Abstract In this paper,geochemical characteristics of trace elements and rare earth elements of the Daye Formation in Yanlou-Huaxi, Guiyang were analyzed. The enrichment of redox sensitive elements(U,V,Mo)and ratios of U/Th,V/Th,Mo/Th are higher than those of PAAS. Some geochemical parameters of redox sensitive elements such as V/(V+Ni),V/Cr,Ni/Co,V/Sc and MoEF/UEF ratios indicate that the deposit of the Member 1 of the Daye Formation was formed in hypoxia-lean oxygen environment,while the Member 2 of the Daye Formation in the lean oxygen-oxidizing environment. Rare earth element partition type is relatively flat. Hypoxia-lean oxygen environment was instructed by the characteristic parameters of rare earth elements(δCe and Ce/La)in the Early Triassic. The δEu positive anomalies in the Member 1 of the Daye Formation suggest that affected by volcanic hydrothermal process significantly,and weaker influences of volcanism showed slightly positive anomaly in the Member 2 of the Daye Formation. The lean oxygen environment of the Early Triassic is interpreted to be associated with frequent volcanism. Based on analysis of the structure and way of life of bivalves,byssus sessile lifestyle was behaved by Claraia that belongs to lean-oxygen biology. Biological structures of bivalve fossils is divided into the prismatic shell and the complex interleaved laminated pearl layer,which is associated with hypoxia of the ocean environment.The the shallow water with weak hydrodynamic conditions should be the claraia major living environment.
Fund:[Science and Technology Innovation Team Project of Guizhou Province(No.Qian-Ren-He[2018]004);Discipline Construction Project of Guizhou University]
Corresponding Authors:
Yang Rui-Dong,born in 1963,is a professor of Guizhou University.He is maily engaged in researches of sedimentary geology and sedimentary deposits and environmental geochemistry. E-mail: rdyang@gzu.edu.cn.
About author: Wang Shuang,born in 1991,is a master candidate of Guizhou University. Now she is mainly engaged in researches of sedimentary geology and palaeoenvironment. E-mail: Wang-22shuang@163.com.About the corresponding author Yang Rui-Dong,born in 1963,is a professor of Guizhou University.He is maily engaged in researches of sedimentary geology and sedimentary deposits and environmental geochemistry. E-mail: rdyang@gzu.edu.cn.
Cite this article:
Wang Shuang,Yang Rui-Dong. Analysis of geochemistry features and sedimentary environment of the Lower Triassic Daye Formation in Yanlou section of Huaxi, Guiyang[J]. JOPC, 2018, 20(2): 285-298.
Wang Shuang,Yang Rui-Dong. Analysis of geochemistry features and sedimentary environment of the Lower Triassic Daye Formation in Yanlou section of Huaxi, Guiyang[J]. JOPC, 2018, 20(2): 285-298.
[1] 陈剑波. 2012. 安徽巢湖下三叠统高分辨率地球化学地层研究及其古环境意义. 中国地质大学(武汉)硕士论文,28-42. [Chen J B. 2012. Study on Lower Triassic stratigraphy of high resolution geochemistry for Chaohu Section,Anhui Province: Implication for paleo-environment. Master Dissertation of China University of Geosciences(Wuhan),28-42] [2] 戴永定. 1994. 生物矿物学. 北京: 石油工业出版社,234-247,521-525,569-570. [Dai Y D. 1994. Biomineralogy. Beijing: Petroleum Industry Press,234-247,521-525,569-570] [3] 邓宝柱,余黎雪,王永标,李国山,孟亚飞. 2015. 湖北赤壁二叠纪—三叠纪之交古海洋沉积环境演化. 地球科学—中国地质大学学报, 40(2): 317-326. [Deng B Z,Yu L X,Wang Y B,Li G S,Meng Y F. 2015. Evolution of marine conditions and sedimentation during the Permian-Triassic transition in Chibi of Hubei Province. Earth Science: Journal of China University of Geosciences, 40(2): 317-326] [4] 何志威,杨瑞东,高军波,程伟,刘帅,张峰玮. 2014. 贵州松桃道坨锰矿含锰岩系地球化学特征和沉积环境分析. 地质论评, 60(5): 1061-1075. [He Z W,Yang R D,Gao J B,Cheng W,Liu S,Zhang F W. 2014. The geochemical characteristics and sedimentary environment of Manganese-bearing rock series of Daotuo Manganese deposit,Songtao county of Guizhou Province. Geological Review, 60(5): 1061-1075] [5] 黄云飞. 2014. 二叠纪—三叠纪之交双壳类的灭绝与复苏. 中国地质大学(武汉)博士论文: 53-54,59-63. [Huang Y F. 2014. Extinction and recovery of bivalves during the Permian-Triassic Transition. Doctor Dissertation of China University of Geosciences(Wuhan),53-54,59-63] [6] 孟楚洁,胡文瑄,贾东,王琳. 2017. 宁镇地区上奥陶统五峰组—下志留统高家边组底部黑色岩系地球化学特征与沉积环境分析. 