A review of cortical structures of carbonate ooids
Song Wen-Tian1, Liu Jian-Bo1,2
1 School of Earth and Space Sciences,Peking University,Beijing 100871,China; 2 Key Laboratory of Orogenic Belts and Crustal Evolution,Ministry of Education(Peking University),Beijing 100871,China
Abstract Carbonate ooids in modern and ancient carbonate sediments have varieties of cortical structures,which have been intensively studied because of its applications in reconstruction of chemical and physical changes of the ancient ocean. Research on cortices of carbonate ooids started in 1879. Since then,the features and origins of primary and secondary cortical structures of modern and ancient ooids have been described in detail and discussed in depth. However,definitions of terms are unclear in the studies on primary cortical structures of modern ooids; the descriptions and classification of primary cortical structures of ancient ooids are also inaccurate and require further determination. This article summarizes previous researches on modern ooids,concludes the types of primary cortical structures and their main features,and points out that the recognition of assemblage types of cortical structures is a key step to the studies on cortical structures. Normal assemblage types of cortical structures include radial,concentric and radial-concentric. Affected by diagenesis,primary cortical structures in ancient ooids may be preserved at different degrees,or totally replaced by secondary structures. Primary cortical structure types preserved in ancient ooids resemble those in modern ooids of which the dominant are radial structure and concentric structure. However,among concentric structures in ancient ooids,the tangential laminae is hard to recognized. Domestic research on ooids has obtained a lot of achievements,some of which however still misrecognized or misused primary cortical structures. On the basis of reference to researches on cortical structures of modern ooids,we take the Lower Ordovician ooids in South China as a case to show how to describe the features of cortical structures of ancient ooids,recognize well-preserved primary cortical structures,and classify the ooids by assemblage types of cortical structures.
Fund:; Financially supported by the National Natural Science Foundation of China(Nos.8200905161,41221001,41290260)
Corresponding Authors:
Liu Jian-Bo,born in 1966,is a professor at Peking University,engaged in geobiology,sedimentology,and stratigraphy. E-mail: jbliu@pku.edu.cn.
About author: Song Wen-Tian,born in 1994,is a master candidate at Peking University,majors in sedimentology. E-mail: wjswt@pku.edu.cn.
Cite this article:
Song Wen-Tian,Liu Jian-Bo. A review of cortical structures of carbonate ooids[J]. JOPC, 2020, 22(1): 147-160.
Song Wen-Tian,Liu Jian-Bo. A review of cortical structures of carbonate ooids[J]. JOPC, 2020, 22(1): 147-160.
[1] 侯恩刚,高金汉,王根厚,王训练,徐涛,乔柏翰. 2014. 西藏改则地区上三叠统日干配错组鲕粒滩相灰岩沉积特征及其环境意义. 现代地质, 28(2): 256-270. [Hou E G,Gao J H,Wang G H,Wang X L,Xu T,Qiao B H.2014. Oolitic limestone sedimentary characteristics and its environmental significance of the Upper Triassic Riganpeicuo Formation,Gaize area,Tibet. Geoscience, 28(2): 256-267] [2] 姬国锋,范鸿,时志强,杜怡星. 2016. 川西北汉旺地区卡尼期鲕粒灰岩特征及地质意义. 成都理工大学学报(自然科学版), 43(1): 68-76. [Ji G F,Fan H,Shi Z Q,Du Y X.2016. Characteristics and geological significance of the Late Triassic Carnian oolitic limestone in Hanwang area,nonthwest Sichuan Basin,China. Journal of Chengdu University of Technology(Science and Technology Edition), 43(1): 68-76] [3] 金瞰昆. 1998. 江苏徐州大北望寒武系鲕粒及鲕粒灰岩特征. 