Abstract The ooids in oolitic limestones of the Cambrian Mantou Formation in Yiyang area,western Henan can be divided,based on their mophology, structures and calcite composition, into 4 types,such as irregular radial micritic ooids, micritic envelope bright crystalline epidermis ooids,tangential-radial micritic ooids and regular radial microsparry ooids. They are mainly composed of micritic calcites that can be found in the different positions of ooids. These ooids are obviously different from those in the Zhangxia Formation that consist of sparry calcites. Under the SEM,the micritic calcites in ooids display hexagonal honeycomb texture and flake wall which are considered to be the cell structure of bacteria or cyanobacteria and the result of tangential arrangement of attached tiny grain around them. The mineral of honeycomb texture is mainly composed of calcium carbonate which is considered to be the result of cyanobacteria disintegration. The above features indicate that the micritic calcites in ooids are closely related to microbial activities,which is of great significance to elucidate the oolitic genesis affected by microbes.
Fund:Financially supported by the National Natural Science Foundation of China(No.41872111)
Corresponding Authors:
About the corresponding author Qi Yong-An,born in 1963,professor,is engaged in researches of trace fossils and geobiology. E-mail: qiya@hpu.edu.cn.
About author: About the first author Chen Bai-Bing,born in 1992,is a master candidate. Now he is engaged in research of microbial rock. E-mail: 211382962@qq.com.
Cite this article:
Chen Bai-Bing,Qi Yong-An,Zheng Wei et al. Micritic calcites in ooids and their genetic analysis from the Cambrian Mantou Formation in Yiyang area, western Henan Province[J]. JOPC, 2019, 21(4): 603-612.
Chen Bai-Bing,Qi Yong-An,Zheng Wei et al. Micritic calcites in ooids and their genetic analysis from the Cambrian Mantou Formation in Yiyang area, western Henan Province[J]. JOPC, 2019, 21(4): 603-612.
[1] 狄明信,管守锐,黄醒汉. 1986. 华北地区中寒武世张夏期沉积相及古地理. 华东石油学院学报(自然科学版),(1): 1-14. [Di M X,Guan S R,Huang X H.1986. The sedimentary facies and paleogeography of Middle Cambrian Period Zhang Xia Epoch in North China. Journal of China University of Petroleum(Edition of Natural Science),(1): 1-14] [2] 冯增昭,张荫本. 2013. 碳酸盐岩岩类学. 见: 冯增昭(主编). 中国沉积学(第二版). 北京: 石油工业出版社, 137-195. [Feng Z Z, Zhang Y B.2013. Petrography of carbonate rocks. In: Feng Z Z(ed). Sedimentology of China(2nd Edition). Beijing: Petroleum Industry Press, 137-195] [3] 高计元. 1986. 碳酸盐颗粒成岩变化的实验研究. 沉积学报, 4(4): 119-127. [Gao J Y.1986. Experiment study of diagenetic variation of modern carbonate grains. Acta Sedimentologica Sinica, 4(4): 119-127] [4] 李飞,王夏,薛武强,颜佳新. 2010. 一种新的错时相沉积物: 巨鲕及其环境意义. 沉积学报, 28(3): 585-595. [Li F,Wang X,Xue W Q,Yan J X.2010. Origin and environmental significance of giant ooids in the Early Triassic: A new kind of an achronistic facies. Acta Sedimentologica Sinica, 28(3): 585-595] [5] 李飞,武思琴,刘柯. 2015. 鲕粒原生矿物识别及对海水化学成分变化的指示意义. 沉积学报, 33(3): 500-511. [Li F,Wu S Q,Liu K.2015. Identification of ooid primary mineralogy: A clue for understanding the variation in paleo-oceanic chemistry. Acta Sedimentologica Sinica, 33(3): 500-511] [6] 梅冥相. 2012. 鲕粒成因研究的新进展. 沉积学报, 30(1): 20-32. [Mei M X.2012. New progress in the study of ooids genesis. Acta Sedimentologica Sinica, 30(1): 20-32] [7] 倪胜利. 2017. 北京西郊下苇甸剖面寒武系叠层石中的底栖鲕粒: 基本特征和重要意义. 