Abstract The source-to-sink(S2S)system can be partitioned into the sediment source,the transition zone,and the sediment sink according to the significance of erosion,transportation or sedimentation in each zone. In terms of the time scale of the research,the S2S systems can be classified into modern systems,Quaternary systems,and deep-time systems. Based on spatial configuration of geomorphological units,the S2S systems can be subdivided into three end-member types,“steep-short-deep”,“wide-deep”,and “wide-shallow”,each of which has differences in sediment volume partition and preservation of sedimentary signals. The complete palaeogeography reconstruction in a S2S system includes reconstruction of the sink palaeogeography and the source palaeogeography. Methods for the sink palaeogeography reconstruction in deep-time scale are approaching their perfection with the development of lithofacies palaeogeography,tectono-palaeogeography,biological palaeogeography and sequence stratigraphy,while the understanding of the source palaeogeography remains challenged,especially when the sediments in the source areas are no longer preserved due to either later tectonic destruction or no deposition. In the S2S approach system,palaeogeography parameters like drainage patterns,areas,and relief in the source area can be acquired through analysis of tectonic elements,analysis of detrital minerals,sediment-volume backfilling,geomorphological scaling relationships,palaeohydraulic scaling relationships,and river sediment flux model. In conclusion,palaeogeography reconstruction of source-to-sink systems in deep-time can reveal the evolution of source palaeogeography from the sedimentary record in the sink,provide the information of sediment supply for basin fill processes,and is of great significance for the prospecting of energy resources and the understanding of palaeoenvironmental evolution in deep-time.
Fund:Co-funded by the National Natural Science Foundation of China(No.41572090)and National Science and Technology Major Project(No.2017ZX05009-002)
About author: Shao Long-Yi,born in 1964,is a professor of geology at China University of Mining and Technology,Beijing(CUMTB). He obtained his Ph.D. degree from Beijing Graduate School of CUMTB in 1989. He is currently leading an active group working on sedimentology and sequence stratigraphy of coal and oil basins in China. E-mail: shaol@cumtb.edu.cn.
Cite this article:
Shao Long-Yi,Wang Xue-Tian,Li Ya-Nan et al. Review on palaeogeographic reconstruction of deep-time source-to-sink systems[J]. JOPC, 2019, 21(1): 67-81.
Shao Long-Yi,Wang Xue-Tian,Li Ya-Nan et al. Review on palaeogeographic reconstruction of deep-time source-to-sink systems[J]. JOPC, 2019, 21(1): 67-81.
1 操应长,徐琦松,王健. 2018. 沉积盆地“源-汇”系统研究进展. 地学前缘, 25(4): 116-131. [Cao Y C,Xu Q S,Wang J.2018. Progress in “Source-to-Sink”system research. Earth Science Frontiers, 25(4): 116-131] 2 窦国仁. 1999. 再论泥沙起动流速. 泥沙研究,24(6): 1-9. [Dou G R.1999. Incipient motion of coarse and fine sediment. Journal of sediment research,24(6): 1-9] 3 冯有良,徐秀生. 2006. 同沉积构造坡折带对岩性油气藏富集带的控制作用: 以渤海湾盆地古近系为例. 石油勘探与开发, 33(1): 22-25. [Feng Y L,Xu X S.2006. Syndepositional structural slope-break zone controls on lithologic reservoirs: A case from Paleogene Bohai Bay basin. Petroleum Exploration and Development, 33(1): 22-25] 4 冯增昭. 2004. 单因素分析多因素综合作图法: 定量岩相古地理重建. 古地理学报,6(1): 3-19. [Feng Z Z.2004. Single factor analysis and multifactor comprehensive mapping method: Reconstruction of quantitative lithofacies palaeogeography. Journal of Palaeogeography (Chinese Edition),6(1): 3-19] 5 李忠,彭守涛. 2013. 