地学前缘,24(6):300-311. [Meng C J,Hu W X,Jia D,Wang L. 2017. The analysis of geochemistry features and sedimentary environment in Upper Ordovician Wufeng Formation-Lower Silurian Gaojiabian Formation in Nanjing-Zhenjiang area. Earth Science Frontiers,24(6):300-311] [7] 钱利军,陈洪德,林良彪,徐胜林,欧莉华. 2012. 四川盆地西缘地区中侏罗统沙溪庙组地球化学特征及其环境意义. 沉积学报, 30(6): 1061-1071. [Qian L J,Chen H D,Lin L B,Xu S L,Ou L H. 2012. Geochemical characteristics and environmental Implications of Middle Jurassic Shaximiao Formation,western margin of Sichuan Basin. Acta Sedimentologica Sinica, 30(6): 1061-1071] [8] 沈立建,刘成林,王立成. 2015. 云南兰坪盆地云龙组上段稀土、微量元素地球化学特征及其环境意义. 地质学报, 89(11): 2036-2045. [Shen L J,Liu C L,Wang L C. 2015. Geochemical characteristics of rare earths and trace elements of the Upper Yunlong Formation in Lanping Basin,Yuannan and its environments significance. Acta Geologica Sinica, 89(11): 2036-2045] [9] 汤冬杰,史晓颖,赵相宽,王新强,宋高源. 2015. Mo-U共变作为古沉积环境氧化还原条件分析的重要指标: 进展、问题与展望. 现代地质,29(1): 1-13. [Tang D J,Shi X Y,Zhao X K,Wang X Q,Song G Y. 2015. Mo-U Covariation as an important proxy for sedimentary environment redox conditions: Progress,problems and prospects. Geoscience,29(1): 1-13] [10] 童金南. 1997. 黔中—黔南中三叠世环境地层学. 武汉: 中国地质大学出版社,30-36. [Tong J N. 1997. The Middle Triassic Environstratigraphy of Central-South Guizhou,SW China. Wuhan: China University of Geosciences Press,30-36] [11] 王中刚,余学元,赵振华. 1989. 稀土元素地球化学. 北京: 科学出版社,247-276. [Wang Z G,Yu X Y,Zhao Z H. 1989. Rare Earth Element Geochemistry. Beijing: Science Press,247-276] [12] 韦恒叶. 2012. 古海洋生产力与氧化还原指标: 元素地球化学综述. 沉积与特提斯地质, 32(2): 76-88. [Wei H Y. 2012. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry. Sedimentary Geology and Tethyan Geology, 32(2): 76-88] [13] 张海全,王正和,王鹤,刘伟. 2016. 黔南地区早石炭世黑色岩系稀土元素地球化学特征及沉积-构造环境分析. 沉积与特提斯地质, 36(3): 30-36. [Zhang H Q,Wang Z H,Wang H,Liu W. 2016. REE geochemistry and sedimentary-tectonic setting of the Early Carboniferous black rock series in southern Guizhou. Sedimentary Geology and Tethyan Geology, 36(3): 30-36] [14] 赵来时,吴元保,胡兆初,周炼,刘勇胜,史玉芳,张素新,童金南,袁鹏. 2009. 牙形石微量元素对生物灭绝事件的响应: 以二叠—三叠系全球层型剖面第一幕灭绝事件为例. 地球科学—中国地质大学学报, 34(5): 725-732. [Zhao L S,Wu Y B,Hu Z C,Zhou L,Liu Y S,Shi Y F,Zhang S X, Tong J N,Yuan P. 2009. Trace element compositions in conodont phosphates responses to biotic extinction event: A case study for main act of global boundary stratotype section and point of the Permian-Triassic. Earth Science: Journal of China University of Geosciences, 34(5): 725-732] [15] 赵小明,牛志军,童金南,姚华舟. 2010. 早三叠世生物复苏期的特殊沉积: “错时相”沉积. 沉积学报, 28(2): 314-323. [Zhao X M,Niu Z J,Tong J N,Yao H Z. 2010. The distinctive sediments in the early triassic recovery time: “anachronistic facies”. Acta Sedimentologica Sinica, 28(2): 314-323] [16] Algeo T J. 2010. Anomalous Early Triassic sediment fluxes due to elevated weathering rates. Journal of Earth Science, 21(1): 107-110. [17] Algeo T J,Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268(3-4): 211-225. [18] Algeo T J,Morford J,Cruse A. 2012. Reprint of new applications of trace metals as proxies in marine paleoenvironments. Chemical Geology, 324-325(2): 1-5. [19] Collin P Y,Kershaw S,Tribovillard N,Forel M B,Crasquin S. 2015. Geochemistry of post-extinction microbialites as a powerful tool to assess the oxygenation of shallow marine water in the immediate aftermath of the end-Permian mass extinction. International Journal of Earth Sciences, 104(4): 1025-1037. [20] Elderfield H,Greaves M J. 1982. The rare earth elements in seawater. Nature, 296: 214-219. [21] Emerson S R,Huested S S. 1991. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry, 34(3-4): 177-196. [22] Francois R. 1988. A study on the regulation of the concentrations of some trace metals(Rb,Sr,Zn,Pb,Cu,V,Cr,Ni,Mn and Mo)in Saanich Inlet Sediments,British Columbia,Canada. Marine Geology, 83(1): 285-308. [23] Hatch J R,Leventhal J S. