An attempt on construction of diatom-based sea-level transfer functions in modern tidal flat at Yangtze River estuary
Zhuang Chencheng1, Zhan Qing2, Wang Zhanghua3
1 College of Resources and Environmental Science,East China Normal University,Shanghai 200062
2 Shanghai Institute of Geological Survey, Shanghai 200072
3 State Key Laboratory of Estuarine and Coastal Research,East China Normal University,Shanghai 200062
In the research on quantitative high-resolution sea-level reconstruction,microfossil-based transfer function is a newly and rapidly developed technique assisted by the development of computer technology in the past decade. It has become one of the indispensable methods in sea-level research in many western countries. However,its application to reconstructions of the Holocene relative sea-level history in Chinese coasts has been limited. This paper intends to introduce the method of the diatom(as an example)based sea-level transfer functions,including tidal flat sampling strategy,statistical analysis, possible prediction errors and reducing-error method. Through analyzing the tidal flat surface samples collected from SY section at Siyao port of Chongming Island and the CCA ordination of diatom species,it was concluded that the elevation is the most contributing factor for diatoms sorting among all the environmental parameters. Thus,a transfer function with weighted average(WA)and weighted average partial least squares(WA-PLS) was used. The correlation(R2_Jack)is 0.9 and the RMSEP is±12.6cm with all samples of SY section at Siyao port. The precision may be improved to ±10cm when the sample from a supratidal site(sample of SY1)is excluded. This research will push such quantitative methods forwards to a higher level in high-resolution sea-level reconstructions that can help produce high-quality geological records to aid coastal management of China.
Corresponding Authors:
Wang Zhanghua,born in 1973,is a professor of East China Normal University. She is mainly engaged in research on sedimentary geomorphologic evolution of estuary and delta. E-mail: zhwang@geo.ecnu.edu.cn.
About author: Zhuang Chencheng,born in 1986,is a postgraduate of East China Normal University(Shanghai). Now he is engaged in research on quantitative sea-level reconstruction. E-mail:zhuangchen2000@163.com.
Cite this article:
Zhuang Chencheng,Zhan Qing,Wang Zhanghua. An attempt on construction of diatom-based sea-level transfer functions in modern tidal flat at Yangtze River estuary[J]. JOPC, 2014, 16(4): 557-568.
Zhuang Chencheng,Zhan Qing,Wang Zhanghua. An attempt on construction of diatom-based sea-level transfer functions in modern tidal flat at Yangtze River estuary[J]. JOPC, 2014, 16(4): 557-568.
陈星,朱诚,马春梅. 2008. 气候转换函数中孢粉因子的气候敏感性分析[J]. 科学通报,53(增刊Ⅰ):45-51. 董旭辉,羊向东,王荣. 2006. 长江中下游地区湖泊硅藻—总磷转换函数[J]. 湖泊科学,18(1):1-12. 吉云松. 2004. 利用有孔虫建立高精度海平面变化标尺[D]. 上海: 华东师范大学硕士学位论文. 金德祥,程兆第,刘师成,等. 1982. 中国海洋底栖硅藻类(上卷)[M]. 北京:海洋出版社. 金德祥,程兆第,刘师成,等. 1991. 中国海洋底栖硅藻类(下卷)[M]. 北京:海洋出版社. 李珍,王开发,王永吉. 2002. 红树林孢粉—气候因子转换函数恢复古环境的可行性初探[J]. 海洋科学进展,20(3):73-78. 闵华明,马家海. 2007. 上海市滩涂夏季底栖硅藻初步研究[J]. 热带亚热带植物学报,15(5):390-398. 宋长青,吕厚远,孙湘君. 1997. 中国北方花粉—气候因子转换函数建立及应用[J]. 科学通报,42(20):2182-2185. 王华新,线薇微. 2011. 长江口表层沉积物有机碳分布及其影响因素[J]. 海洋科学,35(5):24-31. 王开发,蒋辉,支崇远,等. 2001. 东海表层沉积硅藻组合与环境关系研究[J]. 微体古生物学报,18(4):379-384. 王律江,汪品先. 1988. 用转换函数法推算南海古温度的尝试[J]. 