岩相古地理, 18(5): 21-27. [Jin K K.1998. The Cambrian ooides and oolitic limestones in the Dabeiwang section in Xuzhou,Jiangsu. Sedimentary Facies and Palaeogeography, 18(5): 21-27] [4] 金鑫,姬国锋,时志强,王艳艳. 2015. 绵竹汉旺观音崖剖面沉积微相: 卡尼期湿润事件前后的环境演化. 矿物岩石地球化学通报, 34(6): 1173-1182. [Jin X,Ji G F,Shi Z Q,Wang Y Y.2015. The sedimentary microfacies of the Guanyinya section in Hanwang,Mianzhu,Sichuan: Implications for the environment evolution before and after the Triassic Carnian humid event. Bulletin of Mineralogy,Petrology and Geochemistry, 34(6): 1173-1182] [5] 刘伟,张兴亮. 2010. 峡东地区下寒武统天河板组鲕粒灰岩微相分析及沉积环境探讨. 地质调查与研究, 33(1): 49-54. [Liu W,Zhang X L.2010. Analysis on the oolitic limestone microfacies and sedimentary environment of Tianheban Formation,Lower Cambrian in the east part of the Three Gorges Area. Geological Survey and Research, 33(1): 49-54] [6] 柳永清,孟祥化,葛铭. 1999. 华北地台中寒武世鲕滩碳酸盐旋回沉积、古海平面变动控制及旋回年代学研究. 地质科学, 34(4): 442-450. [Liu Y Q,Meng X H,Ge M.1999. The sea-level change forcing cycles of oolitic carbonate and cyclochrological applications. Chinese Journal of Geology, 34(4): 442-450] [7] 齐永安,杨小伟,代明月,李妲,王敏,刑智峰. 2014. 豫西登封地区寒武系第三统鲕粒和鲕粒灰岩演化及其意义. 古地理学报, 16(1): 55-64. [Qi Y A,Yang X W,Dai M Y,Li D,Wang M,Xing Z F.2014. Evolution of ooids and oolitic limestones and their significance from the Cambrian Series 3 in Dengfeng area,western Henan Province. Journal of Paleogeography(Chinese Edition), 16(1): 55-64] [8] 沙庆安,江茂生. 1998. 粒滩相与藻坪相沉积: 鲁西地区中寒武统张夏组剖析. 沉积学报,16(4): 62-70. [Sha Q A,Jiang M S.1998. The deposits of oolitic shoal facies and algal flat facies: Dissect of the Zhangxia Formation of the Middle Cambrian,western Shandong Province. Acta Sedimentologica Sinica, 16(4): 62-70] [9] 孙永超,刘建波,李家腾. 2016. 浅议上扬子区下奥陶统桐梓组. 地层学杂志, 40(4): 411-419. [Sun Y C,Liu J B,Li J T.2016. A brief discussion on the Lower Ordovician Tongtzu Formation in the Yangtze Region,South China. Journal of Stratigraphy, 40(4): 411-419] [10] 王英华,杨承运,张秀莲. 1983. 鲕粒的结构变化与成岩作用性质和强度的关系. 沉积学报, 1(2): 77-87. [Wang Y H,Yang C Y,Zhang X L.1983. Relationship between the changes of ooidal texture and the property and strength of diagenesis. Acta Sedimentologica Sinica, 1(2): 77-87] [11] 韦龙明. 1995. 菌藻对碳酸盐颗粒的泥晶化作用研究: 以滇西保山地区下石炭统研究为例. 沉积学报, 13(3): 89-97. [Wei L M.1995. Study on the micritization of carbonate grains by bacteria and algae: The example of Early Carboniferous in Baoshan,Western Yunnan. Acta Sedimentologica Sinica, 13(3): 89-97] [12] 吴熙纯. 2009. 川西北晚三叠世卡尼期硅质海绵礁—鲕滩组合的沉积相分析. 古地理学报, 11(2): 125-142. [Wu X C.2009. Sedimentary facies analysis of the Late Triassic Carnian siliceous sponge reef-oolite bank complex in northwestern Sichuan Province. Journal of Palaeogeography(Chinese Edition), 11(2): 125-142] [13] 余素玉,何镜宇,杨慕华. 1987. 河北唐山地区中寒武统张夏组鲕粒灰岩的岩石学研究. 地球科学, 12(3): 301-310. [Yu S Y,He J Y,Yang M H.1987. The petrologic study of oolitic limestone of Zhangxia Series of Middle Cambrian in Tangshan,Hebei. Earth Science, 12(3): 301-310] [14] 张秀莲. 1984. 鲕粒在成岩作用中的次生变化及其意义. 大庆石油地质与开发, 3(4): 377-471. [Zhang X L.1984. Secondary variation of oolitic grains and its significance in the study of diagenesis. Petroleum Geology and Oilfield Development in Daqing, 3(4): 377-471] [15] 赵鹏沄,刘波,秦善. 2011. 京津晋冀寒武系第三统鲕粒灰岩特征及其环境意义. 北京大学学报: 自然科学版, 47(5): 825-830. [Zhao P Y,Liu B,Qin S.2011. The Third Series of Cambrian oolitic limestones and their sedimentary environment in Beijing,Tianjin,Shanxi and Hebei Provinces,North China. Acta Scientiarum Naturalium Universitatis Pekinensis, 47(5): 825-830] [16] 赵震,王亚烈,臧广才. 1984. 静水条件下人工合成鲕石及蓟县震旦亚界中的鲕状岩. 见: 沉积学和有机地球化学学术会议论文选集. 北京: 科学出版社,81-86. [Zhao Z,Wang Y L,Zang G C. 1984. The ooides artificially synthesized under the condition of still water,and the Sinian Suberathem oolites,Jixian. In: Proceeding of Symposium on Sedimentology and Organic Geochemistry. Beijing: Science Press,81-86] [17] 周瑶琪,张晗,张振凯. 2017. 