天山南北麓中—新生界碎屑锆石U-Pb年代学记录、物源体系分析与陆内盆山演化. 岩石学报, 29(3): 739-755. [Li Z,Peng S T.2013. U-Pb geochronological records and provenance system analysis of the Mesozoic-Cenozoic sandstone detrital zircons in the northern and southern piedmonts of Tianshan,Northwest China: Responses to intracontinental basinrange evolution. Acta Petrologica Sinica, 29(3): 739-755] 6 林畅松,夏庆龙,施和生,周心怀. 2015. 地貌演化、源-汇过程与盆地分析. 地学前缘, 22(1): 9-20. [Ling C S,Xia Q L,Shi H S,Zhou X H.2015. Geomorphological evolution,source to sink system and basin analysis. Earth Science Frontier, 22(1): 9-20] 7 刘强虎,朱筱敏,李顺利,李慧勇,石文龙. 2016. 沙垒田凸起前古近系基岩分布及源-汇过程. 地球科学, 41(11): 1935-1949. [Liu Q H,Zhu X M,Li S L,Li H Y,Shi W L.2016. Pre-palaeogene bedrock distribution and source-to-sink system analysis in the Shaleitian Uplift. Earth Science, 41(11): 1935-1949] 8 孙枢,王成善. 2009. “深时”(Deep Time)研究与沉积学. 沉积学报, 27(5): 792-810. [Sun S,Wang C S.2009. Deep time and sedimentology. Acta Sedmentologica Sinica, 27(5): 792-810] 9 王鸿祯. 1985. 中国古地理图集. 北京: 地图出版社. [Wang H Z.1985. Atlas of the Paleogeography of China. Beijing: Cartographic Publishing House] 10 鲜本忠,王震,马立驰,晁储志,蒲强,景安语,王俊辉. 2017. 沉积区—剥蚀区古地貌一体化恢复及古水系研究: 以渤海湾盆地辽东东地区馆陶组为例. 地球科学, 42(11): 1922-1935. [Xian B Z,Wang Z,Ma L C,Chao C Z,Pu Q,Jing A Y,Wang J H.Palaeo-drainage system and integrated paleo-geomorphology restoration in depositional and erosional area,Bohai Bay basin,China. Earth Science, 42(11): 1922-1935] 11 解习农,林畅松,李忠,任建业,姜涛,姜在兴,雷超. 2017. 中国盆地动力学研究现状及展望. 沉积学报, 35(5): 877-887. [Xie X N,Lin C S,Li Z,Ren J Y,Jiang T,Jiang Z X,Lei C.2017. Research reviews and prospects of sedimentary basin geodynamics in China. Acta Sedimentologica Sinica, 35(5): 877-887] 12 徐长贵. 2013. 陆相断陷盆地源-汇时空耦合控砂原理: 基本思想、概念体系及控砂模式. 中国海上油气, 25(4): 1-11. [Xu C G.2013. Controlling sand principle of source-sink coupling in time and space in continental rift basins: Basic idea,conceptual systems and controlling sand models. China Offshore Oil and Gas, 25(4): 1-11] 13 徐长贵,杜晓峰,徐伟,赵梦. 2017a. 沉积盆地“源-汇”系统研究新进展. 石油与天然气地质, 38(1): 1-11. [Xu C G,Du X F,Xu W,Zhao M.2017a. New advances of the “Source-to-Sink”system research in sedimentary basin. Oil & Gas Geology, 38(1): 1-11] 14 徐长贵,加东辉,宛良伟. 2017b. 渤海走滑断裂对古近系源-汇体系的控制作用. 地球科学, 42(11): 1871-1882. [Xu C G,Jia D H,Wan L W.2017b. Control of the strike-slip fault to the Source-to-Sink system of the Paleogene in Bohai Sea Area. Earth Science, 42(11): 1871-1882] 15 朱红涛,杨香华,周心怀,李建平,王德英,李敏. 2013. 基于地震资料的陆相湖盆物源通道特征分析: 以渤中凹陷西斜坡东营组为例. 地球科学, 38(1): 121-129. [Zhu H T,Yang X H,Zhou X H,Li J P,Wang D Y,Li M.2013. Sediment transport pathway characteristics of continental lacustrine basins based on 3D seismic data: An example from Dongying Formation of Western Slope of Bozhong Sag. Earth Science, 38(1): 121-129] 16 朱红涛,徐长贵,朱筱敏,曾洪流,姜在兴,刘可禹. 2017. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851-1870. [Zhu H T,Xu C G,Zhu X M,Zeng H L,Jiang Z X,Liu K Y.2017. Advance of the source-to-sink units and coupling model research in continental basin. Earth Science, 42(11): 1851-1870] 17 祝彦贺,朱伟林,徐强,吴景富. 2011. 珠江口盆地13.8 Ma陆架边缘三角洲与陆坡深水扇的“源-汇”关系. 中南大学学报(自然科学版), 42(12): 3827-3834. [Zhu Y H,Zhu W L,Xu Q,Wu J F.2011. Sedimentary response to shelf-edge delta and slope deep-water fan in 13.8 Ma of Miocene epoch in Pearl River Mouth Basin. Journal of Central South University(Science and Technology), 42(12): 3827-3834] 18 Allen P A.2008. From landscapes into geological history. Nature, 451: 274-276. 