地质通报, 36(2-3): 485-491. [Ni S L.2017. The benthic oolite within the stromatolitic bioherm of the Cambrian strata at the Xiaweidian section in the western suburb of Beijing: Esential features and important significance. Geological Bulletin of China, 36(2-3): 485-491] [8] 齐永安,杨小伟,代明月. 2014. 豫西登封地区寒武系第三统鲕粒和鲕粒灰岩演化及其意义. 古地理学报, 16(1): 55-64. [Qi Y A,Yang X W,Dai M Y.2014. Evolution of ooids and oolitic limestones and their significance from the Cambrian Series 3 in Dengfeng area,western Henan Province. Journal of Palaeogeography(Chinese Edition), 16(1): 55-64] [9] 韦明龙. 1995. 菌藻对碳酸盐颗粒的泥晶化作用研究: 以滇西保山地区下石炭统研究为例. 沉积学报,13(3): 89-97. [Wei M L.1995. Study on the crystallization of carbonate particles by alga: An example of the Lower Carboniferous study in the Baoshan area of Western Yunnan. Acta Sedimentologica Sinica,13(3): 89-97] [10] 邢延路,冯李强. 2015. 北京西山下苇甸剖面寒武系徐庄组鲕粒研究. 古地理学报, 17(4): 517-528. [Xing Y L,Feng L Q.2015. A study on ooids in limestones of the Cambrian Xuzhuang Formation at Xiaweidian outcrop in Western Hill of Beijing. Journal of Palaeogeography(Chinese Edition), 17(4): 517-528] [11] 余素玉. 1982. 化石碳酸盐岩. 北京: 地质出版社. [Yu S Y.1982. Fossil Carbonate Rock. Beijing: Geological Publishing House] [12] Bathurst R G C.1967. Oolitic films on low energy carbonate sand grains,Bimini Lagoon,Bahamas. Marine Geology, 5(2): 89-109. [13] Brehm U,Krumbein W E,Palinska K A.2006. Biomicrospheres generate ooids in the laboratory. Geomicrobiology Journal, 23(7): 545-550. [14] Duguid S M A,Kyser T K,James N P,Rankey E C.2010. Microbes and ooids. Journal of Sedimentary Research, 80(3): 236-251. [15] Flügel E.2004. Microfacies of Carbonate Rocks. New York: Spring-Verlag,142-173. [16] Friedman G M.1964. Early diagenesis and lithification in carbonate sediments. Journal of Sedimentary Research, 34(4): 777-813. [17] Ferris F G,Beveridge T J,Fyfe W S.1986. Iron-sillica crystallite nucleation by bacteria in a geothermal sediment. Nature, 320: 609-611. [18] Kaz´mierczak J,Altermann W,Kremer B,Kempe S,Eriksson P G.2009. Mass occurrence of benthic coccoid cyanobacteria and their role in the production of Neoarchean carbonates of South Africa. Precambrian Research, 173(1): 79-92. [19] Konhauser K O,Urrutia M M.1999. Bacterial clay authigenesis: A common biogeochemical process. Chemical Geology, 161(4): 399-413. [20] Marshall K C.1968. Interaction between collodial montmorillonite and cells of Rhizobium species with different inogenic surfaces. Biochim Biophys Acta, 156(1): 179-186. [21] Marshall K C.1969. Studies by microelectrophoretic and microscopic techniques of the sorption of illite and montmorillonite to Rhizobia. Journal of General Microbiology, 56(3): 301-306. [22] Pratt B R.2001. Calcification of cyanobacterial filaments: Girvanella and the origin of Lower Paleozoic lime mud. Geology, 29(9): 763. [23] Reeder S L,Rankey E C.2008. Interactions between tidal flows and ooid shoals,northern Bahamas. Journal of Sedimentary Research, 78(3): 175-186. [24] Schultzelam S,Ferris F G,Sherwoodlollar B, Gerits J P.1996. Ultrastructure and seasonal growth patterns of microbial mats in a tem. Revue Canadienne De Microbiologie, 42(2): 147-161. [25] Sorby H C.1879. On the structure and origin of limestone. Quarterly Journal of the Geological Society of London, 35: 56-95. [26] Tucker M E,Wright V P,Dickson J A.1990. Carbonate Sedimentology. Oxford: Blackwell Science Publishing,1-482. [27] Walker S G,Flemming C A,Ferris F G, Beveridge T J.1989. Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Applied & Environmental Microbiology, 55(11): 2976-2984.