科学通报,33(5):371-373. Birks H J B. 1995. Quantitative palaeoenvironmental reconstructions[A]. In:Maddy D,Brew J S(eds). Statistical Modelling of Quaternary Science Data[C]. UK:Cambridge University Press,161-236. Briggs G G. 1994. Coastal Crossing of the Zero-Isobase,Cascadia Margin,Southcentral Oregon Coast Masters Thesis[M]. Portland:Portland State University:1-251. Charman D J,Gehrels W R,Manning C, et al. 2010. Reconstruction of recent sea-level change using testate amoebae[J]. Quaternary Research,73(2):208-219. Darienzo M E,Peterson C D,Clough C. 1994. Stratigraphic evidence for great subduction-zone earthquakes at four estuaries in Northern Oregon,USA[J]. Journal of Coastal Research,10(4):850-876. Edwards R J,van de Plassche O,Gehrels W R, et al. 2004a. Assessing sea-level data from Connecticut,USA,using a foraminiferal transfer function for tide level [J]. Marine Micropaleontology, 51(3):239-255. Frenzel P,Wrozyna C,Xie M, et al. 2010. Palaeo-water depth estimation for a 600-year record from Nam Co(Tibet)using an ostracod-based transfer function[J]. Quaternary International,218(1-2):157-165. Fritz S C,Juggins S,Battarbee R W, et al. 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function[J]. Nature,352(6337):706-708. Geitzenauer K R,Roche M B,McIntyre A. 1976. Modern Pacific coccolith assemblages:Derivation and application to late Pleistocene paleotemperature analysis[J]. Geological Society of America Memoir,145:423-448. Guibault J P,Clague J J,Lapointe M. 1995. Amount of subsidence during a late Holocene earthquake: Evidence from fossil tidal marsh foraminifera at Vancouver Island,west coast of Canada[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,118(1):49-71. Hkansson H. 1984. The recent diatom succession of Lake Havgrdssjn,south Sweden[A]. In: Mann D G(ed). Proceeding of the Seventh International Diatom Symposium[C]. Philadelphia:Otto Koeltz,411-429. Hamilton S L,Shennan Ⅰ. 2005a. Late Holocene relative sea-level changes and the earthquake deformation cycle around the upper Cook Inlet,Alaska[J]. Quaternary Science Reviews,24(12-13):1479-1498. Hassan G S,Espinosa M A,Isla F Ⅰ. 2009. Diatom based inference model for paleosalinity reconstructions in estuaries along the northeastern coast of Argentina[J]. Palaeogeography,Palaeoclimatology,Palaeoecolog,275(1):77-91. Hawkes A D,Horton B P,Nelson A R, et al. 2011. Coastal subsidence in Oregon,USA,during the giant Cascadia earthquake of AD 1700[J]. Quaternary Science Reviews,30(3-4):364-376. Hawkes A D,Horton B P,Nelson A R, et al. 2010. The application of intertidal foraminifera to reconstruct coastal subsidence during the giant Cascadia earthquake of AD 1700 in Oregon,USA [J]. Quaternary International, 221(1-2):116-140. Horton B P. 1999. The contemporary distribution of intertidal foraminifera of Cowpen Marsh,Tees Estuary,UK:Implications for studies of Holocene sea-level changes[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,Special Issue,149(1):127-149. Horton B P,Edwards R J. 2003. Seasonal distributions of foraminifera and their implications for sea-level studies[J]. SEPM(Society for Sedimentary Geology)Special Publication,(75):21-30. Horton B P,Corbett R,Culver S J, et al. 2006. Modern saltmarsh diatom distributions of the Outer Banks,North Carolina,and the development of a transfer function for high resolution reconstructions of sea level[J]. Estuarine Coastal and Shelf Science,69(3-4):381-394. Imbrie J,Kipp N G. 1971. A new micropaleontological