19 Allen P A,Armitage J J,Carter A,Duller R A,Michael N A,Sinclair H D,Whitchurch A L,Whittaker A C.2013. The Qs problem: Sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60: 102-130. 20 Bernet M,Spiegel C(eds). 2004. Detrital Thermochronology: Provenance Analysis,Exhumation,and Landscape Evolution of Mountain Belts. Geological Society of America,Special Paper 378: 126. 21 Bhattacharya J P,Copeland P,Lawton T F,Holbrook J.2016. Estimation of source area,river paleo-discharge,paleoslope,and sediment budgets of linked deep-time depositional systems and implications for hydrocarbon potential. Earth-Science Reviews, 153: 77-110. 22 Blum M D,Womack J H.2009. Climate change,sea-level change,and fluvial sediment supply to deepwater depositional systems. In: Kneller B,Martinsen O J,and McCaffrey B(eds).External Controls on Deep Water Depositional Systems: Climate,Sea-Level,and Sediment Flux. SEPM,Special Publication 92: 15-39. 23 Blum M,Martin J,Milliken K,Garvin M.2013. Paleovalley system: Insights from Quaternary analogs and experiments. Earth-Science Reviews, 116: 128-169. 24 Blum M,Pecha M.2014. Mid-Cretaceous to Paleocene North American drainage reorganization from detrital zircons. Geology, 42: 607-610. 25 Bridge J S,Tye R S.2000. Interpreting the dimensions of ancient fluvial channel bars,channels,and channel belts from wireline-logs and cores. American Association of Petroleum Geologists,Bulletin, 84: 1205-1228. 26 Burt T P,Allison R J.2010. Sediment Cascades: An Integrated Approach. New York: John Wiley & Sons, 482. 27 Carvajal C,Steel R.2012. Source-to-sink sediment volumes within a tectono-stratigraphic model for a Laramide shelf-to-deep-water basin: Methods and results. In: Busby C,Azor A(eds).Tectonics of Sedimentary Basins: Recent Advances. Chichester: John Wiley & Sons,131-151. 28 Castelltort S,Wagoner D D J.2003. How plausible are high-frequency sediment supply-driven cycles in the stratigraphic record? Sedimentary Geology, 157: 3-13. 29 Catuneanu O,Abreub V,Bhattacharya J P,Blum M D,Dalrymple R W,Eriksson P G,Fielding C R,Fisher W L,Galloway W E,Gibling M R,Giles K A,Holbrook J M,Jordan R,Kendall C G St C,Macurda B,Martinsen O J,Miall A D,Neal J E,Nummedal D,Pomar L,Posamentier H W,Pratt B R,Sarg J F,Shanley K W,Steel R J,Strasser A,Tucker M E,Winker C.2009. Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92: 1-33. 30 Chen B,Joachimski M M,Shen S Z,Lambert L L,Lai X L,Wang X D,Chen J,Yuan D X.2013. Permian Ice Volume and Palaeoclimate History: Oxygen Isotope Proxies Revisited. Gondwana Research, 24: 77-89. 31 Covault J A,Romans B W,Graham S A,Fildani A,Hilley G E.2011. Terrestrial source to deep-sea sink sediment budgets at high and low sea levels: Insights from tectonically active Southern California. Geology, 39: 619-622. 32 Dadson S,Hovius N,Pegg S,Dade W B,Horng M J,Chen H.2005. Hyperpycnal river flows from an active mountain belt. Journal of Geophysical Research, 110: F4016. 33 Davidson S K,North C P.2009. Geomorphological regional curves for prediction of drainage area and screening modern analogues for rivers in the rock record. Journal of Sedimentary Research, 79: 773-792. 34 Davidson S K,Hartley A J.2010. Towards a quantitative method for estimating paleohydrology from clast size and comparison with modern rivers. Journal of Sedimentary Research, 80: 688-702. 35 Decelles P G,Giles K A.1996. Foreland basin systems. Basin Research, 8: 105-123. 36 Dickinson W R,Valloni R.1980. Plate settings and provenance of sands in modern ocean basin. Geology, 8: 82-86. 