Sequence architecture and deep water gravity-flow deposits of the middle and upper member of Hanjiang Formation of Miocene in Baiyun sag,Pearl River Mouth Basin
Tao Ze1, Lin Changsong2, Zhang Zhongtao3, Zhang Xin1, Jiang Jing2, Zhang Ping1, Gao Nan'an1, Li Hao2, Wu Gaokui1, Zhang Bo3, Shu Liangfeng3
1 School of Energy Resources,China University of Geosciences(Beijing),Beijing 100083; 2 School of Ocean Sciences and Resources,China University of Geosciences(Beijing),Beijing 100083; 3 Research Institute of Shenzhen Branch,CNOOC,Guangzhou 510240,Guangdong
Abstract The Middle and Upper Hanjiang Formation in the Pearl River Mouth Basin contains large scale siliciclastic deep-water,gravity-flow deposits. Gravity-flow deposits of the Middle and Upper Hanjiang Formation comprise a regional transgressive-regressive megacycle,which can be further classified into six sequences bounded by unconformities and their correlative conformities. A series of incised valleys or canyons and erosional-depositional channels are identifiable as marks of the major sequence boundaries which might have been formed as the result of global sea-level falls. Besides, prograding clinoform, bottom boundaries of fan lobes and relative low content of calcareous nannofossils are conducive to identification of sequence boundary. Not only the sequence architecture but also the depositional unit is different at various basin locations. Five gravity-flow depositional elements in the slope have been identified as follows: Turbidite channel complexes,lower slope fans,submarine canyon,prograding clinoforms and pelagic sediments. Turbidite channel complexes are divided into five depositional elements: Basal lags,channel and levee system,slumps,lateral accretion packages and telophase filling. Three types of channels are classified: Erosional,erosional-aggradational and aggradational,geometries of which changing along with gradient.
Fund:Financially supported by the National Natural Science Foundation of China(No.91328201,91528301)
Corresponding Authors:
Lin Changsong,born in 1958,is a professor and Ph.D. supervisor. He is mainly engaged in basin analysis and sedimentology. E-mail: lincs@cugb.edu.cn.
About author: Tao Ze,born in 1992,is a master degree candidate. She is mainly engaged in sequence stratigraphy and sedimentology. E-mail: taoze@cugb.edu.cn.
Cite this article:
Tao Ze,Lin Changsong,Zhang Zhongtao et al. Sequence architecture and deep water gravity-flow deposits of the middle and upper member of Hanjiang Formation of Miocene in Baiyun sag,Pearl River Mouth Basin[J]. JOPC, 2017, 19(4): 623-634.
Tao Ze,Lin Changsong,Zhang Zhongtao et al. Sequence architecture and deep water gravity-flow deposits of the middle and upper member of Hanjiang Formation of Miocene in Baiyun sag,Pearl River Mouth Basin[J]. JOPC, 2017, 19(4): 623-634.
1 李华,王英民,徐强,韩自亮,徐艳霞. 2013a. 深水单向迁移水道—堤岸沉积体系特征及形成过程. 现代地质,27(3): 653-661. [Li H,Wang Y M,Xu Q,Han Z L,Xu Y X. 2013a. Characteristics and processes of deep water undirectional-migrating channel-levee system. Geoscience,27(3): 653-661] 2 李华,王英民,徐强,唐武,李冬. 2013b. 南海北部第四系深层等深流沉积特征及类型. 古地理学报,15(5): 741-750. [Li H,Wang Y M,Xu Q,Tang W,Li D. 2013b. Sedimentary characteristics and types of the Quaternary deep water contourites in northern South China Sea. Journal of Palaeogeography(Chinese Edition),15(5): 741-750] 3 李华,王英民,徐强,卓海腾,吴嘉鹏,唐武,李冬,徐艳霞. 2014. 