High-frequency alternations and driving mechanisms of clastic-carbonate successions in the Upper Carboniferous, northern Qaidam Basin
Wei Xiao-Jie1, Ma Yin-Sheng1, Li Zong-Xing1, Qi Ke-Ning2, Guo Ying-Chun1, Peng Bo1, Hu Jun-Jie1, Liu Kui3
1 Institute of Geomechanics,Chinese Academy of Geological Sciences,Beijing 100081; 2 College of Geosciences, China University of Petroleum(Beijing),Beijing 102249; 3 Nanhai Institute of Oceanography,Chinese Academy of Sciences,Guangzhou 510301,Guangdong;
Abstract Clastic and carbonate rocks are produced from “exogenous,muddy water” and “endogenous,clean water” environment,respectively. The frequent alternations of clastic and carbonate facies reflect the repeated,major changes in multiple environmental factors,such as the nature of palaeowater,sediment supply and palaeoclimate. During the Late Carboniferous,the northern Qaidam Basin is tectonically inactive,and thus providing conditions for development of extremely thick mixed clastic-carbonate deposits,which consist of multistage cycles,recording “icehouse”information such as the glacier activities and their influence to the palaeo-sea level fluctuations as well as the frequent palaeoclimate and palaeoenvironment changes. The continuous outcrop and core section from the northern Qaidam Basin are taken as the research object. In association with regional geological data and previous research results,we identify the clastic incised-valley fills and carbonate platform deposits,which are frequently alternated and constituted the mixed strata,in the target interval of the study area. The orderly superposition of the clastic-carbonate sequence succession in the vertical direction constitutes a complex sea-level change cycle sequence. The vertical change from the deformed carbonate platform to the lower river-dominated incised valley and then to the upper estuary bay-fill sequence towards flooding mudstone,into the carbonate platform from seaward to landword,suggesting a complex sea-level change cycles,which are expressed as the early regression initially—the gradual transgression in the middle period—the returned regression in the later stage. The obviously cold climate weather during the glacier period and the intensive glacioeustatic change,with high-amplitude sea-level rise and fall,have driven the migration of the shorelines and facies belts,and have contributed to the clastic-carbonate successions by affecting the supply rate of the clastic rocks and the productivity of the carbonate rocks,leading to the frequent conversion of clastic and carbonate strata.
Fund:Co-funded by the Young Scientists Foundation of National Natural Science Foundation of China(Nos. 41702124,41602125), the National Natural Science Foundation of China(No.41772272),and the China Postdoctoral Science Fund(No.2017M620854)
Corresponding Authors:
Ma Yin-Sheng,born in 1962, professor, is engaged in researches of structure geology and petroleum geology. E-mail: mayinsheng@sohu.com.
Cite this article:
Wei Xiao-Jie,Ma Yin-Sheng,Li Zong-Xing et al. High-frequency alternations and driving mechanisms of clastic-carbonate successions in the Upper Carboniferous, northern Qaidam Basin[J]. JOPC, 2018, 20(3): 409-422.
Wei Xiao-Jie,Ma Yin-Sheng,Li Zong-Xing et al. High-frequency alternations and driving mechanisms of clastic-carbonate successions in the Upper Carboniferous, northern Qaidam Basin[J]. JOPC, 2018, 20(3): 409-422.