method for quantitative paleoclimatology;application to a late Pleistocene Caribbean core[A]. In: Turekian K K(ed). The Late Cenozoic Glacial Ages[C]. USA:Yale University Press,71-181. Juggins S. 2003. C2 User Guide:Software for Ecological and Palaeoecological Data Analysis and Visualisation[M]. UK:University of Newcastle, 7-70. Leorri E,Horton B P,Cearreta A. 2008. Development of a foraminifera-based transfer function in the Basque marshes,N. Spain:Implications for sea-level studies in the Bay of Biscay[J]. Marine Geology,251(1-2):60-74. Lep J,milauer P. 2003. Multivariate Analysis of Ecological Data Using CANOCO[M]. UK:Cambridge University Press, 1-282. Minor R,Grant W C. 1996. Earthquake-induced subsidence and burial of late Holocene archaeology sites,Northern Oregon coast[J]. American Antiquity,61(4):772-781. Nelson A R. 1992. Discordant14C ages from buried tidal-marsh soils in the Cascadia subduction zone,southern Oregon coast[J]. Quaternary Research,38(1):74-90. Nelson A R,Asquith A C,Grant W C. 2004. Great earthquakes and tsunamis of the past 2000 years at the Salmon River estuary,central Oregon coast,USA[J]. Bulletin of Seismological Society of America,94(4):1276-1292. Nelson A R,Sawai Y,Jennings A E, et al. 2008. Great-earthquake paleogeodesy and tsunamis of the past 2000 years at Alsea Bay,central Oregon coast,USA[J]. Quaternary Science Reviews,27(7-8):747-768. Nelson A R,Ota Y,Umitsu M, et al. 1998. Seismic or hydrodynamic control of rapid late-Holocene sea-level rise in southern coastal Oregon,USA[J]. The Holocene,8(3):287-299. Nelson A R,Shennan Ⅰ,Long A J. 1996. Identifying coseismic subsidence in tidal-wetland stratigraphic sequences at the Cascadia subduction zone of western North America[J]. Journal of Geophysical Research,101(B3):6115-6135. Sachs H M. 1973. North Pacific radiolarian assemblages and their relationship to oceanographic parameters[J]. Quaternary Research,3(1):73-88. Sawai Y,Horton B P,Nagumo T. 2004. The development of a diatom-based transfer function along the Pacific coast of eastern Hokkadio,northern Japan: An aid in paleoseismic studies of the Kurile subduction zone[J]. Quaternary Science Reviews,23(23-24):2467-2483. Ter Braak C J F. 1986. Canonical correspondence analysis:A new eigenvector technique for multivariate gradient analysis[J]. Ecology,67(5):1167-1179. Ter Braak C J F. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis[J]. Vegetatio,69(1-3):69-77. Ter Braak C J F. 1996. Unimodal models to relate species to environment[A]. In:Centre for Biometry Wageningen. DLO-Agricultural Mathematics Group[C]. Netherland:Wageningen,1-266. Ter Braak C J F,Juggins S. 1993. Weighted averaging partial least squares regression(WA-PLS): An improved method for reconstructing environmental variables from species assemblages[J]. Hydrobiologia,269-270(1):485-502. Ter Braak C J F,milauer P. 2002. CANOCO Reference Manual and CanoDraw for Windows Users Guide:Software for Canonical Community Ordination(version 4.5)[M]. USA:Microcomputer Power. Zong Y,Horton B P. 1999. Diatom-based tidal-level transfer functions as an aid in reconstructing Quaternary history of sea-level movements in the UK[J]. Journal of Quaternary Science,14(2):153-167. Zong Y,Kemp A C,Yu F, et al. 2010. Diatoms from the Pearl River estuary,China and their suitability as water salinity indicators for coastal environments[J]. Marine Micropaleontology,75(1-4):38-49.