南海北部珠江口盆地重力流与等深流交互作用沉积特征、过程及沉积模式. 地质学报,88(6): 1120-1129. [Li H,Wang Y M,Xu Q,Zhuo H T,Wu J P,Tang W,Li D,Xu Y X. 2014. Interactions between downslope and along-slope processes on the northern slope of South China Sea: Products,processes,and depositional model. Acta Geologica Sinica,88(6): 1120-1129] 4 李磊,王英民,张莲美,徐强. 2009. 南海北部白云深水区水道与朵体沉积序列及演化. 海洋地质与第四纪地质,29(4): 71-76. [Li L,Wang Y M,Zhang L M,Xu Q. 2009. Sedimentary sequence and evolution of submarine channel lobes in Baiyun deepwater Area,Northern South China Sea. Marine Geology and Quaternary Geology,29(4): 71-76] 5 林畅松,刘景彦,蔡世祥,张燕梅,吕明,李杰. 2001. 莺—琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景. 科学通报,46(1): 69-72. [Lin C S,Liu J Y,Cai S X,Zhang Y M,Lü M,Li J. 2001. The large scale incision valley,seafloor gravity flow system and its developing setting in Yinggehai and Qiongdongnan Basin. Chinese Science Bulletin,46(1): 69-72] 6 柳保军,庞雄,颜承志,连世勇,刘军,何敏,申俊,韩晋阳,李元平. 2011. 珠江口盆地白云深水区沉积充填演化及控制因素分析. 中国海上油气,23(1): 19-25. [Liu B J,Pang X,Yan C Z,Lian S Y, Liu J,He M,Shen J,Han J Y,Li Y P. 2011. Analysis of depositional evolution and controls in Baiyun deep-water area,Pearl Rive Mouth Basin. China Offshore Oil and Gas,23(1): 19-25] 7 庞雄,陈长民,彭大钧,朱明,舒誉,何敏,申俊,柳保军. 2007. 南海珠江深水扇系统的层序地层学研究. 地学前缘,14(1): 220-229. [Pang X,Chen C M,Peng D J,Zhu M,Shu Y,He M, Shen J,Liu B J. 2007. Sequence stratig raphy of Pearl River deep-water fan system in the South China Sea. Earth Science Frontiers,14(1): 220-229] 8 庞雄,朱明,柳保军,颜承志,胡琏,郑金云. 2014. 南海北部珠江口盆地白云凹陷深水区重力流沉积机理. 石油学报,35(4): 646-653. [Pang X,Zhu M,Liu B J,Yan C Z,Hu L,Zheng J Y. 2014. The mechanism of gravity deposition in Baiyun Sag deep-water area of the northen South China Sea. Acta Petroleum Sinica,35(4): 646-653] 9 许仕策,杨少坤,黄丽芬. 1995. 层序地层学在地层对比的应用. 地学前缘,2(3): 115-123. [Xu S C,Yang S K,Huang L F. 1995. The application of sequence stratigraphy to stratigraphic correlation. Earth Science Frontier,2(3): 115-123] 10 王永凤,李冬,王英民,徐强. 2015. 珠江口盆地重要不整合界面与珠江沉积体系演化分析. 沉积学报,33(3): 587-594. [Wang Y F,Li D,Wang Y M,Xu Q. 2015. Major unconformities and sedimentary system evolution in Pearl River Mouth Basin. 2015. Acta Sedimentologica Sinica,33(3): 587-594] 11 袁圣强,曹锋,吴时国,姚根顺,王海荣,李丽. 2010a. 南海北部陆坡深水曲流水道的识别及成因. 沉积学报,28(1): 68-75. [Yuan S Q,Cao F,Wu S G,Yao G S,Wang H R,Li L. 2010a. Architecture and origin of deepwater sinuous channel on the slope of northern South China Sea. Acta Sedimentologica Sinica, 28(1): 68-75] 12 袁圣强,吴时国,姚根顺. 2010b. 琼东南陆坡深水水道主控因素及勘探应用. 海洋地质与第四纪地质,30(2): 61-66. [Yuan S Q,Wu S G,Yao G S. 2010b. The controlling factors analysis of Qiongdongnan slope deepwater channels and its significance to the hydrocarbon exploration. Marine Geology and Quaternary Geology,30(2): 61-66] 13 袁圣强,吴时国,赵宗举,徐方建. 2010c. 南海北部陆坡深水区沉积物输送模式探讨. 海洋地质与第四纪地质,30(4): 39-48. [Yuan S Q,Wu S G,Zhao Z J,Xu F J. 2010c. Deepwater sediment transportation models for northern South China Sea slopes. Marine Geology and Quaternary Geology,30(4): 39-48] 14 Abreu V,Morgan S,Carlos P,David M. 2003. Lateral accretion packages(LAPs): An important reservoir element in deep water sinuous channels. Marine and Petroleum Geology,20(6-8): 631-648. 15 Clark J D,Pickering K T. 1996. Submarine Channels Processes and Architecture. London: Vallis Press,13-172. 16 Gong C L,Wang Y M,Zhu W L,Li W G,Xu Q,Zhang J M. 2011. The central submarine canyon in the Qiongdongnan Basin,northwestern South China Sea: Architecture,sequence stratigraphy,and depositional processes. Marine and Petroleum Geology,28(9): 1690-1702. 