[1] 陈洪德,钟怡江,许效松,陈安清,吴朝盛,郑浩夫. 2014. 中国西部三大盆地海相碳酸盐岩台地边缘类型及特征. 岩石学报, 30(3): 609-621. [Chen H D,Zhong Y J,Xu X S,Chen A Q,Wu C S,Zheng H F.2014. Types and characteristics of carbonate platform margins of marine carbonate rock in three major basins in western China. Acta Petrologica Sinica, 30(3): 609-621] [2] 陈世悦,毕明威,孙娇鹏,张跃,庄毓凯,刘金,汪峰,马帅. 2016. 柴北缘上古生界混合沉积特征及控制因素. 地质通报, 35(2-3): 282-292. [Chen S Y,Bi M W,Sun J P,Zhang Y,Zhuang Y K,Liu J,Wang F,Ma S.2016. Mixed sedimentary characteristics and controlling factors of Upper Paleozoic Group in northern Qaidam Basin. Geological Bulletin of China, 35(2-3): 282-292] [3] 顾家裕,马锋,季丽丹. 2009. 碳酸盐岩台地类型、特征及主控因素. 古地理学报, 11(1): 21-27. [Gu J Y,Ma F,Ji L D.2009. Types, characteristics and main controlling factors of carbonate platform. Journal of Palaeogeography(Chinese Edition), 11(1): 21-27] [4] 郭福生. 2004. 浙江江山藕塘底组陆源碎屑与碳酸盐混合沉积特征及其构造意义. 沉积学报, 22(1): 136-141. [Guo F S.2004. Characteristics and tectonic significance of mixing sediments of siliciclastics and carbonate of Outangdi Formation in Jiangshan,Zhejiang Province. Acta Sedimentologica Sinica, 22(1): 136-141] [5] 李祥辉. 2008. 层序地层中的混合沉积作用及其控制因素. 高校地质学报, 14(3): 395-404. [Li X H.2008. Mixing of siliciclastic-carbonate sediments within systems tracts of depositional sequences and its controlling factors. Geological Journal of China Universities, 14(3): 395-404] [6] 李祥辉,刘文均,郑荣才. 1997. 龙门山地区泥盆纪碳酸盐与硅质碎屑的混积相与混积机理. 岩相古地理, 17(2): 1-10. [Li X H,Liu W J,Zheng R C.1997. Hybrid facies and mechanism for the formation of the mixed Devonian carbonate-siliciclastic sediments in the Longmen Mountain area,Sichuan. Lithofacies Paleogeography, 17(2): 1-10] [7] 牛永斌,钟建华,段宏亮,尹成明,王培俊. 2010. 柴达木盆地石炭系沉积相及其与烃源岩的关系. 沉积学报, 28(1): 140-149. [Niu Y B,Zhong J H,Duan H L,Yin C M,Wang P J.2010. Relationship between Carboniferous sedimentary facies and source rock in Qaidam Basin. Acta Sedimentologica Sinica, 28(1): 140-149] [8] 沙庆安. 2001. 混合沉积和混积岩的讨论. 古地理学报, 3(3): 63-66. [Sha Q A.2001. Discussion on mixing deposit and hunji rock. Journal of Palaeogeography(Chinese Edition), 3(3): 63-66] [9] 孙娇鹏,陈世悦,胡忠亚,刘文平,郭晨,马帅. 2014. 柴东北缘古生代碎屑岩—碳酸盐岩混积相发育特征及组合模式研究. 天然气地球科学, 25(10): 1586-1593. [Sun J P,Chen S Y,Hu Z Y,Liu W P,Guo C,Ma S.2014. Research on the mixed model and developmental characterstics of the clastic-carbonate diamictite facies in the northern Qaidam. Natural Gas Geoscience, 25(10): 1586-1593] [10] 王训练,高金汉,张海军,刘旭东,杨平,马志强. 2002. 柴达木盆地北缘石炭系顶、底界线再认识. 地学前缘, 9(3): 65-72. [Wang X L,Gao J H,Zhang H J,Liu X D,Yang P,Ma Z Q.2002. Recognition of the top and base boundaries of the Carboniferous System in the northern margin of the Qaidam Basin. Earth Science Frontiers, 9(3): 65-72] [11] 阎存凤,赵应成,袁剑英,魏秋铁,郑云涛,吴良宇. 2005. 西北地区石炭—二叠纪古气候特征. 天然气工业,25(增刊B): 27-31. [Yan C F,Zhao Y C,Yuan J Y,Wei Q T,Zheng Y T,Wu L Y.2005. Paleoclimatic features of Carboniferous-Permian in northwest China. Natural Gas Industry,25(Supplementary Issue B): 27-31] [12] 杨超,陈清华,王冠民,庞小军,马婷婷. 2010. 柴达木地区晚古生代沉积构造演化. 中国石油大学学报(自然科学版), 34(5): 38-49. [Yang C,Chen Q H,Wang G M,Pang X J,Ma T T.2010. Sedimentary and tectonic evolution of Qaidam areas in Late Paleozoic. Journal of China University of Petroleum(Natural Edition), 34(5): 38-49] [13] 杨惠心,禹惠民,李鹏武. 1992. 柴达木地块古地磁研究及其演化. 长春地质学院学报, 22(4): 420-426. [Yang H X,Yu H M,Li P W.1992. Palaeomagnetic study of Qaidam Plate and its evolution. Journal of Changchun University of Earth Sciences, 22(4): 420-426] [14] 杨平,胡勇. 2006. 柴达木盆地石炭纪古生态与沉积环境. 新疆石油地质, 27(3): 280-284. [Yang P,Hu Y.2006. Paleoecology and sedimentary environment of Carboniferous in Qaidam Basin. Xinjiang Petroleum Geology, 27(3): 280-284] [15] 张锦泉,叶红专. 1989. 论碳酸盐与陆源碎屑的混合沉积. 成都地质学院学报,(2): 87-92. [Zhang J Q,Ye H Z.1989. A study on carbonate and siliciclastic mixed sediments. Journal of Chengdu College of Geology,(2): 87-92] [16] 张同钢,储雪蕾,向赞,刘玉魁. 2003. 塔里木盆地罗布泊地区石炭系混合沉积层序. 