37 Dickinson W R,Gehrels G.2010. Insights into North American paleogeography and paleotectonics from U-Pb ages of detrital zircons in Mesozoic strata of the Colorado Plateau,USA. International Journal of Earth Sciences, 99: 1247-1265. 38 Fielding C R,Ashworth P J,Best J L,Prokocki E W,Smith G H S.2012. Tributary,distributary and other fluvial patterns: What really represents the norm in the continental rock record. Sedimentary Geology, 261-262: 15-32. 39 Fillon C,Huismans R S,Wagoner Der Beek P.2013. Syntectonic sedimentation effects on the growth of fold-and-thrust belts. Geology, 41: 83-86. 40 Galloway W E,Whitaker L,Ganey-Curry P.2011. History of Cenozoic North American drainage basin evolution,sediment yield,and accumulation in the Gulf of Mexico Basin. Geosphere, 7: 938-973. 41 Garzanti E.2016. From static to dynamic provenance analysis: Sedimentary petrology upgraded. Sedimentary Geology, 336: 3-13. 42 Gong C L,Steel R J,Wang Y M,Lin C S,Olariu C.2016a. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas. Earth-Science Reviews, 154: 72-101. 43 Gong C L,Steel R J,Wang Y M,Lin C S,Olariu C.2016b. Grain size and transport regime at shelf edge as fundamental controls on delivery of shelf-edge sands to deepwater. Earth-Science Reviews, 157: 32-60. 44 Guillocheau F,Rouby D,Robin C,Helm C,Rolland N,Le Carlier De Veslud C,Braun J.2012. Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: A new method applied to the Namibia-South Africa margin. Basin Research, 24: 3-30. 45 Hack J T.1957. Studies of Longitudinal Stream Profiles in Virginia and Maryland. USGS. Prof. Paper:294-B. 46 Helland-Hansen W,Steel R J,Sømme T O.2012. Shelf genesis revisited. Journal of Sedimentary Research, 82: 133-148. 47 Helland-Hansen W,Sømme T O,Martinsen O J,Lunt I,Thurmond J.2016. Deciphering Earth's natural hourglasses: Perspectives on sourceto-sink analysis. Journal of Sedimentary Research, 86: 1008-1033. 48 Hinderer M.2012. From gullies to mountain belts: A review of sediment budgets at various scales. Sedimentary Geology, 280: 21-59. 49 Holbrook J,Wanas H.2014. A fulcrum approach to assessing source-to-sink mass balance using channel paleohydrologic parameters derivable from common fluvial data sets with an example from the Cretaceous of Egypt. Journal of Sedimentary Research, 84: 349-372. 50 Holdsworth R E,Butler C A,Roberts A M.1997. The recognition of reactivation during continental deformation. Journal of the Geological Society,London, 154: 73-78. 51 Hovius N.1996. Regular spacing of drainage outlets from linear mountain belts. Basin Research, 8: 29-44. 52 Ingersoll R V,Busby C J.1995. Tectonics of Sedimentary Basins. In: Busby C J,Ingersoll R V(eds).Tectonics of Sedimentary Basins. Oxford: Blackwell Science,1-52. 53 Jorry S J,Jégou I,Emmanuel L,Jacinto R S,Savoye B.2011. Turbiditic levee deposition in response to climate changes: The Var Sedimentary Ridge(Ligurian Sea). Marine Geology, 279: 148-161. 54 Korup O.2012. Earth's portfolio of extreme sediment transport events. Earth-Science Reviews, 112: 115-125. 55 Leclair S F,Bridge J S.2001. Quantitative interpretation of sedimentary structures formed by river dunes. Journal of Sedimentary Research, 71: 713-716. 56 Li M,Shao L Y,Lu J,Spiro B,Wen H J,Li Y H,2016. Lacustrine basin evolution and coal accumulation of the Middle Jurassic in the Saishiteng coalfield,northern Qaidam Basin,China. Journal of Palaeogeography, 5(3): 205-220. 57 Liu B Q,Shao L Y. Wang X T,Li Y N,Xu J.2019. Application of channel-belt scaling relationship to Middle Jurassic source-to-sink system in the Saishiteng area of the Northern Qaidam Basin,NW China. Journal of Palaeogeography,in press. 