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian(Missourian)Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,USA. Chemical Geology, 99(1-3): 65-82. [24] He W H,Feng Q L,Weldon E A,Gu S Z,Meng Y Y,Zhang F,Wu S B. 2007. A late Permian to early Triassic bivavle fauna from the Dongpan section,southern Guangxi,south China. Journal of Paleontology, 81(5): 1009-1019. [25] Ichikawa K. 1958. Zur Taxonomie und Phylogenie der triadischen 《Pteriidae》(Lamellibranch.). Mit besonderer Berücksichtigung der Gattungen Claraia,Eumorphotis,Oxytoma und Monotis. Palaeontographica Abteilung A, 111(5-6): 131-212. [26] Jones B,Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111: 111-129. [27] Kimura H,Watanabe Y. 2001. Ocean anoxia at the Precambrian-Cambrian boundary. Geology, 29(11): 995-998. [28] Lau K V,Maher K,Altiner D,Kelley B M,Kump L R,Lehrmann D J,Silva-Tamayo Juan Carlos,Weaver K L,Yu Meiyi,Payne J L. 2016. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Proceedings of the National Academy of Sciences, 113(9): 2360-2365. [29] Morford J L,Russell A D,Emerson S. 2001. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment,Saanich Inlet,B C. Marine Geology, 174(1): 355-369. [30] Nakazawa K. 1977. On claraia of Kashmir and Iran. Journal of the Palaeontological Society of India, 20: 191-204. [31] Nieisen J K,Shen Y. 2004. Evidence for sulfidic deep water during the Late Permian in the East Greenland Basin. Geology, 32(32): 1037-1040. [32] Payne J L,Meyer K M,Yu M,Jost A B,Kelley B M. 2011. δ 13 C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth & Planetary Science Letters, 302(3): 378-384. [33] Pietsch C,Mata S A,Bottjer D J. 2014. High temperature and low oxygen perturbations drive contrasting benthic recovery dynamics following the end-Permian mass extinction. Palaeogeography,Palaeoclimatology,Palaeoecology, 399(2): 98-113. [34] Piper D Z,Calvert S E. 2009. A marine biogeochemical perspective on black shale deposition. Earth-Science Reviews, 95(1-2): 63-96. [35] Schatz W. 2005. Palaeoecology of the Triassic black shale bivalve Daonella: New insights into an old controversy. Palaeogeography,Palaeoclimatology,Palaeoecology, 216(3-4): 189-201. [36] Shen J,Algeo T J,Feng Q L,Zhou L,Feng L P,Zhang N,Huang J H. 2013. Volcanically induced environmental change at the Permian-Triassic boundary(Xiakou,Hubei Province,South China): Related to West Siberian coal-field methane releases. Journal of Asian Earth Sciences, 75(8): 95-109. [37] Song H,Wignall P B,Tong J,Bond D P G,Song H,Lai X,Zhang K,Wang H,Chen Y. 2012. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery. Earth & Planetary Science Letters, 353-354: 12-21. [38] Sun Y,Joachimski M M,Wignall P B,Yan C B,Chen Y L,Jiang H S,Wang L N,Lai X L. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338: 366-370. [39] Taylor S R,Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution,An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford:U K. Blackwell Scientific Publications,20-30. [40] Tribovillard N,Algeo T J,Lyons T,Riboullea A. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1-2): 12-32. [41] Tribovillard N,Algeo T J,Baudin F,Riboullea A. 2012. Analysis of marine environmental conditions based onmolybdenum-uranium covariation: Applications to Mesozoic paleoceanography. Chemical Geology, 324-325: 46-58. [42] Wignall P B. 1993. Distinguishing between oxygen and substrate control in fossil benthic assemblages. Journal of the Geological Society, 150(1): 193-196. [43] Wignall P B. 1994. Black Shales. Oxford: Clarendon Press,127-128. [44] Wignall P B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53(1-2): 1-33. [45] Wignall P B,Hallam A. 1992. Anoxia as a cause of the Permian/Triassic mass extinction: Facies evidence from northern Italy and the western United States. Palaeogeography,Palaeoclimatology,Palaeoecology, 93(1-2): 21-46. [46] Yao C Y,Ma D S,Ding H F,Zhang X Y,Huang H. 2014. Trace elements and stable isotopic geochemistry of an Early Cambrian chert-phosphorite unit from the lower Yurtus Formation of the Sugetbrak section in the Tarim Basin. Acta Geologica Sinica(English Edition), 88(5): 1801-1840. [47] Yin H F. 1983. Bivalves near the Permian-Triassic Boundary in South China. Journal of Paleontology, 59(3): 572-600. [48] Yin H F,Yang F Q,Yu J X,Peng Y Q,Wang S Y,Zhang S X. 2007. An accurately delineated Permian-Triassic Boundary in continental successions. Science in China Series D: Earth Sciences, 50(9): 1281-1292.