新疆石油地质, 24(3): 199-201. [Zhang T G,Chu X L,Xiang Z,Liu Y K.2003. The mixed sedimentary sequences of Carboniferous in Luobubo area of Tarim Basin. Xinjiang Petroleum Geology, 24(3): 199-201] [17] 张雄华. 2003. 雪峰古陆边缘上石炭统陆源碎屑和碳酸盐混合沉积. 地层学杂志, 27(1): 54-58. [Zhang X H.2003. The Upper Carboniferous mixed siliciclastic and carbonate sediments on the margin of the Xuefeng Ancient Land. Journal of Stratigraphy, 27(1): 54-58] [18] 赵灿,李旭兵,郇金来,于玉帅. 2013碳酸盐与硅质碎屑的混合沉积机理和控制因素探讨. 地质论评, 59(4): 615-626. [Zhao C,Li X B,Huan J L,Yu Y S.2013. Mechanism of mixied siliciclastic-carbonate sediments and its controlling factors. Geological Review, 59(4): 615-626] [19] 朱如凯,许怀先,邓胜徽,郭宏莉. 2007. 中国北方地区石炭纪岩相古地理. 古地理学报, 9(1): 13-24. [Zhu R K,Xu H X,Deng S W,Guo H L.2007. Lithofacies palaeogeography of the Carboniferous in northern China. Journal of Palaeogeography(Chinese Edition), 9(1): 13-24] [20] Boyd R,Dalrymple R W,Zaitlin B A.2006. Estuary and incised valley facies models. In: Posamentier H W,Walker R G(eds). Facies Models Revisited. SEPM Special Publication 84: 171-234. [21] Coffey B P,Fred R J.2004. Mixed carbonate-siliciclastic sequence stratigraphy of a Paleogene transition zone continental shelf,southeastern USA. Sedimentary Geology, 166(1): 21-57. [22] Dalrymple R W,Choi K.2007. Morphologic and facies trends through the fluvial marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews, 81(3-4): 135-174. [23] Haq B U,Schutter S R.2008. A chronology of Paleozoic sea-level changes. Science, 322: 64-68. [24] Isbell J L,Lenaker P A,Askin R A,Miller M F,Babcock L E.2003. Reevaluation of the timing and extent of late Paleozoic glaciation in Gondwana: Role of the Transantarctic Mountains. Geology, 31(11): 977-980. [25] Longhitano S G,Mellere D,Steel R J,Ainsworth B.2012. Tidal depositional systems in the rock record: A review and new insights. In: Longhitano S G,Mellere D,Ainsworth B(eds). Modern and Ancient Tidal Depositional Systems: Perspectives,Models and Signatures.Sedimentary Geology Specical Issue, 279: 2-22. [26] Mount J F.1984. Mixing of siliciclastic and carbonate sediments in shallow shelf environments. Geology, 12(7): 432-435. [27] Plink-Björklund P.2005. Stacked fluvial and estuarine deposits in high-frequency(4th-order)sequences of the Eocene Central Basin,Spitsbergen. Sedimentology, 52: 391-428. [28] Rankey E C.1997. Relations between relative changes in sea level and climate shifts: Pennsylvanian-Permian mixed carbonate-siliciclastic strata,western United States. GSA Bulletin, 109(9): 1089-1100. [29] Rygel M C,Fielding C R,Frank T D,Birgenheier L P.2008. The magnitude of Late Paleozoic glacioeustatic fluctuations: A synthesis. Journal of Sedimentary Research, 78(8): 500-511. [30] Seyedmehdi Z,George A D,Tucker M E.2016. Sequence development of a latest Devonian-Tournaisian distally-steepened mixed carbonate-siliciclastic ramp,Canning Basin,Australia. Sedimentary Geology, 333: 164-183. [31] Shen W,Shao L,Tian W,Sun B,Chen G,Chen F,Tian Y,Lu J.2018. Sequence stratigraphy,palaeogeography,and coal accumulation in a gently sloping paralic basin: A case study from the Carboniferous-Early Permian Wuwei Basin,northwestern China. Geological Journal,1-27. DOI: 10.1002/gj.3123. [32] Tucker M E.2003. Mixed clastic-carbonate cycles and sequences: Quaternary of Egypt and carboniferous of England. Geologia Croatica, 56(1): 19-37. [33] Wei X,Steel R J,Ravnås R,Jiang Z,Olariu C,Li Z.2016. Variability of tidal signals in the Brent Delta Front: New observations on the Rannoch Formation,northern North Sea. Sedimentary Geology, 335: 166-179. [34] Wei X,Steel R J,Ravnås R,Jiang Z,Olariu C,Ma Y.2018. Anatomy of anomalously thick sandstone units in the Brent Delta of the northern North Sea. Sedimentary Geology, 367: 114-134.