58 Madof A S,Harris A D,Connell S D.2016. Nearshore along-strike variability: Is the concept of the systems tract unhinged? Geology, 44(4): 315-318. 59 MARGINS Office.2003. NSF MARGINS Program Science Plans 2004. New York: Columbia University,131-157. 60 Meade R H.1972. Transport and deposition of sediments in estuaries. In Nelson B C(eds).Framework of Coastal Plain Estuaries. Geological Society of America, Memoir 133: 91-120. 61 Meade R H.1982. Sources,sinks,and storage of river sediment in the Atlantic drainage of the United States. The Journal of Geology, 90: 235-252. 62 Michael N A,Whittaker A C,Allen P A.2013. The functioning of sediment routing systems using a mass balance approach: Example from the Eocene of the Southern Pyrenees. The Journal of Geology, 121: 581-606. 63 Morton A C,Hallsworth C R.1999. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124(1-4): 3-29. 64 Morton A C,Whitham A G,Fanning C M.2005. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral,mineral chemical and zircon age data. Sedimentary Geology, 182: 3-28. 65 Muto T,Steel R J.2002. In defense of shelf-edge delta development during falling and lowstand of relative sea level. Journal of Geology, 110: 421-436. 66 Nance R D,Murphy J B,Santosh M.2014. The supercontinent cycle: A retrospective essay. Gondwana Research, 25: 4-29. 67 Nyberg B,Helland-Hansen W,Gawthorpe R L,Sandbakken P,Eide C H,Sømme T,Hadler-Jacobsen F,Leiknes S.2018. Revisiting morphological relationships of modern source-to-sink segments as a first-order approach to scale ancient sedimentary systems. Sedimentary Geology, 373: 111-133. 68 Posamentier H W.2004. Seismic geomorphology: Imaging elements of depositional systems from shelf to deep basin using 3D seismic data: Implications for exploration and development. In:Davies R J,Cartwright J A,Stewart S A,Lappin M,and Underhill J R(eds).3D Seismic Technology: Application to the Exploration of Sedimentary Basins. Geological Society of London,Memoir 29: 11-24. 69 Romans B W,Graham S A.2013. A deep-time perspective of land-ocean linkages in the sedimentary record. Annual Review of Marine Science, 5: 69-94. 70 Romans B W,Castelltort S,Covault J A,Fildani A,Walsh J P.2016. Environmental signal propagation in sedimentary systems across timescales. Earth-Science Reviews, 153: 7-29. 71 Sadler P M.1981. Sediment accumulation rates and the completeness of stratigraphic sections. The Journal of Geology, 89: 569-584. 72 Sadler P M,Jerolmack D J.2015. Scaling laws for aggradation,denudation and progradation Rates: The case for time-Scale invariance at Sediment Sources and Sinks. Geological Society of London,Special Publication 404(1): 69-88. 73 Schumm S A.1972. Experimental study of channel patterns. Geological Society of America,Bulletin, 83: 1755-1770. 74 Schumm S A.1977. The Fluvial System. New York: Wiley-Interscience, 338. 75 Seton M,Müller R D,Zahirovic S,Gaina C,Torsvik T,Shephard G,Talsma A,Gurnis M,Turner M,Maus S,Chandler M.2012. Global continental and ocean basin reconstructions since 20 Ma. Earth-Science Reviews, 113: 212-270. 76 Snedden J W,Galloway W E,Milliken K T,Xu J,Whiteaker T,Blum M D.2018. Validation of empirical source-to-sink scaling relationships in a continental-scale system: The Gulf of Mexico basin Cenozoic record. Geosphere, 14: 1-17. 