海相碳酸盐鲕粒形成过程的模拟实验研究. 中国石油大学学报(自然科学版), 41(3): 23-30. [Zhou Y Q,Zhang H,Zhang Z K.2017. Experiment study of synthesis for marine carbonate ooids genesis. Journal of China University of Petroleum(Science and Technology Edition), 41(3): 23-30] [18] Algeo T J,Watson B A. 1995. Calcite,aragonite,and bimineralic ooids in the Missourian(Upper Pennsylvanian)strata of Kansas: Stratigraphic and geographic patterns of variation. In: Pausé P H,Candelaria M P(eds). Carbonate Facies and Sequence Stratigraphy: Practical Applications of Carbonate Models. USA: PBGC-SEPM Publication,141-173. [19] Bates N R,Brand U.1990. Secular variation of calcium carbonate mineralogy:An evaluation of ooid and micrite chemistries. Geologische Rundschau, 79(1): 27-46. [20] Bathurst R G C.1967. Oölitic films on low energy carbonate sand grains,Bimini Lagoon,Bahamas. Marine Geology, 5(2): 89-109. [21] Bathurst R G C. 1968. Precipitation of ooids and other aragonite fabrics in warm seas. In: Muller G,Freidman G M(eds). Recent Developments in Carbonate Sedimentology in Central Europe. Berlin: Springer-Verlag,1-10. [22] Brehm U,Krumbein W E,Palińska K A.2003. Microbial spheres: A novel cyanobacterial-diatom symbiosis. Naturwissenschaften, 90(3): 136-140. [23] Brehm U,Krumbein W,Palińska K A.2006. Biomicrospheres generate ooids in the laboratory. Geomicrobiology Journal, 23(7): 545-550. [24] Budd D A.1988. Petrographic products of freshwater diagenesis in Holocene ooid sands,Schooner Cays,Bahamas. Carbonates and Evaporites, 3(2): 143-163. [25] Cantrell D L.2006. Cortical fabrics of Upper Jurassic ooids,Arab Formation,Saudi Arabia: Implications for original carbonate mineralogy. Sedimentary Geology, 186: 157-170. [26] Carrozi A V.1962. Cerebroid oolites. Transactions of the Illinois State Academy of Science, 55: 238-249. [27] Chow N,James N P.1987. Facies-specific,calcitic and bimineralic ooids from Middle and Upper Cambrian platform carbonates,western Newfoundland,Canada. Journal of Sedimentary Petrology, 57(5): 907-921. [28] Davies P J,Martin K.1976. Radial aragonite ooids,Lizard Island,Great Barrier Reef,Queensland,Australia. Geology, 4(2): 120-122. [29] Davies P J,Bubela B,Ferguson J.1978. The formation of ooids. Sedimentology, 25(5): 703-730. [30] Diaz M R,Swart P K,Eberli G P,Oehlert A M,Devlin Q,Saeid A,Altabet M A.2015. Geochemical evidence of microbial activity within ooids. Sedimentology, 62(7): 2090-2112. [31] Diaz M R,Eberli G P,Blackwelder P,Phillips B,Swart P K.2017. Microbially mediated organomineralization in the formation of ooids. Geology, 45(9): 771-774. [32] Diaz M R,Eberli G P.2019. Decoding the mechanism of formation in marine ooids: A review. Earth-Science Review, 190: 536-556. [33] Donahue J.1969. Genesis of oolite and pisolite grains: An energy index. Journal of Sedimentary Petrology, 39(4): 1399-1411. [34] Duguid S M A,Kyser T K,James N P,Rankey E C.2010. Microbes and ooids. Journal of Sedimentary Research, 80: 236-251. [35] Eardley A J.1938. Sediments of Great Salt Lake,Utah. Bulletin of the American Association of Petroleum Geologists, 22(10): 1305-1411. [36] Ferguson J,Bubela B,Davies P J.1978. Synthesis and possible mechanism of formation of radial carbonate ooids. Chemical Geology, 22: 285-308. [37] Flügel E.2010. Microfacies of Carbonate Rocks. Berlin Heidelberg: Springer,142-156. [38] Folk R L,Lynch F L.2001. Organic matter,putative nannobacteria and the formation of ooids and hardgrounds. Sedimentology, 48(2): 215-229. [39] Freeman T.1962. Quiet water oölites from Laguna Madre,Texas. Journal of Sedimentary Petrology, 32(3): 475-483. [40] Friedman G M.1964. Early