17 Gong C L,Wang Y M,Peng X C,Li W G,Qiu Y,Xu S. 2012. Sediment waves on the South China Sea slope off southwestern Taiwan: Implications for the intrusion of the NPDW into the South China Sea. Marine and Petroleum Geology,32(1): 95-109. 18 Gong C L,Wang Y M,Zhu W L,Li W G,Xu Q. 2013. Upper Miocene to Quaternary unidirectionally migrating deed-water channels in the Pearl River Mouth Basin,northern South China Sea. AAPG Bulletin,97(2): 285-308. 19 Janocko M,Nemec W,Henriksen S,Warchol M. 2013. The diversity of deep-water sinuous channel belts and slope valley-fill complexes. Marine and Petroleum Geology,41: 7-34. 20 Kolla V,Bourges P,Urruty J M,Safa P. 2001. Evolution of deep-water Tertiary sinuous channels offshore Angola(west Africa)and implications to reservoir architecture. AAPG Bulletin,85(8): 1373-1405. 21 Kolla V,Posamentier H W,Wood L J. 2007. Deep-water and fluvial sinuous channels-characteristics,similarities and dissimilarities,and modes of formation. Marine and Petroleum Geology,24(6-9): 388-405. 22 Li B,Wang J,Huang B,Li Q,Jian Z,Zhao Q,Su X,Wang P. 2004. South China Sea surface water evolution over the last 12 Myr: A south-north comparison from Ocean Drilling Program Sites 1143 and 1146. Paleoceanography,19, PA1009: 1-12. 23 Li C L,Wu S,Zhu Z,Bao X. 2014. The assessment of submarine slope instability in Baiyun Sag using gray clustering method. Natural Hazards,74(2): 1179-1190. 24 Lin C S,Liu J Y, Eriksson K,Yang H J,Cai Z,Li H,Yang Z,Rui Z. 2014. Late Ordovician,deep-water gravity-flow deposits,paleogeography and tectonic setting,Tarim Basin,Northwest China. Basin Research,26: 297-319. 25 Mayall M,Jones E D,Casey M. 2006. Turbidite channel reservoirs: Key elements in facies prediction and effective development. Marine and Petroleum Geology,23(8): 821-841. 26 Mayall M,Lonergan L,Bowman A,James S,Mills K,Primmer T,Pope D,Rodgers L,Skeene R. 2010. The response of turbidite slope channels to growth-induced seabed topography. AAPG Bulletin,94(7): 1011-1030. 27 Posamentier H Y,Kolla V. 2003. Seismic geomorphology and stratigraphy of depositional elements in deep water settings. Journal of Sedimentary Research,73(3): 367-388. 28 Richards M,Bowman M,Reading H G. 1998. Submarine fan systems Ⅰ: Characterization and stratigraphic prediction. Marine and Petroleum Geology,15(7): 687-717. 29 Tian J,Shevenell,Amelia,Wang P X,Zhao Q H,Li Q Y,Cheng X R. 2009. Reorganization of Pacific deep waters linked to middle Miocene Antarctic cryosphere expansion: A perspective from the South China Sea. Palaeogeography,Palaeoclimatology,Palaeoecology,284(3-4): 375-382. 30 Xie H,Zhou D,Li Y P,Pang X,Li P C,Chen G H,Li F C,Cao J H. 2014. Cenozoic tectonic subsidence in deep water sags in the Pearl River Mouth Basin,northern South China Sea. Tectonphysics,615(1): 182-198. 31 Weimer P,Slatt R M,Bouroullec R, Pettingill H, Pranter M. 2006. Introduction to the petroleum geology of deep-water settings.《Gsw Books》. 32 Wu H,Zhao X,Shi M,Zhang S,Li H,Yang T. 2014. A 23 Myr magnetostratigraphic time framework for Site 1148,ODP Leg 184 in South China Sea and its geological implications. Marine and Petroleum Geology,58(Part B): 749-759. 33 Wynn R B,Cronin B T, Peakall J. 2007. Sinuous deep-water channels: Genesis,geometry and architecture. Marine and Petroleum Geology,24(6-9): 341-387.