77 Soreghan G S,Bralower T J,Chandler M A,Kiehl J,Lyle M,Lyons T W,Maples C G,Montañez I P,Otto-Bliesner B L.2004. GeoSystems: Probing Climate and Linked Systems of Earth's Deep-Time. Report of a workshop sponsored by the National Science Foundation(NSF). 78 Sømme T O,Helland-Hansen W,Granjeon D.2009a. Impact of eustatic amplitude variations on shelf morphology,sediment dispersal,and sequence stratigraphic interpretation: Icehouse versus greenhouse systems. Geology, 37: 587-590. 79 Sømme T O,Helland-Hansen W,Martinsen O,Thurmond J B.2009b. Relationships between morphological and sedimentological parameters in source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems. Basin Research, 21: 361-387. 80 Sømme T O,Jackson C A L.2013. Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway: Part 2,Sediment dispersal and forcing mechanisms. Basin Research, 25: 512-531. 81 Syvitski J P M,Milliman J D.2007. Geology,geography,and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. The Journal of Geology, 115: 1-19. 82 Van Wagoner J C,Mitchum R M,Campion K M,Rahmanian V D.1990. Siliciclastic sequence stratigraphy in well logs,cores,and outcrops: Concepts for high-resolution correlation of time and facies. The American Association of Petroleum Geologists,Methods in Exploration Series 7: 55. 83 Varban B L,Plint A G.2008. Palaeoenvironments,palaeogeography,and physiography of a large,shallow,muddy Ramp: Late Cenomanian-Turonian Kaskapau Formation,Western Canada foreland Basin. Sedimentology, 55: 201-233. 84 Walcott R C,Summerfield M A.2009. Universality and variability in basin outlet spacing: Implications for the two-dimensional form of drainage basins. Basin Research, 21: 147-155. 85 Walford H L,White N J,Sydow J C.2005. Solid sediment load history of the Zambezi Delta. Earth and Planetary Science Letters, 238: 49-63. 86 Walsh J P,Wiberg P L,Aalto R,Nittrouer C A,Kuehl S A.2016. Source-to-sink research: Economy of the Earth's s urface and its strata. Earth-Science Reviews, 153: 1-6. 87 Watts A B.2012. Passive margin models: Regional geology and tectonics. In: Roberts D G,Bally A W(eds). Phanerozoic Rift Systems and Sedimentary Basins,Volume 1B,Chapter 3. Amsterdam: Elsevier,33-58. 88 Weissmann G S,Hartley A J,Nichols G J,Scuderi L A,Olson M,Buehler H,Banteah R.2010. Fluvial form in modern continental sedimentary basins: Distributive fluvial systems. Geology, 38: 39-42. 89 Wetzel A.1993. The transfer of river load to deep-sea fans: A quantitative approach. American Association of Petroleum Geologists,Bulletin, 77: 1679-1692. 90 Whitchurch A L,Carter A,Sinclair H D,Dullerr R A,Whittaker A C,Allen P A.2011. Sediment routing system evolution within a diachronously uplifting orogen: Insights from detrital zircon thermochronological analyses from the South-Central Pyrenees. American Journal of Science, 311: 442-482. 91 Woodcock N H.2004. Life span and fate of basins. Geology, 32: 388-685. 92 Xu J,Snedden J W,Galloway W E,Milliken K T,Blum M D.2017. Channel-belt scaling relationship and application to early Miocene source-to-sink systems in the Gulf of Mexico basin. Geosphere, 13: 1-22. 93 Yuan D X,Shen S Z,Henderson C M,Chen J,Zhang H,Zheng Q F,Wu H C.2019. Integrative timescale for the Lopingian(Late Permian): A review and update from Shangsi,South China. Earth-Science Reviews, 188: 190-209. 94 Zecchin M,Catuneanu O.2013. High-resolution sequence stratigraphy of clastic shelves I: Units and bounding surfaces. Marine and Petroleum Geology, 39: 1-25. 95 Zhong Y T,He B,Mundil R,Xu Y G.2014. CA-TIMS Zircon U-Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province. Lithos, 204: 14-19.