbon in tropical wetlands[J]. Geoderma,79: 163-185. Neuzil S G.1997.Onset and rate of peat and carbon accumulation in four domed ombrogenous peat deposits,Indonesia[C].In: Rieley J O,Page S E(eds).Biodiversity and Sustainability of Tropical Peatlands.Cardigan: Samara Publishing,55-72. Page S E,Siegert F,Rieley J O, et al.2002.The amount of carbon released from peat and forest fires in Indonesia during 1997[J].Nature,420: 61-65. Schwarzacher W.1993.Cyclostratigraphy and the Milankovitch Theory[M].Amsterdam: Elsevier,1-225. Sorensen K W.1993. Indonesian Peat Swamp Forests and their role as a carbon sink[J].Chemosphere,27: 1065-1082. Wang H,Shao L,Hao L, et al.2011a.Sedimentology and sequence stratigraphy of the Lopingian(Late Permian)coal measures in southwestern China[J].International Journal of Coal Geology,83: 168-183. Wang H,Shao L,Large D J,et al. 2011b.Constraints on carbon accumulation rate and net primary production in Late Permian tropical peatland in SW China[J]. Palaeogeography,Palaeoclimatology, Palaeoecology,300: 152-157. Wang J,Li H.1998.Paleo-latitude variation of Guizhou terrain from Devonian to Cretaceous[J].Chinese Journal of Geochemistry,17: 356-361. Weedon G P.2003.Time-Series Analysis and Cyclostratigraphy: Examining Stratigraphic Records of Environmental Cycles[M].New York: Cambridge University Press,1-274. Zaritsky RV.1975.On thickness decrease of parent substance of coal,the 7th International Congress on Carboniferous Stratigraphy and Geology[J].Comptes Rendus,4: Frefeld,Geologisches Landesamt Nordrhein-Westfalen,393-396.