diagenesis and lithification in carbonate sediments. Journal of Sedimentary Petrology, 34(4): 777-813. [41] Friedman G M,Amiel A J,Braun M,Miller D S.1973 Generation of carbonate particles and laminates in algal mats: Example from sea-marginal hypersaline pool,Gulf of Aqaba,Red Sea. Bulletin of the American Association of Petroleum Geologists, 57: 541-557. [42] Halley R B.1977. Ooid fabric and fracture in the Great Salt Lake and the geologic record. Journal of Sedimentary Petrology, 47(3): 1099-1120. [43] Hearty P J,Webster J M,Clague D A,Kaufman D S,Bright J,Southon J,Renema W.2010. A pulse of ooid formation in Maui Nui(Hawaiian Islands)during termination. Marine Geology, 268: 152-162. [44] Heller P L,Komar P D,Pevear D R.1980. Transport processes in ooid genesis. Journal of Sedimentary Petrology, 50(3): 943-951. [45] Hird K,Tucker M E.1988. Contrasting diagenesis of two Carboniferous oolites from South Wales: A tale of climatic influence. Sedimentology, 35: 587-602. [46] Huang H,Jin X,Li F,Shen Y.2017. Permian oolitic carbonates from the Baoshan block in estern Yunnan,China,and their paleoclimatic and paleogeographic significance. International Journal of Earth Sciences, 106(4): 1341-1358. [47] Illing L V.1954. Bahaman calcareous sands. Bulletin of the American Association of Petroleum Geologists, 38(1): 1-95. [48] Kahle C F.1974. Ooids from Great Salt Lake,Utah,as an analogue for the genesis and diagenesis of ooids in marine limestones. Journal of Sedimentary Petrology, 44(1): 30-39. [49] Kahle C F.2007. Proposed origin of aragonite Bahaman and some Pleistocene marine ooids involving bacteria,nannobacteria(?),and biofilms. Carbonates and Evaporites, 22(1): 10-22. [50] Land L S,Behrens E W,Frishman S A.1979. The ooids of Baffin Bay,Texas. Journal of Sedimentary Petrology, 49(4): 1269-1277. [51] Li F,Yan J,Algeo T,Wu X.2013. Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids(Moyang,South China). Global and Planetary Change, 105: 102-120. [52] Li F,Yan J,Chen Z-Q,Ogg J G,Tian L,Korngreen D,Liu K,Ma Z,Woods A D.2015. Global oolite deposits across the Permian-Triassic boundary: A synthesis and implications for palaeoceanography immediately after the end-Permian biocrisis. Earth-Science Reviews, 149: 163-180. [53] Li F,Yan J,Burne R V,Chen Z Q,Algeo T J,Zhang W,Tian L,Gan Y,Liu K,Xie S.2017. Paleo-seawater REE compositions and microbial signatures preserved in laminae of Lower Triassic ooids. Palaeogeography,Palaeoclimatology,Palaeoecology, 486: 96-107. [54] Liu J,Zhan R,Dai X,Liao H,Ezaki Y,Adachi N. 2011. Demise of Early Ordovician oolites in South China: Evidence for paleoceanographic changes before the GOBE. In: Gutiérrez-Marco J C,Rábano Ⅰ,García-Bellido D(eds). Ordovician of the World. Madrid: Cuadernos del MuseoGeominero Instituto Geológicoy Minero de España,309-317. [55] Liu W,Zhang X.2012. Girvanella-coated grains from Cambrian oolitic limestone. Facies, 58(4): 779-787. [56] Loreau J P,Purser B H. 1973. Distribution and ultrastructure of Holocene ooids in the Persian Gulf. In: Purser B H(ed). The Persian Gulf. New York: Springer,279-328. [57] Major R P,Halley R B,Lukas K J.1988. Cathodoluminescent bimineralic ooids from the Pleistocene of the Florida continental shelf. Sedimentology, 35(5): 843-855. [58] Margolis S,Rex R W.1971. Endolithic algae and micrite envelope formation in Bahamian oolites as revealed by scanning electron microscopy. Geological Society of America Bulletin, 82(4): 843. [59] Mariotti G,Pruss S B,Summons R E,Newman S A,Bosak T.2018. Contribution of benthic processes to the growth of ooids on a low-energy shore in Cat Island,the Bahamas. Minerals, 8(6): 252-272. [60] Mashall J F,Davies P J.1975. High-magnesium calcite ooids from the Great Barrier Reef. Journal of Sedimentary Petrology, 45(1): 285-291. [61] Medwedeff D A,Wilkinson B H. 1983. Cortical fabric in calcite and aragonite ooids. In: Peryt T M(Editor). Coated Grains. Berlin-Heidelberg-New York-Tokyo: Springer-Verlag,109-115. [62] Newell N D,Purdy E G,Imbrie J.1960. Bahamian oölitic sand. Journal of Geology, 68(5): 481-497. [63] Opdyke B N,Wilkinson B H.1990. Paleolatitude distribution of Phanerozoic marine ooids and cements. Palaeogeography,Palaeoclimatology,Palaeoecology, 78(1-2): 135-148. [64] O'Reilly S S,Mariotti G,Winter A R,Newman S A,Matys E D,Mcdermott F,Pruss S B,Bosak T,Summons R E,Klepac-Ceraj V.2016. Molecular biosignatures reveal common benthic microbial sources of organic matter in ooids and grapestones from Pigeon Cay,the Bahamas. Geobiology, 15: 112-130. [65] Rankey E C,Reeder S L.2009. Holocene ooids of Aitutaki Atoll,Cook Islands,South Pacific. Geology, 37(11): 971-974. [66] Rusnack G A.1960. Some observation of recent oolites. Journal of Sedimentary Petrology, 30(3): 471-480. [67] Sandberg P A.1975. New interpretation of Great Salt Lake ooids and of ancient non-skeletal carbonate mineralogy. Sedimentology, 22(4): 497-537. [68] Sandberg P A.1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305: 19-22. [69] Shearman D J,Twyman J,Karimi M Z.1970. The genesis and diagenesis of oolites. Proceedings of the Geologists' Association, 81(3): 561-575. [70] Simone L.1981. Ooids: A review. Earth-Science Reviews, 16: 319-355. [71] Sorby H C.1879. On the structure and origin of limestones. Proceedings of the Geological Society of London, 35: 56-95. [72] Strasser A.1986. Ooids in Purbeck limestones(lowermost Cretaceous)of the Swiss and French Jura. Sedimentology, 33(5): 711-727. [73] Suess E,Fütterer D.1972. Aragonitic ooids: Experimental precipitation from seawater in the presence of humic acid. Sedimentology, 19: 129-139. [74] Summons R E,Bird L R,Gillespie A L,Pruss S B,Roberts M,Sessions A L.2013. Lipid biomarkers in ooids from different locations and ages: Evidence for a common bacterial flora. Geobiology, 11(5): 420-436. [75] Tan Q,Shi Z-J,Tian Y-M,Wang Y,Wang C-C.2018. Origin of ooids in ooidal-muddy laminites: A case study of the Lower Cambrian Qingxudong Formation in the Sichuan Basin,South China. Geological Journal, 53(5): 1716-1727. [76] Tang D,Shi X,Shi Q,Wu J,Song G,Jiang G.2015. Organomineralization in Mesoproterozoic giant ooids. Journal of Asian Earth Sciences, 107: 195-211. [77] Tian L,Bottjer D J,Tong J,Li F,Yang T,Song H,Song H,Liang L.2015. Distribution and size variation of ooids in the aftermath of the Permian-Triassic mass extinction. Palaios, 30(9): 714-727. [78] Trower E J,Grotzinger J P.2010. Sedimentology,diagenesis,and stratigraphic occurrence of giant ooids in the Ediacaran rainstorm member,Johnnie Formation,Death Valley region,California. Precambrian Research, 180(1): 113-124. [79] Trower E J,Lamb M P,Fischer W W.2017. Experimental evidence that ooid size reflects a dynamic equilibrium between rapid precipitation and abrasion rates. Earth and Planetary Science Letters, 468: 112-118. [80] Tucker M E.1984. Calcitic,aragonitic and mixed calcitic-aragonitic ooids from the Mid-Proterozoic Belt Supergroup,Montana. Sedimentology, 31(5): 627-644. [81] Wilkinson B H,Landing E.1978. “Eggshell diagenesis” and primary radial fabric in calcite ooids. Journal of Sedimentary Petrology, 48(4): 1129-1138. [82] Wilkinson B H,Owen R M,Carroll A R.1985. Submarine hydrothermal weathering,global eustasy,and carbonate polymorphism in Phanerozoic marine oolites. Journal of Sedimentary Petrology, 55(2): 171-183.